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ABSTRACT

A new concept has emerged for far offshore wind energy
conversion. It is the wind energy ship (1). It consists of a ship
propelled by wind sails towing a water turbine. The water
turbine produces electricity. The electricity is converted into a
fuel (hydrogen for example). When the tanks are full, the ship
sails to a terminal where the fuel is unloaded. Then, it can start
a new charging cycle.

An energy ship consists in several sub-systems: wind
propulsion subsystem, hull, water turbine, energy storage. The
focus of this paper is on the wind propulsion subsystem because
of the many options available. Indeed, it has been proposed to
implement rigid sails (2, 3), kite wings (4, 5), airfoils (1, 7) or
Flettner rotors (6).

Applying systems engineering, key requirements for the
wind propulsion have been identified for the energy ship
application. They are presented in the paper. Next, the
advantages and drawbacks of each technology are discussed and
most promising options are highlighted.

INTRODUCTION

Floating wind turbines have been developed (8, 9). They
address the challenge of deeper water. The world's first floating
wind farm is expected to start producing by the end of 2017
(10). The offshore wind technical potential available near shore
(<90 km) and in intermediate water depth (<200 m) is in order
of 180,000 TWh/y according to (11), which is less than the
forecasted energy demand in 2050 in the reference scenario of
(12) (240,000 TWh/y). To further increase the technical
potential, wind energy conversion technologies which can be
deployed far offshore (hundreds to thousands of km from shore)
must be developed. There, it is no longer feasible from an
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economic perspective to use grid-connected wind turbines
because grid-connection increases linearly with increasing
distance to shore (13). Other means to transfer the energy from
the source of production to the consumer must be considered. It
involves energy storage for which many options (compressed
air energy storage, batteries, hydrogen, etc.) are available (14).

A remarkable benefit of on-board energy storage for far
offshore wind energy converters is that the constraint for the
supporting platform to be stationary is removed. Being mobile
has two advantages. Firstly, it removes the need for moorings &
anchors which has a significant impact on capital expenditures
(CAPEX). According to (9), moorings and anchors (including
installation) account for approximately 20% of CAPEX of
typical floating offshore wind projects. Secondly, the system
being mobile, it may sail to the resource which may lead to
greater capacity factors. Note that capacity factor for offshore
wind turbines is already rather high, being in average
approximately 40% according to (9). Still, for harvesting the far
offshore wind energy resource, it appears that mobile wind
energy conversion systems may represent a cost competitive
alternative to floating offshore wind turbines.

The energy ship is one of the concepts suggested for the far
offshore wind harvesting (15). In energy ships, wind energy is
primarily used to propel the ship. Then, electricity generation is
obtained through a water turbine attached to the hull of the ship.
A techno-economic feasibility of the energy ship concept has
been conducted (15) and stated, for the hydrogen storage
solution, the final hydrogen price that must be achieved to be
competitive in the actual and future hydrogen market. From the
assumptions taken in the study, there were great uncertainties on
the on-board hydrogen production cost due to the lack of
information on the ship design and performances. Work is in
progress on the design optimization of such vessel to validate a
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Figure 1. Stakeholders’ requirements graph of a FARWIND project.
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more precise hydrogen production cost. To reach this objective,
one step is to validate the technology choices of each subsystem
composing the ship.

From the recent developments, technologies that suit to
wind propulsion of freight ships have emerged. Flettner rotors
(16), Turbo-sails (17), rigid or wing sails (18) and kite wings
(19) have been recently developed and seem to be suitable. In
this paper, we propose to draw advantages and drawbacks of
each of these technologies for an application on energy ships.

IDENTIFICATION OF REQUIREMENTS AND
PERFORMANCES MEASURES

Sakeholder requirements

Systems engineering techniques have been applied to a
hydrogen energy ship project to identify and specify
stakeholders’ requirements for a commercially successful
project. Following the systems engineering method used in
“stakeholder requirements for commercially successful wave
energy converter farms” (15), we first identified the mission of
a FARWIND project: “A far offshore wind energy converter
system converts far offshore wind energy to stored hydrogen
energy and delivers it to hydrogen users at a competitive cost
from the economic, societal and environmental point of view”.
We then proceed to identify and analyze all lifecycle stages
from engineering and procurement to disposal. Then the list of
all stakeholders interacting with the project at each lifecycle
stages has been established. Finally we proceed to identify 28
stakeholders’ requirements as shown on “Fig. 1.”. Although
some new requirements appeared (e.g. “SR2.1.2: Be able to
cope with communication loss” or “SR3: Be an on-demand
hydrogen source”) and some others were non relevant to the far
offshore wind energy project (e.g. “SR3: Be reliable for grid
operations”) the requirements for the FARWIND project are
very similar from those of a Wave Energy Converter farm.

Subsystems functions

For completing the mission, function and sub-functions
has to be completed. They are detailed on “Fig. 2.”. Three
systems associated to a specific function are distinguished: the
terminal and distribution network (including soft distribution
network) which “deliver hydrogen to end users, the tanker
which “transport hydrogen from the converter to terminal” and
the converter i.e. the energy ship which “produce hydrogen
from wind energy”. The wind propulsion system is associated to
the energy ship’s sub-function “convert wind energy to kinetic
energy of marine platform”.

Wind
propulsion
system

Convert wind energy to
kinetic energy of marine platform

N Convert kinetic energy of
marine platform to hydrogen

Stare hydrogen

Produce

hydrogen
from wind
Eenergy Provide means to
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environmental unload hydrogen
point of view
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hydrogen
= to end
users Store hydrogen
Disfribute hydrogen to
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Figure 2. Function graph of a FARWIND project.

EVALUATION OF WIND PROPULSION
TECHNOLOGIES

Evaluation method

To evaluate each wind propulsion technology we stated if
they are able to make the FARWIND project fulfill the
stakeholder’s requirements. Each technology has been rated
from 0 (worst rate) to 10 (best rate) for each stakeholders
requirement. Each rate represents the qualitative evaluation of a
technology to fulfill the studied stakeholders’ requirement. To
rate the technologies, we based our studies on performances
metrics that represents all the parameters that could influence
technologies’ capacity to fulfill the stakeholders’ requirements.
The list of the performance metrics studied is shown on “Fig.
3.”. Some of the stakeholders’ requirements do not concern the
wind propulsion system and then have not been rated (e.g.
S.R.3: be an on-demand hydrogen source).

In the rest of this paper, we present the rates of four wind
propulsion technologies: Flettner rotors, turbo-sails, rigid sails
and kite wings. Important performances metrics are highlighted
to explain stakeholders’ requirements’ rating.
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Figure 3. Performances metrics of the wind propulsion system associated to the stakeholders requirements of a FARWIND
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Flettner rotors

The Flettner rotor is a remarkable technology due to its
excellent aecrodynamics performances (20, 21, 22, 23). Indeed,
such system is able to achieve a lift ratio up to 9 with a lift to
drag ratio of 4 (21). The relatively low lift to drag ratio
compared to the other technologies and the difficulty to adjust
the aerodynamic force direction because of the circular
symmetry of the profile make it more sensible to wind direction.
This tends to make weather routing more difficult (low
performances for some wind directions) and reduce the energy
ship capacity to be a high yield system.

Flettner rotors are easy to automatize with only the
rotation speed of the rotor to control.

The main drawback of Flettner rotor is the energy
consumption of the rotor. The power consumption is about
80kW for a rotor of Sm diameter and 30m high (24) and is
equivalent to 10% of the propulsive power produced for a ship
sailing at 15kts. This aspect tends to slightly decrease the
aerodynamic performances.

With a wind speed equivalent to BF10 (i.e. 55kts) the
force exerted by the wind on a non-rotating rotor is fewer than
the nominal conditions of the same Flettner rotor (i.e. rotating
rotor with a wind speed of 20kts). This consideration,
reinforced by the simplicity of the architecture of the system,
contributes to minimize development and constructions costs. It
also reinforces the survivability of the system.

There are few uncertainties on costs and revenues
because Flettner rotor is a well-developed technology. Indeed,
thanks to the recent developments, it achieves a technologic
readiness level of 9 with two fully operational vessels equipped
with this propulsion technology (24, 25).

SR1.1: Have as low CAPEX
as possible
10

8

SR1.2: Have as low OPEX as

SR2.2: Be survivable ;
possible

SR2.1: Be low uncertainty SR1.3: Be a high yield
on cost and revenues system

SR1.4: Have high
availability

Figure 4. Flettner rotor results.

Turbo-sails

Turbo-sails are very similar to Flettner rotor both from
aerodynamic, architecture and operation point of view. It has a
fewer but quite high lift ratio of about 5.4 (26, 27) completed
with a good lift to drag ratio of 7.8 (26, 27). The power

consumption needed is supposed to be 7.5% of the propulsive
power for a ship sailing at 15kts (28), which is fewer than the
power consumption of a Flettner rotor.

The system consisting of several moving parts (e.g.
mobile flap, adjustable suction area, air turbine...) can be
sensitive to the hostility of at sea environment. The turbo-sail
also have a larger sail area. These two factors decrease its
survivability.

Turbo-sail technology has achieved a final
development maturity thanks to the work of Fondation Cousteau
(17) and the operation of the Alcyone (ref), a fully functional
Turbo-sail equipped vessel. Nevertheless there was no recent
proof of development or project based on the turbo-sail system
and an update is needed to access to more precise and up to
date characteristics.

SR1.1: Have as low CAPEX

as possible
10

8

6 .

SR2.2: Be survivable SR1.2: Have as low OPEX as
possible
SR2.1: Be low uncertainty SR1.3: Be a high yield
on cost and revenues system
SR1.4: Have high
availability

Figure 5. Turbo-sails results.

Rigid sails

Rigid sails are the recent high efficient sails. Due to
the differences in profiles’ shapes and sizes it is hazardous to
describe them with a unique lift or drag ratio. We can still state
that rigid sails are characterized by a good lift ratio (generally
between 1 and 3 (29) plus an excellent lift to drag ratio (up to
50) that enable the ship equipped to sail with good efficiency in
any wind direction including upwind.

Rigid sails are a mature technology with lots of studies
and equipped vessel (18, 29, 30) that leads to low uncertainties
on costs. The simple architecture with no huge motor
participates to both reducing the cost and increasing the
performances.

In terms of survivability, rigid sails suffer from their
large sail area and good aerodynamic performances. A
retractable system is required to ensure the survivability of the
sail and the ship. Options are available to retract the sail (18).
The need of such system is a drawback for safety (a failure to
retract the sail can have dangerous consequences) and may
induce regular planned maintenance to maintain system’s
reliability.
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Figure 6. Rigid sails results.

Kite wing

Kite wing could have very high aerodynamics
performances (31, 32). Thanks to altitude of the wing, it is able
to reach higher wind speed and therefore increase the
propulsive force with a low sail area (33).

This technology has a relatively low TRL and
uncertainties remain about the performances and reliability of a
completely automated kite wing. The technology is thus not yet
ready to operate on an energy ship, but thanks to the actual
developments (31), we expect a higher TRL level of this
technology in the next years.
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Figure 7. Kite wings results.

DISCUSSIONS AND CONCLUSION

Applying systems engineering, key requirements for a
successful AFRWIND project has been identified (see “Fig.
1.”). The FARWIND project has been decomposed in systems
and sub-systems associated to specific functions (see “Fig. 2.”).
The system “energy ship” aim to “produce hydrogen from wind
energy”. The propulsion subsystem of the energy ship is a key
subsystem for its performances. We discussed advantages and
drawbacks of each technology and most promising options have
been highlighted.

To evaluate wind propulsion technologies’ ability to make
the FARWIND project successful we evaluate the influence of
each technology on the stakeholders’ requirements. To evaluate
this influence we relied on performances metrics that
summarize the parameters and specifications that could
influence stakeholders’ requirements (see “Fig. 3.”).

All the technologies selected (Flettner rotors, Turbo-sails,
rigid sails and kite wings) have very good aerodynamic
performances and are able to fulfill the energy ship’s function
“convert wind energy into kinetic energy of the marine
platform”.

Flettner rotors and Turbo-sails are the most polyvalent
technologies regarding the stakeholders’ requirements. They
don’t suffer of major weakness for an application on an energy
ship. The Flettner rotor technology has already been proved
many times on cargo sized vessels and is ready to use. Although
Turbo-sail technology has achieved in 1985 a full technologic
maturity, it lacks of recent proof of development and of
examples of use on cargo sized vessels.

Rigid sails technology is also very promising for an
application on an energy ship. It is a very well developed
technology with good aerodynamic performances. It has better
upwind performances than Flettner rotors and turbo-sails. While
Flettner rotors and Turbo-sails don’t need specific operation or
system to survive extreme weather conditions, rigid sails must
be retractable.

Kite wings could have very high aerodynamics
performances and can be adapted on an energy ship but the
technology is less mature than other wind propulsion
technologies. More results and examples of applications on
cargo sized vessels are required to state on the ability of kite
wings to fulfill FARWIND project stakeholders’ requirements.
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Figure 8. Flettner rotors, turbo-sails, rigid sails and kite
wings results.
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