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Abstract. Offshore wind energy technology has developed rapidly over the last decade. It is 

expected to significantly contribute to the further increase of renewable energy in the global 

energy production in the future. However, even with floating wind turbines, only a fraction of 

the global offshore wind energy potential can be harvested because grid-connection, moorings, 

installation and maintenance costs increase tremendously as the distance to shore and the water 

depth increase. Thus, new technologies enabling harvesting the far offshore wind energy 

resource are required. To tackle this challenge, mobile energy ship concepts have been 

proposed. In those concepts, electricity is produced by a water turbine attached underneath the 

hull of a ship propelled by the wind using sails. It includes an on-board energy storage system 

since energy ships are not grid-connected. Thus, the ships route schedules could be 

dynamically optimized taking into account weather forecast in order to maximize their capacity 

factors (CF).  The aim of this study is to investigate how high the capacity factors of energy 

ships could be when using weather-routing and compare them to that of stationary wind 

turbines that would be deployed in the same areas. To that end, a modified version of the 

weather-routing software QtVlm was used. Velocity and power production polar plots of an 

energy ship that was designed at LHEEA were used as input to QtVlm. Results show that 

capacity factors over 80% can be achieved with energy ships and stationay offshore wind 

turbines deployed in the North Atlantic Ocean. 
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1. Introduction 

The capacity factor CF (%) is a key metric to quantify the energy performance of a power generation 

source.   It is defined as the ratio between the effective average power over a given period and the 

nominal power. In terms of energy, this corresponds to the ratio of the actual electrical energy 

produced by a system over a given period of time to the energy it would have produced if it had 

operated at its nominal power during the same period. 

In [11], Capps & Zender showed that the average capacity factor for 5MW offshore wind turbines 

for locations characterized with class 3 wind speeds and water depth smaller than 200m is in the order 



of 38 to 49%. In practice, capacity factors of 40 to 50% have been reported for offshore wind farms 

[1].  They are significantly greater than land-based installations; thanks to higher wind speeds in open 

ocean areas in comparison to areas over land [2]. However, these CF are for offshore wind farms that 

are located near-shore. To date, it is unclear whether even greater CF can be achieved by deploying 

wind energy plants further offshore.  

Moreover, an alternative technology for far-offshore wind energy conversion is the energy ship. In 

energy ships, electricity is produced by a water turbine attached underneath the hull of a ship propelled 

by the wind using sails. Energy ships include an on-board energy storage system (e.g a Power-to-

Liquid production plant for renewable fuel production [3]) since energy ships are not grid-connected. 

Energy ships being mobile, their route schedules can be dynamically optimized taking into account 

weather forecast in order to maximize their CF. Although the concept is clear, to our knowledge, there 

has not been yet a study that investigates the CF of weather-routed energy ships. 

Therefore, in this study, we investigate and compare the capacity factors of these two technologies 

(energy ships and stationary floating offshore wind turbines) for offshore wind energy conversion.  

 

2. Data 

 

2.1. Wind speed data 

In this study, 10m wind speed data for years 2015, 2016 and 2017 is used. It was obtained from the 

ERA-Interim dataset provided by the European Centre for Medium-Range Weather Forecasts 

(ECMWF) reanalysis.  

 

2.2. Offshore wind turbine power curve 

In this study, we considered a 5MW horizontal axis wind turbine. Figure 1 shows the power curve that 

was used. The nominal wind speed is 11.4 m/s. The cut-in wind speed is 4 m/s and the cut-off wind 

speed is 25 m/s. It corresponds to a bottom-fixed offshore wind turbine. It has been assumed that the 

effect of the motion of the platform supporting the wind turbine on its energy performance is 

negligible. 

 

 

 

Figure 1. Power curve for the 5MW wind turbine 

 

 



 

 

 

2.3. Boat Speed and Power Polar 

A preliminary design of an energy ship has been developed at LHEEA. It is a 80m long catamaran 

fitted with four (27m tall, 4m diameter) Flettner rotors, which correspond to the dimensions of the 

rotors of the “e-ship 1” ship [12]. The performance of the energy ship is characterized by polar plots 

for its speed and power production. Those plots relate the speed of the boat (U) or the produced power 

to the true wind speed (TWS) and true wind angle (TWA). They have been obtained using an in-house 

velocity and power performance program (VPPP) [5]. The polar plots are shown in Figure 2.  The 

rated power of 1MW was chosen in order to allow a fair comparison to the wind turbine. Indeed, it is 

achieved for a true wind speed of 20 knots (10.2 m/s) which is close to the nominal wind speed of the 

wind turbine (11.4 m/s). Moreover, note that the wind speed for the wind turbine is the wind speed at 

hub height, whereas the wind speed for the energy ship is at 10m. 

 

3. Data 

 

3.1. Route optimization using QtVlm 

Weather routing was performed using the QtVlm software [7]. It is a free navigation and weather 

routing software designed for sailing boats. It also enables viewing grib files (weather data files) at 

different geographical and temporal resolution.  

 

3.2. Optimization criterion 

In the standard version of QtVlm, the optimization criterion is  the travel duration from the starting 

point A to the arrival point B. QtVlm uses the isochrones method to find an optimal route. The 

isochrones method [4] is a practical deterministic method for finding the minimum time route obtained 

through varying ship headings while assuming constant engine power [8]. The software includes the 

possibility to further improve the travel duration by optimizing the location of the nodes of the optimal 

route using the simplex method. 

  

Figure 2. Polar plots for the velocity (left, in knots) and power production (right, in kW) for the energy 

ship of 1 MW rated power; 6 different true wind speeds (TWS) are shown in both plots ranging from 30 

knots (outer curve), then 25 knots, 20 knots, 15 knots, 10 knots and 5 knots (innermost curve); for 

power production polar plot, the innermost curve of 5 knots TWS hardly to be seen because only 10 kW 

power were produced. 



A dedicated version of QtVlm was developed in order to be able to optimize the capacity factor 

over the route instead of the travel duration. The new optimization criterion is defined by: 
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With: 

    is the capacity factor 

   is the route duration (in hours) 

  ̃ is the power produced by the energy ship 

        is the rated power of the ship 

 

In the criterion, the 6 hours at the denominator are to account for the time necessary to unload the 

stored energy and to avoid the optimization converges to very short routes. 

An important constraint to take into account in the optimization process is the limited energy 

storage capacity aboard the ship. Thus, we introduced the filling ratio   that we define as the ratio of 

the energy stored in the energy reservoir   ∫  ̃( )  
 

 
 to the reservoir capacity,     . We assume 

that the reservoir capacity is 7 days and 6 hours (174 hours) at rated power (    =174      ). Thus, 

the filling ratio is: 
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To take into account the limited storage capacity, the produced power is set to 0 if the filling ratio 

reaches 1. If not, the produced power is obtained by interpolating in the power production polar plot 

(Figure 2) as function of the true wind speed and true wind angle at the ship location ( ̃  
 (       )) except during maneuvers. It is assumed that maneuvers (which correspond to events 

during which the axis of the ship crosses the axis of the wind) last for 15 minutes. During maneuvers, 

the produced power and ship velocity is reduced to 25% of the power and velocity in the polar plots. 

Finally, the produced power  ̃ is given by: 
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3.2.1. Optimization method 

The optimization process requires the specifications of a starting point and an arrival point for the 

energy ship. It has been assumed that those points are one and the same point. This is because we 

assume that the energy ship meets in this location a platform or a tanker for unloading the stored 

energy.  



We selected a point where there appears to be favorable wind conditions. The chosen location is at 

N 54, 516660; W 27,551844. It is in the North Atlantic storm track which offers high density of wind 

resource [2][10][11]. 

Then, in order to initialize the optimization, six points of interest (POIs) are placed around the boat. 

The seventh POI is located back to the starting point.  

The first step of the optimization is to optimize the position of the six first POIs. This is done using 

the simplex method which is available in QtVlm. Then, additional POIs are added on the optimized 

route and the optimization algorithm is re-run. This process is repeated until no further significant gain 

is achieved for the capacity factor.  

Then, the data from the route logbook and route comparator table is saved, the new starting date 

time is set to the arrival time of the last route plus 6 hours (to account for the time necessary to unload 

the stored energy), and the optimization process is started again in order to calculate the new optimal 

route for the next period. This process allowed us to calculate an optimized capacity factor over the 

three years of 2015, 2016 and 2017. 

 

3.3. Floating wind turbine capacity factor using QtVlm 

The assessment of the capacity factors for stationary 5MW floating offshore wind turbines 

hypothetically deployed in the North Atlantic ocean also has been performed using the QtVlm 

software. In that case, the polar plot for the velocity were set to zero and the polar for the power was 

derived from the wind turbine power curve (Figure 1). Extrapolated wind data at the altitude of the 

hub (90m) using power law profile [13] has been used to calculate the CF for stationary wind turbine. 

 

 

Figure 3. Tested locations for the wind turbines and average capacity factor over the three years of 

2015, 2016 and 2017 



4. Results and discussion 

 

4.1. Capacity factor of offshore wind turbines installed in the North Atlantic ocean 

Figure 3 shows the results for the capacity factor of stationary offshore wind turbines hypothetically 

deployed in the North Atlantic Ocean. Seventeen different locations (indicated by the boxes in Figure 

3) were considered, covering part of the North Atlantic Ocean between 30° to 60° North and 0° to 60° 

West. The starting and arrival point for the energy ship is also shown in the Figure 3. 

One can see that the capacity factor varies significantly depending on the location of the wind 

turbine. The smallest capacity factor (46%) is obtained for wind turbine #13 which is one of the most 

southernly located turbine. The greatest capacity factor 80% is obtained for wind turbines #4 and #6 

which are located in the northern part of the area, close to the starting point of the energy ship.  

Overall, it can be seen that the capacity factor is primarily driven by the longitude, and secondly by 

the latitude. Wind turbines deployed northern than 45° N have capacity factors greater than 75% 

except in the West of the area (72% for wind turbine #12). Close to 45° N, the capacity factor varies 

from 64% to 79% depending on the latitude. It can be observed that the capacity factor decreases with 

getting closer to Europe (64% for wind turbine #16). The smallest capacity factors are obtained for the 

four wind turbines located on the most southern line (46% to 59%).  

 

4.2. Optimization of the capacity factor of the energy ship 

Table 1. Results for the optimization of the capacity factor of the 1MW energy ship. 

Year - 2015 2016 2017 

Annual average CF % 81 83 81 

Best CF over one route % 95 95 94 

Worst CF over one route % 46 55 60 

Average route duration Day (s) 6 6 6 

Longest route 

duration 
Day (s) 15 11 11 

Shortest route 

duration 
Day (s) 1 2 2 

Longest route distance NM 7480 6073 5730 

Shortest route 

distance 
NM 907 1140 1576 

Average filling ratio at the end of the routes % 68 71 69 

 

Table 1 shows the results for the optimization of the capacity factor of the energy ship over the 

years 2015, 2016 and 2017. One can see that the annual average of capacity factor is very high. It 

consistently exceeds 80% for the three years. The average over the three years is greater than 81%. It 

reaches 83% for the best year which is 2016. 

The best capacity factor achieved over one route is in the order of 95%, which means that route 

optimization enabled the energy ship to sail in highly favorable conditions over the whole duration of 

the route. More important, it can be seen that the worst capacity factor over one route over the three 

years is still very high (46%). Indeed, it is comparable to the capacity factors that have been reported 

for existing offshore wind farms [1].  

Finally, the average filling ratio over the three years is 69% and the average route duration is 6 

days. Thus, it seems that the assumed energy storage capacity (7 days and 6 hours at rated power) is 

sufficient. However, this needs to be confirmed by running sensitivity studies for the effect of storage 

capacity on the capacity factor and route duration.   

 



 

Figure 4 shows the superimposition of the traces of all the optimized routes followed by the 1MW 

ship over the three years. It shows that the ship’s trajectories cover a large part of the North Atlantic 

Ocean. The trajectories appear to be random; no typical pattern can be identified. 

However, it seems that most of the time, the ship sails in the area corresponding to the North 

Atlantic storm track, where wind is known to be high. This area is also known for the harsh sea 

conditions. Harsh sea conditions are known to reduce the velocity of marine vessels in comparison to 

their capabilities in calm water. This effect has not yet been taken into account in the velocity and 

power polar plots for the energy ship performance. 

Finally, we recall that a six hours gap between the arrival time of one route and the starting time of 

the next route is assumed to account for the time required to unload the stored energy from the energy 

ship to the platform or a tanker. This has an effect on the average capacity factor. Indeed, as the 

average route duration is 6 days, it can be estimated that the cost of the unloading operation is 360 

hours per year. It corresponds to a loss of 4% of capacity factor in comparison to a case for which this 

time would have been used to produce energy at rated power.  

 

5. Conclusion 

In this study, we compared the capacity factors of energy ships to stationary offshore wind turbines 

that would be deployed far-offshore in the North Atlantic Ocean. The capacity factor of the energy 

ships is optimized using weather-routing. 

We found that energy ships can achieve very high capacity factor. Indeed, it exceeds average 82% 

for the three years of 2015, 2016 and 2017. In comparison, the greatest capacity factor for the 

stationary offshore wind turbine is also high, 80%. 

Figure 4. Traces of the optimized routes followed by the energy ship over the three years of 

2015, 2016 and 2017 

 



Therefore, this study highlights that moving further offshore will increase significantly the CF of 

stationary wind turbine. Furthermore, with the same available wind resources and over the same 

geographical area, an energy ship also may increase even more the CF. However, this promising result 

for the capacity factor of energy ships needs to be refined. It includes sensitivity studies as function of 

the storage capacity aboard the energy ships and the rated power, also taking into account the effect of 

sea conditions on energy ships’ performance.  

 

References 

 

[1] C Mone, M Hand, M Bolinger, J Rand, D Heimiller and J Ho 2015 Cost of wind energy 

review. Technical report NREL/TP-6A20-66861 May 2017 

[2] A Possner and K Caldeira 2017 Geophysical potential for wind energy over the open oceans. 

Proceedings of the National Academy of Sciences of the United States of America 114(43) pp 

11338-43 

[3] A Babarit, JC Gilloteaux, G Clodic, M Duchet, A Simoneau and M F Platzer 2018 Techno-

economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. 

International Journal of Hydrogen Energy 43(15) pp 7266-89 

[4] H Hagiwara 1989 Weather routing of (sail-assisted) motor vessels PhD Thesis of Delft 

University of Technology 

[5] Kim J and Park C 2010 Wind power generation with a parawing on ships, a proposal Energy, 

Elsevier 35(3) 1425-32 

[6]  JC Gilloteaux and A Babarit 2017 Preliminary design of a wind driven vessel dedicated to 

hydrogen production. 6th International Conference on Ocean, Offshore and Artic 

Engineering (OMAE2017) June 2017 Trondheim, Norway 

[7] Manual of qtVlm version 5.8.3 downloaded at 

http://download.meltemus.com/qtvlm/qtVlm_documentation_en.pdf  

[8] L Walther, A Rizvanolli, M Wendebourg and C Jahn 2016 Modeling and optimization 

algorithms in ship weather routing International Journal of e-Navigation and Maritime 

Economy 4 pp 31-45 

[9] M F Platzer, Sarigul-Klijn, J Young, M A Ashraf and J C S Lai 2014 Renewable hydrogen 

production using sailing ships ASME Journal of Energy Resources Technology 136 / 021203-

1 

[10] S B Capps and C S Zender 2009 Global ocean wind power sensitivity to surface layer stability 

Geophysical Research Letters 36 

[11] S B Capps and C S Zender 2010 estimated global ocean wind power potential from QUIKSCAT 

observations, accounting for turbine characteristics and siting Journal of Geophysical 

Research 115 

[12] Enercon 2013 Enercon e-ship 1: A wind-hybrid commercial cargo ship Presentation at 4th 

Conference on Ship efficiency Hamburg, Germany 

[13] Det Norske Veritas (DNV) 2010 Recommended practice DNV-RP-C205; Environmental 

conditions and environmental loads downloaded at http://www.dnv.com 

 


