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ABSTRACT 
This paper presents validation tests for a new numerical 

tool for the numerical simulation of marine operations. It 
involves multibody dynamics modeling, wave-structure 
interactions with large amplitude body motion and cable’s 
dynamic modeling. Hydrodynamic loads are computed using 
the WS_CN weakly nonlinear potential flow solver, based on 
the weak-scatterer hypothesis. Large deformation of the wetted 
body surfaces can be taken into account. Firstly the ECN’s 
WS_CN solver capabilities are extended to multibody 
simulations. A first validation test is performed by comparing 
numerical results to the experimental data of [1]. Then, a 
second validation test is proposed. It consists in the ballasting 
operation of a spar. The experimental set-up is described. 

KEYWORDS 
Marine operations, numerical modeling, multibody 

dynamics, potential flow theory, weak-scatterer 

NOMENCLATURE 

A         Amplitude of the incoming regular wave; ܣ𝑝௠     Amplitude of the harmonic motion of Body 2;࡯ = ሺ࡯૚ࢀ Matrix of influence coefficients; 𝑭𝒋      ࡿ࡯ ;Matrix of influence coefficients      ࡰ࡯;Inertia and external loads ࢀሻࢀ૛࡯ Hydrodynamic forces on the ݆𝑡ℎ body;ܩ         Green’s function; 
g      Gravity constant; 𝑯 = (𝑯૚૚ 𝑯૚૛𝑯૛૚ 𝑯૛૛) Multibody inertia matrix; 

h         Water depth; 
k  Wave number of the incoming regular wave; 

𝑴𝒋     Hydrodynamic moments at the center of gravity on the ݆𝑡ℎ body;ܰ     Number of immerged or floating bodies in WS_CN; 𝑗ܰ Number of nodes in the mesh of the ݆𝑡ℎ body;࢔       Normal vector pointing outwards the fluid domain; 𝑝         Pressure; ܳ𝑗   Extra discretized derived terms of the body boundary 
condition for the 2nd BVP; 𝒒ሷ         Articular accelerations; ܵ𝐵𝑗      Wetted surface of the ݆𝑡ℎ  body;𝑡        Time; 𝑽        Fluid velocity field; 𝑽ሶ ૙ ૙ Acceleration of the base with respect to Σ𝑒  and projected
in its frame; 𝒗࢓𝒆𝒔𝒉  Free surface node velocity;𝒗𝒋 Velocity of the center of gravity of the ݆𝑡ℎ  body;࢞    Position of the control point in Σ𝑒;࢞𝒋 Position of the center of gravity of the ݆𝑡ℎ body in Σ𝑒 .𝜞    Internal loads; ߟ     Total wave elevation; ߟ𝐼     Incident wave elevation; ߟ𝑃  Scattered wave elevation; 𝜆        Wave length of the incoming regular wave; 𝜈        Damping coefficient of the absorbing beach; ߩ        Fluid density; Σ𝑒      Inertial earth fixed reference frame; 𝜙    Total velocity potential; 𝜙𝐼      Incident velocity potential; 𝜙𝑃  Scattered velocity potential; ߱        Frequency of the incoming regular wave; 𝝎𝒋 Angular velocity of the ݆𝑡ℎ body;߱𝑝௠    Frequency of the harmonic motion of Body 2.
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ሺ∗ሻ௡    Normal-derivative;ሺ∗ሶ ሻ       Time-derivative; 𝐷0ሺ∗ሻ𝐷𝑡  Lagrangian Time-derivative; 

INTRODUCTION 
For the development of the offshore wind industry, the 

simulation of marine operations for the installation of wind 
turbines is required in order to optimize procedures and reduce 
costs. It involves multibody dynamics modeling including 
multiple floating bodies, wave-structure interactions with large 
amplitude body motions and cable’s dynamic modeling. Norms 
have been published by DNV on this topic [2]. They are based 
on simplifications (characteristic quantities, regular design 
wave) and safety factors. Commercial tools such as Orcaflex 
[3], Deeplines [4], AnySim [5] or Simo [6] are frequently used 
for the design of marine operations such as installation of 
marine energy systems. They are based on frequency-domain 
linear potential flow theory-based code and/or Morison 
equations to compute the hydrodynamic loads. The linear 
potential flow theory assumes small amplitude motions of the 
floaters and small steepness incoming waves. It also assumes 
that the computational domain (mesh of the floating bodies and 
the free surface) is stationary. Furthermore, only steady 
hydrodynamic loads are evaluated because of the frequency-
domain approach. This approach may miss some important 
unsteady effects. This is the case, for instance, when two 
floating bodies have a large relative motion or if a body goes 
across the free surface or any situation with an important 
modification of the wetted bodies’ surfaces.  

Other solutions than linear potential flow theory exist. For 
example, the use of a time-domain body-exact theory is 
possible. Watai [7] coupled this theory with a remeshing 
algorithm and a free surface interpolation algorithm to take into 
account the modification of the relative positions of several 
floating bodies. The approach is limited to waves with small 
steepness. Gilloteaux [8] used a nonlinear Froude-Krylov 
approach in order to improve the computation of hydrodynamic 
loads in conditions with large amplitude waves. Nonlinear 
hydrostatics and Froude-Krylov loads are assumed prevailing 
and computed on the exact wetted body surface while a linear 
potential flow solver calculates the diffraction-radiation loads. 
Unfortunately this method is not mathematically consistent as 
hydrodynamic loads are not computed on the same wetted 
surfaces. It leads to large uncertainties on its domain of validity. 
Hannan [9] developed a model based on a fully nonlinear 
potential flow solver to simulate a lowering operation. This 
kind of hydrodynamic solver, although more accurate than the 
linear one, has limitations and may present numerical 
challenges. Free surface boundary equations are written on the 
exact free surface taking into account the perturbed waves. The 
CPU time is also much greater compared to a linear approach. 
A fourth approach is the weak-scatterer method. It was 
proposed by Pawlowski [10] in 1991. It assumes that the 
perturbation wave field generated by the floating bodies is 

small compared to the incident wave field, such as the free 
surface conditions can be linearized at the incident wave 
elevation level. Thus, the free surface mesh is known at each 
time as it corresponds to the incident wave. This method allows 
taking into account unsteady hydrodynamic loads and is body-
exact (no approximation on the amplitude of the motion of the 
floating bodies).  

The LHEEA research department of Ecole Centrale de 
Nantes has developed a hydrodynamic solver based on this 
approach since 2012. It is called WS_CN. Letournel [11] 
developed a version for a single submerged body with 
translational motions. Chauvigné [12] extended it to a single 
surface-piercing body. 

To simulate marine operations, this code has been coupled 
with InWave [13], a multibody solver to model articulated 
kinematic trees. InWave has been developed by LHEEA and 
INNOSEA [14]. The coupling allows the multibody dynamics 
and unsteady hydrodynamic loads to be taken into account 
without being limited by the small amplitude motions 
assumptions for the floating bodies.  

The first objective of this paper is to validate the extension 
of WS_CN to the simulations of multiple interacting floating 
bodies with large relative motion amplitude. Comparison is 
made to the experimental results of Watai et al. [1]. The second 
objective is to validate the coupling with InWave by comparing 
numerical results to experimental results obtained at LHEEA 
for the case of the ballasting of a spar. 

PART I: VALIDATION OF THE EXTENSION TO 
MULTIBODY SIMULATION 

Governing equations 

The fluid is assumed incompressible and inviscid whereas 
the flow is considered as irrotational. Thereby, the fluid 
problem is solved in the frame of the potential flow theory. The 
velocity field results from a scalar velocity potential: 𝑽 = 𝛁𝜙 (1) 

The velocity potential, respectively the wave elevation, is 
decomposed as an unknown scattered (perturbation) component 𝜙𝑃 and a known incident component 𝜙𝐼, respectively ߟ𝐼 andߟ𝑃:

{𝜙 = 𝜙𝐼 + 𝜙𝑃ߟ = 𝐼ߟ + 𝑃ߟ (2) 

The incident wave field is defined by: 

𝜙𝐼 = ߱݃ܣ cosh(݇ሺݖ + ℎሻ)cosh ሺ݇ℎሻ sinሺ݇ݔ − ߱𝑡ሻ (3) 

Where ܣ, ݃, ߱ and ݇ represent the wave amplitude, the gravity 
constant, the wave frequency and the wave number. 
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The incident and perturbed components follow the weak-
scatterer approximation: 

{𝜙𝑃 ≪ 𝜙𝐼ߟ𝑃 ≪ 𝐼ߟ (4) 

𝜙𝑃 satisfies the Laplace equation in the fluid domain:∆𝜙𝑃 = Ͳ (5) 

By using the Green’s second identity, one can write the 
well-known integral equation: 

𝜙ܲሺܯሻΩሺܯሻ + ∬ 𝜙௡ܲ ሺܲሻܩሺܯ, ܲሻ𝑑ܵௌ− ∬ ,ܯ௡ሺܩ ܲሻ𝜙ܲሺܲሻ𝑑ܵௌ = Ͳ 
(6) 

Where ܩ is the Rankine source distribution: 

,ܯሺܩ ܲሻ = ͳ|ܲܯ| (7) 

Equation (6) can be discretized. It yields: ࡿ࡯𝝓࢔𝑷 − 𝝓𝑷ࡰ࡯ = ૙ (8) 

The expressions of the influence coefficients of the two 
matrices ࡰ࡯ and ࡿ࡯ can be found in [11]. 

The dynamic and kinematic free-surface conditions are 
linearized at the incident free surface elevation level ݖ = 𝐼:𝐷଴𝜙𝑃𝐷𝑡ߟ = 

 

−𝜙ሶ 𝐼 − ݃ሺߟ𝐼 + 𝑃ሻߟ − ͳʹ 𝛁𝜙𝐼 . 𝛁𝜙𝐼−ሺ𝛁𝜙𝐼 − 𝒗࢓𝒆𝒔𝒉ሻ. 𝛁𝜙𝑃−ߟ𝑃 ቆ߲𝜙ሶ 𝐼߲ݖ + ߲ሺ𝛁𝜙𝐼 . 𝛁𝜙𝐼ሻ߲ݖ ቇ − 𝜈𝜙𝑃 (9) 

𝐷଴ߟ𝑃𝐷𝑡 = 
 
ሶߟ− 𝐼 + ߲ሺ𝜙𝐼 + 𝜙𝑃ሻ߲ݖ − 𝛁𝜙𝐼 . 𝛁ߟ𝐼−𝛁𝜙𝑃. 𝛁ߟ𝐼 − ሺ𝛁𝜙𝐼 − 𝒗࢓𝒆𝒔𝒉ሻ. 𝛁ߟ𝑃+ߟ𝑃 ቆ߲ଶ𝜙𝐼߲ݖଶ − ߲ሺ𝛁𝜙𝐼 . 𝛁ߟ𝐼ሻ߲ݖ ቇ − 𝜈ߟ𝑃 (10) 

The no-flux condition through the body surfaces leads to 
the following slip condition for every node of the ݆𝑡ℎ body
mesh: 𝜙௡𝑃 = −𝜙௡𝐼 + [𝒗𝒋 + 𝝎𝒋 × ࢞) − .[(𝒋࢞ ࢔ (11) 

Where 𝒗𝒋, 𝝎𝒋, ࢞𝒋 and ࢞ are the linear velocity, the angular
velocity, the position of the center of gravity of the ݆𝑡ℎ body
and the position of the node. 

The last assumption of the fluid-structure problem is to 
consider that the bodies are rigid. 

The far field condition is: 

{𝜙𝑃 → Ͳߟ𝑃 → Ͳ  when √ݔଶ + ଶݕ + ଶݖ → ∞ 
(12) 

Equations (8), (9), (10), (11) and (12) constitute the first 
Boundary Value Problem (BVP) to solve [11]. 

At t = 0 s, the flow is assumed to be at rest. The initial 
condition on the scattered components is: 

{𝜙𝑃 = Ͳߟ𝑃 = Ͳ  at t = Ͳ s (13) 

In order to avoid generation of non-physical waves when 
the simulation starts, a ramp function is used: 

݂ሺ𝑡ሻ = {
Ͳ when t ൑ ଵܶͳ when t ൒ ଶܶͳʹ [ͳ − cos ߨ) 𝑡 − ଵܶଶܶ − ଵܶ)]  otherwise (14) 

With ଵܶ and ଶܶ be the starting and final time of the ramp.

The pressure is given by the Bernoulli’s equation: 

𝑝 = ߩ− [𝜙ሶ 𝐼 + 𝜙ሶ 𝑃 + ͳʹ ሺ𝛁𝜙𝐼 . 𝛁𝜙𝐼 + ʹ𝛁𝜙𝐼 . 𝛁𝜙𝑃ሻ + [ݖ݃ (15) 

Hydrodynamic and hydrostatic loads for the ݆𝑡ℎ body are
calculated by integration of the pressure over the wetted body 
surface: 

𝑭𝒋 = (
∬ 𝑝 ࢔ௌ𝐵𝑗 𝑑ܵ

∬ 𝑝ௌ𝐵𝑗 ࢞)] − (𝒋࢞ × (𝑑ܵ[࢔ (16) 

The time-derivative of the scattered velocity potential, 𝜙ሶ 𝑃,
is computed by solving a second Boundary Value Problem [11]. 
The integral equation of the second BVP becomes: ࡿ࡯𝝓ሶ 𝑷࢔ − 𝝓ሶࡰ࡯ 𝑷 = ૙ (17) 

The time-derivative of the velocity potential, 𝜙ሶ 𝑃, is known
on the free surface from Eq. (9). The time-derivative of the 
normal-derivative of the velocity potential, 𝜙ሶ௡𝑃, is known from
the time-derivative of the body slip condition (written for every 
node of the ݆𝑡ℎ body mesh):𝜙ሶ௡𝑃 = −𝜙ሶ௡𝐼 + 𝑲𝒋𝜼ሷ࡯ 𝒋 + ܳ𝑗 (18) 
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Equation (18) includes a new unknown, the acceleration of the ݆𝑡ℎ body, 𝜼ሷ 𝒋. It is written as a function of the Cardan anglesሺ𝜑𝑗 𝑗ߠ ߰𝑗ሻ:𝜼𝒋 = ሺݔ𝑗 𝑗ݕ 𝑗ݖ 𝜑𝑗 𝑗ߠ ߰𝑗ሻ் (19) ܳ𝑗  is an extra-term resulting of the time-differentiation of Eq.
(11). 
The motion equation for the ݆𝑡ℎ body is used to close the
system of differential equations. It is written in an inertial earth 
fixed reference frame Σ𝑒  with its origin 𝑒ܱ and the unit vectorsሺ࢞𝒆, 𝒆 is pointingࢠ .𝒆) lying on the mean water free surface࢟
upwards. The motion equation is written at the center of gravity 
of the ݆𝑡ℎ body. 𝑴𝒋𝜼ሷ 𝒋 = 𝑭𝒋 = 𝒋𝝓ሶࢀ࡯ 𝑷(ܤ𝑗) + 𝒋𝒉ࢀ (20) 

The expressions of ࡯𝑲𝒋, ࢀ࡯𝒋, ࢀ𝒋𝒉 and ܳ𝑗  are given in [15].𝝓ሶ 𝑷(ܤ𝑗) is the vector of the values of 𝜙ሶ 𝑃 for every node of the
mesh of the ݆𝑡ℎ body. Only hydrodynamic loads are considered
in Eq. (20). 

Equations (17), (18) and (20) form the second Boundary Value 
Problem to solve. The final system of equations is: 

{ 𝝓ሶࡿ࡯ 𝑷࢔ − 𝝓ሶࡰ࡯ 𝑷 = ૙𝜙ሶ௡𝑃 = −𝜙ሶ௡𝐼 + 𝑲𝒋𝜼ሷ࡯ 𝒋 + ܳ𝑗   ∀ ݆ ∈ [|ͳ, ܰ|]𝑴𝒋 𝒆 𝜼ሷ 𝒋 = 𝒋 𝒆ࢀ࡯ 𝝓ሶ 𝑷(ܤ𝑗) + 𝒋𝒉 𝒆ࢀ  ∀ ݆ ∈ [|ͳ, ܰ|] (21) 

Equation (21) is the monolithic fluid-structure coupling solved 
in WS_CN.  

Remeshing algorithm 
WS_CN was initially developed for a single body. It uses a 

discretization with triangular panels. It includes a mesh 
generation capability for the creation of unstructured meshes 
based on the advance front method [16]. Mesh deformation 
techniques are used to avoid remeshing at each time step which 
is required because of the motion of bodies. A linear spring 
analogy approach is applied to deform the mesh of the floating 
bodies [17]. Regarding the free surface mesh, the deformation 
is based on a radial basis function approach [18]. Nevertheless, 
mesh deformation is not sufficient to ensure a robust simulation 
for long simulations (several tens of seconds), particularly for 
the case of multibody simulations. Indeed, the mesh can be 
significantly distorted in case of large amplitude relative 
motion, which leads to numerical errors. For instance, the 
computation of the gradient of the velocity potential or the 
wave elevation is sensitive to the good quality of the mesh. 
Thus, including a remeshing capability is necessary.  

In a remeshing process, new nodes are created. Physical 
quantities are unknowns at the locations of the new nodes. They 
need to be interpolated. On the free surface mesh, the scattered 

component of both the velocity potential and the wave 
elevation must be known, for instance, to time-step the model 
by using the free surface boundary equations (9) and (10). An 
interpolation algorithm must be applied to find 𝜙𝑃 and ߟ𝑃 at
their new locations from their values at the former mesh nodes. 
Third-order polynomial b-splines are used in the interpolation 
scheme.  

The structure of the remeshing algorithm is described 
below: 

Generation of a new mesh using the advance front method; 
For each node of the new mesh, search of the nearest node 

of the former mesh; 
B-splines approximation of the perturbed velocity potential 

and the perturbed wave elevation based on the nearest node and 
the neighboring nodes in the former mesh and evaluation at the 
location of the new node. 

Furthermore, a Gaussian filter is applied to the free surface 
mesh [19] in order to remove high-frequency waves generated 
during the simulation. High-frequency waves lead to numerical 
instabilities. The filter is used every five time steps [20]. 

Description of the test cases 
The test cases presented by Watai et al. in [1] are used for 

the validation of the capability of WS_CN to deal with multiple 
interacting floating bodies. 

They conducted experimental tests at the University of Sao 
Paulo with two cylinders (one moving with a large amplitude 
motion, the other one being fixed) in regular waves. Both 
cylinders are circular with a dimeter of 0.40 m, a height of 0.36 
m and a draft of 0.20 m. When the cylinders are aligned with 
the y-axis, they are separated by 0.6 m (center-to-center). The 
first cylinder (named Body 1) is fixed while a harmonic motion 
is prescribed to the second cylinder (Body 2), located upstream 
of Body 1. Three wave probes (WP1, WP2 and WP3) are used. 
WP2 is in the middle between Body 1 and Body 2 when they 
are aligned with the incident waves. WP1, respectively WP2, is 
0.7 m upstream, respectively downstream, of WP2. Figure 1 
shows the locations of each element along with the definition of 
the global frame. 

Watai et al. [1] considered four regular waves. They are 
listed in Table 1. For each regular wave, three frequencies of 
the harmonic motion of Body 2 were selected. The motion 
amplitude of Body 2 is fixed at 0.37 m. Table 2 shows the 
twelve cases. 
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Figure 1:  TOP VIEW OF THE SKETCH OF THE 
EXPERIMENTAL SET-UP (THE PICTURE IS TAKEN 

FROM [1]) 

ID ߱ (rad/s) 𝜆 (m) A (m) 
Reg 1 6.400 1.506 0.0115 
Reg 2 6.800 1.330 0.0100 
Reg 3 7.000 1.259 0.0095 
Reg 4 7.200 1.190 0.0090 

Table 1: REGULAR WAVE CHARACTERISTICS 

Case Wave ߱𝑝௠ (rad/s) 𝑝௠ (m)ܣ
1 Reg 1 0.427 0.37 
2 Reg 1 0.213 0.37 
3 Reg 1 0.107 0.37 
4 Reg 2 0.453 0.37 
5 Reg 2 0.227 0.37 
6 Reg 2 0.113 0.37 
7 Reg 3 0.467 0.37 
8 Reg 3 0.233 0.37 
9 Reg 3 0.117 0.37 
10 Reg 4 0.480 0.37 
11 Reg 4 0.240 0.37 
12 Reg 4 0.120 0.37 

Table 2: CHARACTERISTICS OF THE TWELVE TEST 
CASES 

Numerical results 
A cylindrical domain is used for our simulations, with a 

radius of two wave lengths (2λ). One wave length is used for 
the damping beach. Figures 2 and 3 show the mesh of the 
domain for Case 1. Bodies are meshed at real scale. The ramp 
presented in Eq. (14) is applied for a wave period from the start 
of the simulation. The number of panels is approximately, 

respectively, 20000, 16000 and 13000 for, respectively, Cases 
1, 5 and 10. The time step is 0.005 s. 

Figure 2: TOP VIEW OF THE MESH FOR CASE 1 

Figure 3: VIEW FROM BELOW OF THE MESH FOR CASE 1 

Numerical results and experimental data of Watai et al. [1] 
are compared with respect to the wave elevations at the three 
wave probe locations and the hydrodynamic loads on Body 1. 
Hydrodynamic loads are computed from Eq. (16) after removal 
of the hydrostatic part of the Bernoulli Eq. (15). The results of 
Case 1 are presented on Fig. 4 for the loads on Body 1, Fig. 5 
for the wave elevations and Fig. 6 for the loads on Body 2. 
Cases 5 and 10 were also studied and comparisons are 
presented after digitization of the data of [1]. Hydrodynamic 
loads on Body 1 are presented for Case 5 on Fig. 7 and for Case 
10 on Fig. 8. Experimental and numerical signals were 
synchronized a posteriori, as the incident wave signals are not 
provided in [1]. 
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Figure 4: COMPARISON OF TIME SERIES OF THE HYDRODYNAMIC LOADS OF THE BODY 1 FROM NUMERICAL AND 
EXPERIMENTAL RESULTS FOR CASE 1 

Figure 5: COMPARISON OF TIME SERIES OF THE WAVE ELEVATIONS AT WP1, WP2, AND WP3 FROM NUMERICAL AND 
EXPERIMENTAL RESULTS FOR CASE 1 
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Figure 6: TIME SERIES OF THE HYDRODYNAMIC LOADS OF THE BODY 2 FROM NUMERICAL RESULTS FOR CASE 1 

Figure 7: COMPARISON OF TIME SERIES OF THE HYDRODYNAMIC LOADS OF THE BODY 1 FROM NUMERICAL AND 
EXPERIMENTAL RESULTS FOR CASE 5
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Figure 8: COMPARISON OF TIME SERIES OF THE HYDRODYNAMIC LOADS OF THE BODY 1 FROM NUMERICAL AND 
EXPERIMENTAL RESULTS FOR CASE 10 

The time series of the hydrodynamic loads show an 
overall good agreement between the experimental data and 
WS_CN. The modulation of the amplitude of ܨଵ௫ on Fig 4, 7
and 8 is well captured. The low frequency oscillations match 
with the harmonic motion of Body 2. In the three test cases, 
one can note that WS_CN appears to overestimate the 
amplitude of the loads, especially for ܨଵ௫ and ܨଵ௬ while an
underestimation is observed for ܨଵ௭. Regarding the wave
elevation, the modulations in ߟଵ and ߟଶ on Fig. 5 appear in the
numerical computations. The same overestimations, as the 
hydrodynamic loads, are noticed. Overestimations are also 
present in the work of Watai et al. [14] and are likely due to 
the main hypotheses of the solver (inviscid fluid, irrotational 
flow). Nevertheless Watai et al. needed much less panels 
(4010 panels in total for Case 1) than WS_CN (around 20 000 
panels in total for Case 1) so the method itself can also be 
responsible of the differences. The weakly nonlinear potential 
flow solver, used in this paper, requires meshing the water 
surface at incident wave elevation lever whereas Watai et al. 
use fully linear free surface conditions (water surface is water 
level at rest). In WS_CN, mesh convergence requires much 
more panels. The frequent use of remeshing processes, 

because of the large relative motion,  leads to a high number 
of interpolations of the physical quantity on the free surface 
(once per time step), deteriorating the accuracy, especially in 
case of small time steps. 
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For sake of illustration, the wave pattern for Case 1 at t = 

24.482 s is displayed on Fig. 9.

Figure 9: PERTURBATION COMPONENT OF THE WAVE 

PATTERN ሺ𝜼𝑷ሻ AT t = ૛𝟒. 𝟒𝟖૛ s FOR CASE 1

PART II: SIMULATION OF THE BALLASTING OF A 
SPAR

Description of the operation
In [13], a coupling between the weakly nonlinear 

potential flow solver of LHEEA and InWave is presented for 

the case of a single floating body as root of the multibody 

system. It uses a tight coupling method. The coupling has been 

extended to multibody systems [21]. There are no limitations

on the location of the floating bodies in the multibody system.

This new numerical tool is applied to the simulation of the 

ballasting of a spar. 

The spar is a cylinder. It is kept horizontal at the 

beginning of the experiment with a cable (Fig. 10a). Then, the 

cable is unwound (Fig. 10b) until the spar reaches a vertical 

position (Fig. 10c). Thus, the modeling of this experimental 

setup allows having to deal with an articulated multibody 

system (cable and floating cylinder) and a floating body with

an important deformation of the wetted surface (reason for 

using the weak-scatterer code). The comparison between the 

numerical results of the coupling and the experimental data 

aims at assessing the performance and the consistency of the 

coupling theory.

Figure 10: SKETCHES OF THE PHASES OF THE 

BALLASTING

Experimental setup
The cylindrical buoy (illustrated in Fig. 11) which 

represents the spar, is made of three parts: an external PVC 

pipe, a lead weight and a threaded rod. Table 3, respectively 

Table 4, shows the geometrical characteristics, respectively the 

mass and the inertia, of the buoy. Inertias are given with 

respect to an axis perpendicular to the axis of revolution of the 

buoy and passing by the reference point. At its equilibrium 

position the buoy is vertical (Fig. 10c), therefore at the initial 

time (Fig. 10a) the floating cylinder is maintained by the use 

of the cable. This cable is stiff (negligible elasticity). The mass 

of the buoy is constant through the operation.

(a)

(b)

(c)
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Figure 11: PICTURE AND SKETCH OF THE BUOY 

Length Symbol Value (m) 
Buoy length L 1.32 

Buoy diameter D 0.20 
Leads location d 0.13 
Table 3: GEOMETRICAL CHARACTERISTICS OF THE 

BUOY 

Element Mass (kg) Inertia (kg.mʹ) Reference 
point 

Pipe 10 1.5 ܱ𝑏
Leads 16 0.058 𝑝ܱ

Threaded rod 2 0.27 ܱ𝑏
Table 4: MASS AND INERTIA OF EACH PART OF THE 

BUOY 

At time of writing, the experiments are being conducted 
in the shallow water wave basin (Fig. 12) of LHEEA. Its 
dimensions are 20 m × 9.5 m with a water depth of 1 m. 

Figure 12: SHALLOW WATER BASIN AT LHEEA 

Numerical modeling 
The multibody solver InWave is used to simulate both the 

buoy and cable dynamics. The cable is discretized into cable 
elements. The multibody approach used in InWave is 
equivalent to the classical low-order lumped mass theory [13]. 
Bending and torsion are neglected, only axial tension and 
damping are considered. The lowering of the cable is achieved 
by increasing the unstretched length of the cable element 
connected to the winding mechanism [13]. 

The multibody motion equation without taking into 
account the hydrodynamic loads is [22]: 

(𝑯૚૚ 𝑯૚૛𝑯૛૚ 𝑯૛૛) ( 𝑽ሶ ૙ ૙𝒒ሷ ) = ቀ૙𝟔×૚𝜞 ቁ −  (૛࡯૚࡯)
(14) 

The first row is the motion equation for the base, which is the 
root body for the multibody system. The second row is the 
motion equation for the other bodies. 

This equation is coupled with the second Boundary Value 
Problem in order to solve, in a tightly coupled manner, both 

the accelerations ( 𝑽ሶ ૙ ૙𝒒ሷ ) and the scattered component of the 

time-differentiation of the velocity potential 𝜙ሶ 𝑃 [21].
Figure 13 shows the mesh of the buoy and a 3-element 

cable at the beginning of the simulation. 

Figure 13: MESH OF THE CYLINDRICAL BUOY AND A 
3-ELEMENT CABLE 
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CONCLUSIONS 
First, this paper presented the extension of a weak-

scatterer assumption based potential flow solver, WS_CN, to 
multibody simulations. A validation has been achieved by 
comparing numerical results to the experimental data of Watai 
et al. [1]. It shows a good agreement between the numerical 
and experimental results in terms of hydrodynamic loads and 
wave elevations. 

A second validation is proposed. It consists in the 
ballasting of a spar. Comparison results will be presented at 
the conference. 
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