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Surface energy and surface stress on vicinals Cu(1 1 n)

Pascal Hecquet∗

Univ. Grenoble Alpes, CEA, INAC-MEM, 38000 Grenoble, France

Abstract

The step energy and the step stresses are calculated as a function of the distance L between

steps for vicinals Cu(1 1 n). In addition to the well-known Marchenko-Parshin model where

the steps behave as dipole forces, we show that the steps are displaced in the direction

parallel to the terrace with respect to the dipolar displacements. This results from the

application at the step of a monopole force, Fb, whose modulus decreases as 1/L. The extra

displacement due to Fb does not modify the step energy with respect to the MP model

but is linked to the presence of the interaction term in the step stresses, that vary as 1/L.

Because the step stress is calculated with respect to the nominal surface stress, we calculate

the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the

vicinal and the projected system (x, b, c) where c is normal to the nominal terrace. Moreover,

we calculate the surface stresses by using two methods: the first called the ‘Force’ method,

from the surface pressure forces and the second called the ‘∆ E’ method, by homogeneously

deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy

excess proportional to the applied strain. We confirm that the variation of the step stress

in the tensor direction ′xx′ is the same between the two methods while it is different in the

direction ′yy′. In the ‘Force’ method, the step stress in the direction ′yy′ is the sum of the

two step stresses in the directions ′bb′ and ′cc′. In the ‘∆ E’ method, the step stress in the

direction ′yy′ equals this calculated in the direction ′bb′ (parallel to the terrace) in the ‘Force’

method, this in the normal direction ′cc′ being excluded.
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1. Introduction

Stepped surfaces are widely used as templates in various experimental and theoretical

studies, as well as in numerical simulations. Surface steps and kinks (step defects) play

an important role in catalytic reactions, growth kinetics, crystal morphologies, faceting,

and roughening transitions [1, 2, 3]. Steps can have direct evidence in both adsorption

and reaction properties of surfaces. Moreover, vicinals can be used as support for better

arrangement of quantum wires during their growth, as in the case of vicinals of InP (001)

with InAs quantum wires [4].

In the paper, we study the surface energies and surface stresses of Cu(1 1 n) vicinals

and their dependency on the distance between steps L (L is the distance in the projected

direction, that is, parallel to the (001) terrace). The surface stresses are calculated by using

two different coordinate systems (x, y, z) and (x, b, c) as showed in Fig. 1. The (x, y, z)

reference system is called the one vicinal while this (x, b, c) is called the one projected.

Contrary to the step energies, the calculation of the step stresses depend on the directions

in the two reference systems. The vicinals of type (1 1 n) are more often used in experiment
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Figure 1: Side view of the Cu(1 1 15) vicinal. Here we present the two reference systems used in the paper.

The reference system (x, y, z) is this vicinal while the reference system (x, b, c) is this projected. The direction

b is parallel to the (001) terrace. The direction x is not presented because it is directed along the steps. The

vicinal angle is the tilt angle between the two reference systems. The length unit a is the distance between

nearest atoms in the direction b. The unit a is also the real distance between nearest neighbours in bulk.

than the vicinals of type (0 1 M) [5, 6, 7, 8]. The Cu(0 1 M) vicinals were first examined

[9, 10] because the three principal directions of the terrace are the principal directions of the
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fcc cell and thus, the understanding of findings are less laborious. The interactions being

limited to nearest neighbours, the geometric simplifications have helped us a lot in the study

of vicinals of type (0 1 M), and notably when studying the surface stresses. In addition, the

difficulties linked to the anisotropy of the fcc metal are avoided at best. For Cu(0 1 M)

vicinals, the components of the dipole force f = (0, f ′y, fz) that characterizes the step in the

Marchenko-Parshin (MP ) model [11] have the same modulus (f ′y = fz = −0.15 naN).

For Cu(11n) vicinals, the direction normal to the terrace, c, is unchanged ((001) terrace)

while the directions x and b are parallel to the diagonals of the faces of the fcc cell. So, the

directions x and b correspond to the two dense directions of the terrace. With respect to

Cu(0 1 M) vicinals, we will see in this way that the component f ′b is multiplied by
√

2 while

the component fc does not change.

The step stresses are calculated in the diagonal directions of the two reference systems,

on the one hand in the directions ′xx′, ′bb′ and ′cc′, and on the other hand in the directions

′yy′ and ′zz′. By using the five diagonal directions, we will understand why the interaction

stress between steps is different in the direction ′yy′ when using two methods of calculation

of the step stresses. In the first method called the ‘Force’ method, we directly calculate the

interaction forces between atoms in the first surface monolayers while they are nonexistent

in bulk. The step stress is always zero in the direction normal to the vicinal surface ’zz’.

In the second method called the ‘∆ E’ method, we calculate the step stress by deforming

all the system in one direction parallel to the vicinal surface, ′xx′ or ′yy′. From the energy

excess proportional to the applied strain, we can easily deduce the step stress in the two

directions ′xx′ and ′yy′. The use of the two methods will show that the interaction stress in

the direction ′yy′ is different while it is the same for the direction parallel to the steps ′xx′.

The difference will be explained in the paper.

The paper is organized as follows: Section 2 presents the potential chosen in our sim-

ulations as well as the minimization method of the total energy of the periodic system at

T = 0K. Section 3 explains how to calculate the step energy and the step stress for vicinals.

The two methods, the one ‘Force’ and the one ‘∆ E’, are detailed in this section as well as

the Shuttleworth relationship between the two fundamental surface quantities, the surface
3



energy and the surface stress [12]. Section 4 gives the step energy of vicinals Cu(1 1 n)

and the surface displacements with respect to the nominal surface. Section 5 is devoted to

the step stresses of vicinals Cu(1 1 n) for different diagonal directions in the two reference

systems cited above (this vicinal and this projected). Section 6 demonstrates why the step

stress in the diagonal direction ′yy′ is different between the two methods of calculation of

step stresses. Section 7 displays the conclusion.

2. Simulation model and RGL potential adapted to Cu

The equilibrium configurations of the flat and vicinal surfaces at T = 0K are obtained by

the quenched molecular dynamics method [13]. All our calculations use a slab delimited by

two identical surfaces. Periodic boundary conditions are applied along the surface directions

x and y. In the direction z, the slab is sufficiently large enabling to correctly reproduce the

bulk properties in the center of the slab. Between the two surfaces, the number of planes

perpendicular to the direction c is larger than 200. We use the RGL potential which is a

many-body potential [14]. This potential has been adjusted to the bulk elastic constants and

the cohesive energy. The lattice constant is equal to the value determined in experiment.

For Cu, it is equal to a
√

2 = 3.61 Å. The length unit a is the distance between nearest

neighbours in the dense row direction (direction x or b). The interactions between atoms

are limited to their nearest neighbours. For this cut-off radius, the parameters of the RGL

potential are given in Ref. [14]. We use this potential because this reference shows that the

agreement with the experiment has proven to be good for low and intermediate temperatures

(< 900K for Cu).

3. Calculating step energy and step stress

In bulk, the cohesive energy is calculated by using the RGL potential and by adding up

the interaction energies between one atom and its twelve neighbours. For Cu, the cohesive

energy equals −3.5 eV . For T = 0K and at zero pressure, the atomic energy is minimum

and consequently, the pressure forces between the bulk atom and its neighbours are zero.
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For the Cu(001) surface, the atoms of the first monolayer have lost four neighbours with

respect to bulk. At equilibrium, we note that the two first monolayers are contracted in the

direction normal to the surface z. The surface is relaxed in the direction z in order to cancel

the diagonal surface stress σ0
zz, in the direction normal to the surface. Due to the loss of four

neighbours in the first monolayer and because in the direction parallel to the surface, the

distance between surface atoms cannot vary with respect to bulk; the diagonal surface stress

parallel to the surface is not cancelled: σ0
xx = σ0

yy = 0.367 eV/a2. Here, we consider that

the non-diagonal surface stresses are nonexistent for the nominal surface and their vicinals

(σ0
αβ with α 6= β is nonexistent). The surface energy is the energy excess with respect to

bulk energy. It is calculated per surface area unit and is added up along the z axis from the

surface up to bulk. For Cu(001), the surface energy γ0 is equal to 0.455 eV/a2.

The surface stress is the sum of pressure forces that exist on the surface and are null in

bulk. The pressure forces are rmnα × Fmnα where rmnα = (Rmα − Rnα) is the position of

atom m relative to the neighbour n in the direction α and Fmnα is the partial force applied

on the atom m due to the neighbouring atom n in the direction α. The diagonal pressure

forces between the atoms m and n are calculated as minus half of rmnα multiplied by the

derivative of the potential of the atom m with respect to rmnα. When deforming the surface

in the diagonal direction parallel to the surface and when omitting the variation of the

surface energy due to the variation of the atomic surface area (we omit, therefore, the term

γ0 in the Shuttleworth relation [12]), the method of Ackland and Finnis [15] writes that the

surface stress σ0
αα can be calculated in numerical methods in the atomic scale as

σ0
αα =

1

A0

∂A0γ0

∂εαα

∣∣∣∣
εαα=0

=
1

A0

∂
∑

m Φm

∂εαα

=
1

2A0

∑
m

∑
n6=m

rmnα
∂Φm

∂rmnα

= − 1

2A0

∑
m,n6=m

rmnα Fmnα (1)

where A0 is the periodic surface area and Φm is the potential energy of the atom m. This

equation gives the diagonal surface stress σ0
αα by calculating the pressure forces that exist

when the surface is not homogeneously deformed by εαα. Therefore, the derivative of the

energy A0γ0 with respect to εαα is taken at εαα = 0. Here, εαα is called the homogeneous
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strain when it is applied everywhere, in the periodic system. In the following, the homoge-

neous strain is called εh
αα instead of εαα. This method for calculating the surface stress σ0

αα

is called the ‘Force’ method (calculation of the pressure forces for εh
αα = 0).

When the system (surface and bulk) is deformed by a factor of (1 + εh
αα) in the direction

α, the equilibrium energy excess due to the strain εh
αα is

∆E = ∆E1o + ∆E2o + · · · (2)

where ∆E1o and ∆E2o are the first and the second-order energies as a function of the

deformations due to εh
αα. In this paper, we treat only the first-order energy ∆E1o because

the quantity ∆E1o is enough to explain the presence of the surface stress for the nominal

surface and the corresponding vicinals. By using the reference system (x, y, z), the first-order

energy ∆E1o is written as

∆E1o =
∑
m,n

K1,x,m,n ∆(xm − xn) + K1,y,m,n ∆(ym − yn) + K1,z,m,n ∆(zm − zn)

= ∆Exx + ∆Eyy + ∆Ezz. (3)

Between the initial (I) and final (F ) configurations, ∆(αm − αn) is the local deformation

between two atoms m and n in the direction α (∆(αm − αn) = [(αm − αn)F − (αm −

αn)I ]/(αm − αn)I). The constants K1,α,m,n are the first-order elastic constants calculated

in the initial configuration I. For the nominal surface, the configuration I is the non-

deformed flat surface. For the vicinal, and by using the reference system (x, b, c) (Fig. 1),

the configuration I corresponds to two Cu(001) relaxed surfaces that are distant, at the step

position (b = 0), from a/2, the step width l = a/2 and the step height h = a/
√

2 in the

directions x, b and c, respectively.

For the nominal surface, under homogeneous strain parallel to the surface (α = x or y),

the surface energy γ(εαα) is

γ(εαα) = γ0 +
∂γ0

∂εαα

∣∣∣∣
εαα=0

× εαα + · · ·

= γ0 +
(
σ0

αα − γ0)
)
× εαα + · · · (4)
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In Eq. (4), the term −γ0 × εαα results from the fact that the surface energy is defined per

constant surface area unit, a2 here, while the atomic surface varies by a factor of (1 + εαα).

This term is necessary in order to respect the matter conservation rule in the calculation of

γ(εαα). In the following, we suppose that the quantity of matter is not corrupted, and if so,

we omit the term −γ0 × εαα. The term σ0
αα × εαα in Eq. (4) is the first-order energy as a

function of the deformations, i.e ∆E1o in Eq. (2).

When we deform the Cu(001) flat surface under the strain εh
yy, for example, the first-

order energy is ∆E1o = ∆Eyy with ∆(ym − yn) = εh
yy. The sum of the elastic constants

K1,y,m,n is equal to the surface stress σ0
yy. ∆Exx is zero because ∆(xm − xn) is zero and

∆Ezz is zero because the elastic constants K1,z,m,n and their sum σ0
zz = 0 are zero. From the

first-order energy ∆E1o, we can therefore deduce the surface stress σ0
yy by using the relation

∆E1o = σ0
yy × εh

yy. We call this method of calculation of σ0
yy the ‘∆ E’ method that consists

of deforming the system by εh
αα and then deducing the first-order energy excess ∆E1o due

to εh
αα.

On vicinals, we calculate the surface stresses by using both calculation methods (the

‘Force’ method and the ‘∆ E’ method). Because the step stress is the stress excess with

respect to the surface stress of the nominal surface, we calculate, firstly, the step stresses

in the projected reference system (x, b, c). From this system, we can then, and more easily,

deduce the step stresses in the vicinal reference system (x, y, z), knowing that the ′zz′ step

stress is zero in the direction normal to the vicinal surface, irrespective of the vicinal angle

θ.

We note that the two calculation methods, the ‘Force’ and the ‘∆ E’, give the same

quantity for the stress, with the exception of the interaction stress between steps in the

direction perpendicular to the step (diagonal direction ′yy′). A part of the interaction stress

calculated by using the ‘Force’ method is not used when we deform the system in the

direction ′yy′ [10]. This shows that the equivalence between the two methods is not valid

only for the interaction stress in the direction ′yy′ while it is valid for the direction ′xx′,

parallel to the step. We will explain this difference in a later section (section 6).
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4. Step energy on vicinals Cu(1 1 n)

Fig. 2 gives the step energy ESt as a function of the distance L between steps for Cu(11n)

vicinals. The step energy has been fit with two functions G23(L) = G0 + G2 L−2 + G3 L−3
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Figure 2: Step energy ESt as a function of the distance L between steps. It is adjusted to two different

functions G23(L) = G0 + G2 L−2 + G3 L−3 and H12(L) = H0 + H1 L−1 + H2 L−2. The function G23 is

the one used in the MP model for which the term of order O(1/L) is not present. The second function

takes into account the variation of order O(1/L) because the step deformation in the diagonal direction ′bb′,

εbb(0), includes a term proportional to 1/L.

and H12(L) = H0 +H1 L−1 +H2 L−2. In the function G23(L), the term proportional to 1/L

is not present. The use of G23(L) results from the MP model [11]. In the MP model, the

step behaves as one dipole line applied upon a flat surface. If the applied force per length

unit is f = (0, fb, fc) and if it is applied at the origin line b = 0, the MP model gives the

surface displacement u(b) as follows

u(b) = −2(1− ν2)

πE

f

b
= −Λ

f

b
(5)

where ν is Poisson’s ratio and E is Young’s modulus. In the MP model and from Eq. (5),

the interaction energy between steps can be easily deduced. It is

ΓMP =
∞∑

n=1

Λ
f2

(nL)2
=

π2

6
Λ

(f 2
b + f 2

c )

L2
. (6)
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The interaction energy between steps ΓMP results from the product at the step position

(b = 0) of the dipole force multiplied by the sum of the displacements due to neighbouring

steps located at y = nL, n being a non-zero integer. In addition, ΓMP supposes that the

work of the surface forces W is twice that minus the second-order energy as a function of

the deformations due to lines of dipole forces (W = −2 E2o). The energy E2o is calculated

by using the deformations within the entire periodic vicinal system.

When forces are applied upon a flat surface, the first-order energy due to forces, E1o,

does not exist. On vicinals, the first-order energy E1o is present and it is calculated by

using the deformations in only a few surface monolayers. As for the forces applied upon a

flat surface, the equilibrium verifies to a good approximation the relation E1o = −2E2o and

consequently, the sum E1o + E2o ≈ −E2o (we ignore here the third-order energy and more).

Because the terrace between steps tends to contract (σ0
yy > 0), Eqs. (5) and (6) are

modified with respect to the MP model. Consequently and in the paper, we instead use the

following equations [16]

ub(b) = −Λ
fb(1 + X)

b
= −Λ

f ′b
b

uc(b) = −Λ
fc

b
(7)

ΓMP ′
=

π2

6
Λ

(f 2
b (1 + 2X)2 + f 2

c )

L2
(8)

where X corresponds to the recursive extra contraction of the terrace with respect to the

MP model when the dipole lines f are applied on the flat surface: X = −λfb(1 − λfb(1 −

λfb(. . .))) = (−λfb/(1 + λfb)). For Cu(001), we use the constant λ = 0.8 naN−1 [16]. Note

that the parallel component fb is replaced by the component f ′b while the corresponding

component in the step energy ΓMP ′
is not proportional to f ′2b = f 2

b (1+X)2 but to f 2
b (1+2X)2.

This shows that the difference between ΓMP and ΓMP ′
results from the fact that the surface

tends to contract at equilibrium due to the existence of the surface stress in the direction

parallel to the terrace. The normal component fc is not modified because the surface stress

is zero in the direction normal to the surface.

Fig. 3 gives the surface displacements in the two directions b and c for L = 32.5 a. By
9



adjusting these displacements to the sum of the displacements due to neighbouring steps,

we find that the elastic constant Λ and the dipole force fc are identical to those deduced in

vicinals Cu(0 1 M) [10], namely Λ = 0.0683 a2/naN and fc = −0.15 naN . Concerning the

component parallel to the terrace, we find that f ′b is equal to fc ×
√

2, that fb is −0.18 naN

and X is 0.17. Because the width and the height of the step are, respectively, l = a/2 and

h = a/
√

2, we can write that f ′b × l is equal to fc × h.
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Figure 3: Surface displacements on a Cu(1 1 n) vicinal with n = 65. The displacements are calculated with

respect to the atomic positions of the nominal surface Cu(001). The b and c directions are respectively

parallel and normal to the terrace (see Fig. 1). The positions on both sides of the terrace, b = a/4 and

b = L− a/4, are those of the lower and upper corners of the step. From these displacements, we can deduce

the dipole force f ′ = (0, f ′b, fc) in the modified MP model. To a good approximation, f ′b = fc ×
√

2 and

fc = −0.15 naN .

Since we have the values of Λ, X, fb and fc, we can calculated the step-step interaction

energy ΓMP ′
in Eq. (8). It is equal to +15 a2/L2 meV/a. In Fig. 2, we have adjusted the step

energy, ESt, to the function G23(L)) with G2/L
2 = +15 a2/L2 meV/a. The agreement with

the modified MP model is therefore good. The contribution due to the parallel component

fb is 2.6 with respect to the contribution due to the normal component fc. If the modified

MP model was not used, the contribution due to fb would be twofold with respect to the

contribution due to fc because we should have the relation fb = fc

√
2 instead of fb(1+X) =

fc

√
2. The difference is thus important between the MP model and this modified model
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due to the tendency to contraction of the terrace between steps.

The step-step interaction energy ΓMP ′
is almost 3/2 times larger for Cu(1 1 n) vicinals

than for Cu(0 1 M) vicinals. Because f ′b = fc

√
2, the contribution due to the parallel

component f ′b is twice for Cu(1 1 n) vicinals.

To a good approximation, we can deduce the step-step interaction energy ΓMP ′
for other

fcc metals. There is a direct link between the component f ′b and the nominal surface stress

σ0
yy. The link is f ′b ≈ σ0

yy × a. Then, we deduce the component fc = f ′b/
√

2. The values of

Λ and X in Eq. (8) are given in Ref. [16] for different fcc metals. So, we can have a good

estimate of the interaction energy ΓMP ′
for vicinals of type (1 1 n), by using the modified

MP model.

In order to understand the usefulness of the other adjustment function H12(L) in Fig. 2,

we give here the behavior of Cu(11n) vicinals with respect to Cu(001) surfaces with opposite

steps, i.e for which the component fc changes sign between neighbouring steps. This was

shown by studying Cu(0 1 M) vicinals [9].

Fig. 4 and Fig. 5 give the variations of the step deformations as a function of the distance

L. For clarity, we write the step deformations εbb(0) and εcb(0) with respect to the length

unit used here (= a) as

εbb(0) =
ub(+a/4)− ub(−a/4)

a

εcb(0) =
uc(+a/4)− uc(−a/4)

a
. (9)

For vicinals and assuming that only the modified MP model allows one to describe the sur-

face displacements ub(b) and uc(b) from Eq. (7), εbb(0) and εcb(0) should vary as (π2/3)Λf ′b/L
2

and (π2/3)Λfc/L
2, respectively [9]. They are respectively equal to −0.048 a2/L2 and

−0.034 a2/L2. For surfaces with opposite steps, only the component fc changes sign be-

tween neighbouring steps, and we can write that the parallel step deformation εbb(0) should

be identical to those calculated for vicinals. However, Fig. 4 shows that the variations are

different between vicinals and surfaces with opposites steps. On vicinals, we note that the

step deformations include a component of order O(1/L) in addition to the component of

order O(1/L2) in the modified MP model. This is checked because in Figs. 4 and 5, different
11
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Figure 4: Step deformations εbb(0) on the first monolayer for Cu(1 1 n) vicinals and surfaces with opposite

steps, as a function of the distance L. The step deformations are calculated by using Eq. (9). They are

calculated over the length unit a while the two corners of the step are distant from a/2 in the direction b.

They are adjusted to the function C0 + C1/L + C2/L2 for vicinals and to the function C0 + C2/L2 + C3/L3

for surfaces with opposite steps. The constant C2 is close to the expected value (π2/3)Λf ′b = −0.048 a2.

adjustments of the component of order O(1/L2) are close to the values of −(π2/3)Λf ′b/L
2

and −(π2/3)Λfc/L
2, whether the step is opposite or not.

With respect to the surfaces with opposite steps, the component of order O(1/L) in

the step deformations of vicinals results from the fact that the step is under the influence

of a monopole force Fb in the direction b, in addition to the dipole force fb, and that the

modulus of Fb decreases as 1/L [9]. To confirm the presence of the term proportional to 1/L

in the step deformations for vicinals, we can give the displacements of the atoms of the step

(upper and lower corners of the step) as a function of the distance L after subtracting the

displacements due to neighbouring steps in the modified MP model with fc = −0.15 naN

and f ′b = fc×
√

2. The reduced displacements are called the displacements ∆ωb(b) and ∆ωc(b)

for the two directions b and c. At the positions of the step, b = ±a/4, their variations as a

function of L are showed in Fig. 6 and Fig. 7. They are fitted to the function of the form

C0 + C1/L + C2/L
2. We are particularly interested in the components of order O(1/L).

For surfaces with opposite steps, we have checked that the component of order O(1/L) is

absent in the corresponding ∆ωb(b). On vicinals, the components of order O(1/L) in the
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Figure 5: Step deformations εcb(0) on the first monolayer for Cu(1 1 n) vicinals and surfaces with opposite

steps, as a function of the distance L. The step deformations are calculated by using Eq. (9). They are

calculated over the length unit a while the two corners of the step are distant from a/2 in the direction b.

They are adjusted to the function C0 + C1/L + C2/L2 for vicinals and to the function C0 + C2/L2 + C3/L3

for surfaces with opposite steps. The constant C2 is close to the expected value (π2/3)Λfc = −0.034 a2.

four displacements ∆ωb(±a/4) and ∆ωc(±a/4) are present. The difference between the two

components of order O(1/L) at the step positions, b = ±a/4, reproduces the components of

order O(1/L) in the two step deformations εbb(0) and εcb(0). They are equal to −0.002 a/L.

In addition, Fig. 8 gives the surface displacement uc(L/2) at the middle of the terrace. It

varies as −0.013a/L for large L while it is zero for surfaces with opposite steps. Because the

three displacements ∆ωc(+a/4), uc(L/2) and ∆ωc(L− a/4) vary respectively as −0.014/L,

−0.013/L and −0.012/L, we can deduce that the normal surface displacement uc(b) includes

an extra displacement ∆ωF
c (b) that varies linearly with the position b between b = +a/4

and b = L− a/4 as

∆ωF
c (b) =

a

L
(−u1

2
+

u1

L
b + Q), (10)

with u1 = 0.002 a and Q = −0.013 a. This is shown in Fig. 9 for L = 9.5 a as one

example. Due to relevant differences between vicinals and surfaces with opposite steps, we

conclude that the step is under the influence of the monopole force Fb in the direction of

the descending steps and for which the modulus decreases as 1/L [17, 9].

In the step deformation εbb(0), the ratio between the component of order O(1/L) and the
13
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Figure 6: On Cu(11n) vicinals and from the surface displacement ub(b), we have subtracted the displacements

proportional to 1/b in the modified MP model with f ′b = −0.15 ×
√

2 naN . This gives the reduced

displacements ∆ωb(±a/4) for the two corners of the step. Their variations as a function of L are adjusted

to the function C0 + C1/L + C2/L2 and then we plot the two functions C1/L for the two step corners. The

difference between the two functions C1/L is close to the component of order O(1/L) in the step deformation

εbb(0) (= +0.0022/L).

component of order O(1/L2) is quantitatively close to fz/f
′
y = 1/

√
2. Indeed, if we adjusted

the step deformation εbb(0) to the function of the form C0 + C2/L
2 + C3/L

3, the constant

C2 would be equal to −0.081 a2, which is close to (π2/3)Λ(f ′b + fc)/L
2 = −0.081 a2/L2.

Therefore, we consider that the component of order O(1/L) in εbb(0) is limited quantitatively

by the surface displacement normal to the terrace deduced in the modified MP model, i.e

proportional to the component fc of the dipole force f ′. The fit to C0 + C2/L
2 + C3/L

3 for

the step deformation of vicinals is not correct because C2 is too high with respect to the

modified MP model and because it is different from the constant C2 adjusted for surfaces

with opposite steps. This shows that for vicinals, the component of order O(1/L) is present

in the step deformation εbb(0).

On vicinals, the presence of the term proportional to 1/L in the step deformation εbb(0)

is linked to the existence of the interaction stress which varies as 1/L. No interaction stress

between steps exists for surfaces with opposite steps. For surfaces with opposite steps, we

can calculate the step energy from the MP model and by assuming that the first-order

14
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Figure 7: On Cu(11n) vicinals and from the surface displacement uc(b), we have subtracted the displacements

proportional to 1/b in the modified MP model with fc = −0.15 naN . This gives the reduced displacements

∆ωc(±a/4) for the two corners of the step. Their variations as a function of L are adjusted to the function

C0 + C1/L + C2/L2 and then we plot the two functions C1/L for the two step corners. The difference

between the two functions C1/L is close to the component of order O(1/L) in the step deformation εcb(0)

(= +0.0019/L).

energy E1o is equal to −2E2o. For vicinals, the interaction stress between steps should be

taken into account in the step energy. Our calculations of the first-order energy show that

the step energy can be adjusted to the two fit functions G23(L) and H12(L). The function

G23(L) corresponds to the MP model and is the elastic response of the bulk against the

action of the steps on surface. The first-order energy E1o is close to −2× Γ′MP in Eq. 8 by

using the relation E1o ≈ −2E2o. The function H12(L) takes into account the term of order

O(1/L) in the step deformation εbb(0). In this case, the first-order energy E1o ≈ −2H12(L)

has been adjusted to the step deformation εbb(0) multiplied by a specific step stress that we

call σS,1o
bb : E1o ≈ σS,1o

bb ×εbb(0). The adjustment of E1o is made within a constant, and we find

that σS,1o
bb is equal to −0.40 eV/a. When supposing that the constant σS,1o

bb = −0.40 eV/a is

calculated in the first surface monolayer and over the distance a, it corresponds to a dipole

force in the direction b, applied at the step position and equal to −0.25 naN .

Due to the equilibrium relation E1o ≈ −2E2o, we have thus the equilibrium relation

π2

3
Λ

(f 2
b (1 + 2X)2 + f 2

c )

L2
≈ σS,1o

bb εbb(0), (11)
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Figure 8: Surface displacement uc(b) at the middle of the terrace b = L/2 for Cu(1 1 n) vicinals. It is

adjusted to the function −0.013 a2/L for large L. The constant −0.013 is almost the middle between the

two constants C1 deduced from the reduced displacements ∆ωc(±a/4) of the two step corners in Fig. 7

(−0.012 a2/L and −0.014 a2/L).

within a constant. A close link exists between the normal component of the dipole force

fc/L
2 and the component of order O(1/L) in the step deformation εbb(0). We have adjusted

the interaction step deformation εbb(0) to −0.0022/L − 0.055/L2 (Fig. 6) or quantitatively

to C2/L
2 + C3/L

3 for which C2 is close to (π2/3)Λ(f ′b + fc)/L
2 (see above). Within an

11% margin, the agreement is good between the two quantities (f 2
b (1 + 2X)2 + f 2

c ) and

σS,1o
bb × (fb(1 + X) + fc) with σS,1o

bb , fb, fc and X respectively equal −0.25 naN , −0.18 naN ,

−0.15 naN and 0.17. On the one hand, the term of order O(1/L) is omitted in the fit to the

function G23(L) because the MP model takes into account only the displacements due to

neighbouring steps and is calculated in all the system (surface + volume). More specifically,

when excluding the deformations due to the origin step, the second-order interaction energy

due to lines of monopole force Fb does not vary as 1/L but rather as 1/L2 and is small with

respect to the modified MP model [17, 9, 10]. On the other hand, the component of order

O(f 2
c /L2) is not taken into account in the fit to the function H12(L) because the step-step

interaction stress is zero in the direction normal to the surface.

Because the two functions H12(L) and G23(L) are almost equal in quantity, we consider

that the presence of the component of order O(1/L) in the step deformation εbb(0) is fully
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Figure 9: For L = 9.5 a, this figure gives the linear variation of ∆ωF
c (b) in Eq. (10). It varies as 0.002a2/L2b.

The displacement is normal to the terrace and proves that the step is under the influence of a monopole force

Fb in the direction parallel to the terrace, towards the descending steps and for which the modulus decreases

as 1/L. The small derivative at the middle of the terrace shows that its contribution in the second-order

energy is negligible with respect to the modified MP model [17, 9].

screened by the component of order O(f 2
c /L2) in the modified MP model. Consequently,

the presence of the interaction stress between steps does not modify the interaction energy

between steps calculated from the modified MP model. It is only masked because the energy

calculated from the modified MP model is regulated by the presence of the bulk and the

two components of the dipole force f ′ are closely related to each other and to the nature of

the step.

The original MP model does not show that the surface displacement can be modified in

order to decrease the surface stress on the terrace between steps [16]. When supposing that

this effect is nonexistent (original MP model), the component of the dipole force parallel to

the terrace should be equal to f 0
y whose intensity is equal to that of fc×

√
2. By accounting

the effect due to the surface stress, the intensity of the parallel component f ′b is not equal to

the intensity of f 0
b (1 + X) but rather to that of f 0

y . So the strong relation between the two

components of the dipole force f ′ still holds, namely f ′b = fb(1 + X) = fc ×
√

2. It is as if

the effect due to the surface stress should be nonexistent. In contrast, the paper [9] shows

that the equilibrium relation E1o ≈ −2E2o is slightly modified with respect to the original
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MP model because the corresponding interaction energy due to f ′y is not proportional to

f 2
b (1 + X)2 but to f 2

b (1 + 2X)2. This has been confirmed by the presence of the oscillations

of the surface displacement near the step for vicinals Au(0 1 M) for which the constant X

is equal to 0.40 instead of 0.17 for Cu. We conclude that the surface energy and the surface

stress must be studied separately in order to better understand the physics of surfaces. The

modification due to the surface stress may not be visible in the surface energy with respect

to the configuration where the surface stress should be absent. In next section, we study

the surface stress of Cu(1 1 n) vicinals.

5. Step stress on vicinals Cu(1 1 n)

In this section, we give the surface stress on vicinals Cu(1 1 n). In the paper [10], the

same calculations were also made on vicinals Cu(0 1 M).

5.1. The ‘Force’ method

The step stresses are stress excesses with respect to the nominal surface stress σ0
xx = σ0

yy.

As for the flat surface, the step stress normal to the vicinal surface always vanishes and

the non-diagonal stresses are nonexistent. On vicinals, we study the step stresses in the

two reference systems, this vicinal (x, y, z) and this projected (x, b, c). Thus, we study the

diagonal step stresses σSt
xx, σSt

yy, σSt
bb and σSt

cc . The step stress σSt
zz in the direction ′zz′ vanishes

over the period. This is an important characteristic of the step stress in the equilibrium of

vicinal surfaces. Because σSt
zz = 0, we have the relation σSt

yy = σSt
bb + σSt

cc .

Fig. 10 gives the variation of the step stresses as a function of the distance between steps

L. The step stresses σSt
xx, σSt

yy, σSt
bb and σSt

cc vary as

σSt
αα = σIS

αα +
σInt

αα

L
(12)

where σIS
αα is the isolated step stress and σInt

αα /L is the interaction stress between steps. The

interaction stresses are linked to the presence of the components of order O(1/L) in the step

deformations εbb(0) and εcb(0) when the vicinals are not deformed by εh
xx or by εh

yy. So, the

interaction stresses result from the presence of the monopole line Fb that is added to the
18
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Figure 10: Step stress σSt
αα as a function of the distance L. The step stress is calculated in the three directions

of the vicinal system (x, y, z) on the one hand and in the directions b and c of the projected system (x, b, c),

on the other hand. Each isolated step stress σIS
αα is subtracted. It is equal to +0.055, −0.42 and 0.0 eV/a

for the directions x, y and z, respectively. The values of σIS
αα do not change for the corresponding directions

in the projected system x, b and c. Except for the normal z where σSt
zz = 0, the step stresses vary as σInt

αα /L.

The constants σInt
αα are equal to 0.105, 0.43, 0.29 and 0.14 eV for the directions x, y, b and c, respectively.

We also note that σInt
yy is the sum of the constants σInt

bb and σInt
cc .

dipole line f ′ at the step position (see previous section). The monopole force Fb is present

when the vicinal is not homogeneously deformed, and its modulus decreases as 1/L and

disappears for infinite L.

In this section, we homogeneously deform the vicinals by a factor of (1+ εh
xx) or (1+ εh

yy),

and we give the differences in the step deformations with respect to the non-deformed

vicinals. They are called ∆εbb(0) and ∆εcb(0). In next section (the ‘∆ E’ method), we

will give the excesses in the step energy that are proportional to εh
xx or εh

yy. When the

vicinals are homogeneously deformed by εh
xx or by εh

yy, a monopole force proportional to the

homogeneous strain is added to the monopole force Fb. We call it Fε, which does not depend

on the distance L. For εh
xx < 0 or εh

yy < 0, Fε is directed towards the descending steps, and we

consider that its direction is parallel to the terrace as for Fb. Under homogeneous strain, the

monopole force Fε is responsible for the terms of order O(1/L) in the extra step deformations

∆εbb(0) and ∆εcb(0). Figs. 11 and 12 give the variations of ∆εbb(0) and ∆εcb(0) as a function
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of L for the strains εh
yy = −10−3 and εh

xx = −10−3, respectively. For εh
yy = −10−3, Fig. 11

1 10 100
L (a)

10-2

10-1

100

D
e
fo

rm
a
ti

o
n

 (
10

−
3
)

εyy = − 10−3

∆εbb(0)

∆εcb(0)

0. 53 10−3/L

Figure 11: Step deformations ∆εbb(0) and ∆εcb(0) due to homogeneous strain −εh
yy = 10−3. They vary as

−0.68 10−3 +0.53 10−3/L and −0.73 10−3 +0.52 10−3/L for the tensor directions ′bb′ and ′cb′, respectively.
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Figure 12: Step deformations ∆εbb(0) and ∆εcb(0) due to homogeneous strain −εh
xx = 10−3. They vary as

−0.0625 10−3+0.29 10−3/L and −0.53 10−3+0.23 10−3/L for the tensor directions ′bb′ and ′cb′, respectively.

shows that ∆εbb(0) and ∆εcb(0) vary as 1/L by almost the same factor (0.53/L and 0.52/L).

For εh
xx = −10−3 (strain parallel to the steps), the parallel and normal deformations ∆εbb(0)

and ∆εcb(0) vary as 0.29/L and 0.23/L, respectively.
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5.2. The ‘∆ E’ method

As for the nominal surface, we can calculate the surface stress when we homogeneously

deform the vicinal surface in the direction parallel to the surface, and we calculate the

energy excess proportional to the applied strain (see section 3). We will see that a difference

exists between the two methods concerning the interaction stress for the applied strain

perpendicular to steps εh
yy. We note that we calculate only the first-order energy excesses

proportional to εh
xx or εh

yy in order to deduce the step stresses. The first-order energies ∆E1o

are firstly calculated in the two directions ′bb′ and ′cc′, ∆E1o = ∆Ebb+∆Ecc and with respect

to the deformed nominal surface. Then and by rotation transformations, we can deduce the

components in the vicinal directions, ∆E1o = ∆Eyy +∆Ezz. For εh
xx, we omit the component

in the direction ′xx′ because it does not contribute to the interaction stress between steps.

For the applied strain εh
yy = −10−3, Fig. 13 gives the variation as a function of L of

the first-order energies ∆Ebb, ∆Ecc and their sum ∆E1o by using the deformations in the

projected reference system. As for the extra step deformations ∆εbb(0) and ∆εcb(0), the two

energies ∆Ebb and ∆Ecc vary as 1/L by the same factor. Within a constant, ∆Ebb and ∆Ecc
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Figure 13: Variation as a function of L of the first-order energy ∆E1o and their components in the projected

system (x, b, c) for the vicinals under homogeneous strain εh
yy = −10−3. In the plot log-log, the constants

proportional to εh
yy are subtracted. The component ∆Ebb varies as [−0.20 + 0.134/L] × εh

yy eV/a and the

component ∆Ecc varies as [−0.27+0.132/L]×εh
yy eV/a. The sum ∆E1o varies as [−0.47+0.27/L]×εh

yy eV/a.

are equal to K ×∆εbb(0) and K ×∆εcb(0), respectively, with K = −0.255 eV/a.
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In the vicinal system for which the surface stress vanishes in the direction ′zz′, Fig. 14

gives the variation of the corresponding first-order energies ∆Eyy, ∆Ezz and the same sum

∆E1o as for the projected system. From this figure, we consider that the variation of ∆Ezz
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Figure 14: Variation as a function of L of the first-order energy ∆E1o and their components in the vicinal

system (x, y, z) for the vicinals under homogeneous strain εh
yy = −10−3. In the plot log-log, the constants

proportional to εh
yy are subtracted. They are identical to those calculated in the projected system. The

component ∆Eyy varies as [−0.20+0.29/L]×εh
yy eV/a and the component ∆Ezz varies as [−0.27−0.02/L]×

εh
yy eV/a. The sum ∆E1o varies as [−0.47 + 0.27/L]× εh

yy eV/a.

is negligible with respect to the variation of ∆Eyy. To a good approximation, we write that

the variation of ∆E1o is that of ∆Eyy, i.e in the direction of the applied strain εh
yy.

By applying the rotation transformations in the step deformations ∆εbb(0) and ∆εcb(0),

we deduce the step deformation ∆εyy(0) in the direction of the homogeneous strain ′yy′.

When neglecting the terms of O(1/L2) and by writing that sin(θ) varies as
√

2/2L, we have

∆εyy(0) = ∆εbb(0) cos(θ)−∆εcb(0) sin(θ)

≈ ∆εbb(0)−∆εcb(0)

√
2

2L
. (13)

This is shown in Fig. 15 for εh
yy = −10−3. It makes clear that ∆εyy(0) varies as −1.04 (a/L)×

εh
yy instead of −0.53 (a/L)× εh

yy for the variation of ∆εbb(0). Because the interaction energy

∆Ezz is negligible in the variation of ∆E1o, we can write that the variation of ∆E1o is

equal to a constant multiplied by the variation of ∆εyy(0). Here the constant is equal to
22



−0.27/1.04 = −0.26 eV/a. In this case, it is correct to write that the variation of the

step stress depends on the variation of the step deformation ∆εyy(0) in the direction of the

applied strain, ′yy′, rather than this in the direction ′bb′. In next section, we will see that

it is also correct to write that the same variation also depends on the variation of the step

deformation ∆εbb(0) in the direction parallel to the terrace ′bb′ because the contribution in

the direction normal to terrace ′cc′ is excluded.
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Figure 15: Step Deformation ∆εyy(0) and ∆εbb(0) as a function of the distance L for εh
yy = −10−3.

To validate the calculations made by using the first-order energies ∆E1o, we can calculate

the step energies from the sum of the atomic potentials for the two signs of the applied strain

εh
yy = ±10−3. Because |εh

yy| is small, we can ignore the terms from the third-order onwards.

For a given vicinal angle θ, we call the surface energy of the nominal Cu(001) and that of

the θ vicinal surface per projected area unit γ+
0 and γ+

P (θ), the two surfaces being deformed

with εh
yy > 0. Likewise, we call γ−0 and γ−P (θ) the corresponding surface energies for the

negative sign of the strain εh
yy < 0. The quantity [γ−P (θ) − γ−0 ][L(1 + εh

yy)], with εh
yy < 0,

is the step energy Γ−(L). We do the same for εh
yy > 0, which gives Γ+(L). Because |εh

yy|

is small, half the difference of the step energies for the two signs of εh
yy, [Γ+(L)− Γ−(L)]/2

gives, to an excellent approximation, σSt
yy × |εh

yy|. Their variation as a function of L is given

in Fig. 16. The interaction stress is close to that calculated by using the ‘∆ E’ method

(Fig. 13 or Fig. 14). This makes sure that the method using the first-order energies, ∆E1o,

23



is correct.
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Figure 16: [Γ+(L) − Γ−(L)]/2 as a function of L. By deforming the vicinals and calculating their step

energy, this figure shows that the step stress equals −0.42 + 0.27 a/L eV/a.

As for Cu(0 1 M) vicinals [10], the interaction stress between steps is different between

the two calculation methods, the ‘Force’ and the ‘∆ E’, only for the homogeneous strain in

the direction ′yy′. In the strain direction parallel to the step, ′xx′, we have checked that the

interaction stresses are identical for the used methods (= 0.11 ± 0.01 a/L eV/a). For the

direction perpendicular to the steps ′yy′, it is equal to 0.43 a/L eV/a for the ‘Force’ method

while it is equal to 0.27 a/L eV/a for the ‘∆ E’ method.

Different results for the applied strain parallel to steps, εh
xx = −10−3, are not illustrated

in the paper. They are summarized and compared with the previous strain perpendicular

to steps in Table 1.

6. Why σInt
yy is different

In the ‘Force’ method, we calculate the forces that exist on the surface when it is not

deformed (εh
xx = εh

yy = 0). This gives the step stresses that are calculated in the directions

of the two reference systems. They are stress excesses with respect to the nominal surface.

In the direction ′zz′, the step stress σSt
zz is always zero. Because it is zero, we have the

equivalence between the two reference systems σSt
yy = σSt

bb + σSt
cc . For infinite L, the step
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Table 1: At the top, we give the step deformations ∆εbb(0) and ∆εcb(0) divided by the homogeneous strain

εh
xx and εh

yy for the two strain directions ′xx′ and ′yy′, respectively (from Figs. 11 and 12). At the bottom,

we list the step stresses calculated by using the two methods. By using the ‘Force’ method, the variation of

the step stresses are showed in Fig. 10. They vary as σInt
αα /L. We note that the constant σInt

yy is different

when using the ‘∆ E’ method with respect to the ‘Force’ method, while the constant σInt
xx is identical by

using the two methods.

εh
yy = −10−3 εh

xx = −10−3

∆εbb(0)/ε
h
αα 0.68− 0.53 a/L 0.73− 0.52 a/L

∆εcb(0)/ε
h
αα 0.062− 0.29 a/L 0.53− 0.23 a/L

σSt
αα (eV/a) σSt

αα (eV/a)

‘Force’ method ‘∆ E’ method

xx +0.055 + 0.105 a/L +0.05 + 0.12 a/L

bb −0.42 + 0.29 a/L

cc −0.000 + 0.14 a/L

yy −0.42 + 0.43 a/L −0.47 + 0.27 a/L
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stresses are the isolated step stresses σIS
αα for the five diagonal directions α = x, y, z, b and c.

For infinite L, the direction b and c are the direction y and z. In addition, we have therefore

the equivalence between the isolated step stresses: σIS
cc = σIS

zz = 0 and σIS
bb = σIS

yy .

When using the ‘∆ E’ method, we calculate the step energy excess proportional to the

applied strain εh
xx or εh

yy. When deforming a vicinal by the applied strain εh
yy, the first-order

step energy excess is σSt
yy × εh

yy but we note that the step stress σSt
yy is not equal in the two

calculation methods. We find that the step stress σSt
yy in the ‘∆ E’ method is equal to

the step stress σSt
bb in the ‘Force’ method. The step stress σSt

cc calculated in the direction

′cc′ in the ‘Force’ method is thus excluded when we use the ‘∆ E’ method. For a given

direction ′αα′, the interaction term of the first-order step energy excess corresponds to a

constant multiplied by the interaction term of the step deformation proportional to the

applied strain. We call this constant the step stress σ∆E
αα that exists when the vicinal is not

deformed. In the direction normal to the terrace ′cc′, σ∆E
cc is always zero as for σ∆E

zz . This

explains why the step stress σSt
cc is excluded when using the ‘∆ E’ method.

In addition, we note that the two step stresses σ∆E
yy and σ∆E

bb are not equal because

the interaction terms of the step deformations ∆εbb(0)/εh
yy and ∆εyy(0)/εh

yy are not. When

admitting that the interaction term of σSt
yy is equal to σ∆E

bb multiplied by the interaction term

of ∆εbb(0)/ε
h
yy as well as to σ∆E

yy multiplied by the interaction term of ∆εyy(0)/εh
yy, we have

σ∆E
bb = −0.51 eV/a and σ∆E

yy = −0.26 eV/a. The values of σ∆E
bb and σ∆E

yy correspond to the

dipole forces f ′ × 1.51 and f ′ × 0.76 in the direction b and y, respectively. The difference

between σ∆E
bb and σ∆E

yy results from both the fact that the step stress is calculated with

respect the nominal surface (normal to the terrace is c) and the step stress is always zero in

the direction normal to the vicinal surface (direction ′zz′).

7. Conclusion

By the molecular dynamics method at T = 0K, we have calculated the equilibrium

configurations of the Cu(11n) vicinals, their step energies and step stresses. By varying the

distance between steps L, we have given the step energies and stresses as a function of L.

The step energy has been adjusted to two functions G23(L) = G0 + G2 L−2 + G3 L−3 and
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H12(L) = H0+H1 L−1+H2 L−2. The difference between G23(L) and H12(L) is marked by the

presence or absence of a term proportional to 1/L. In the well-known MP model, the steps

behave as dipole forces f ′ = (0, f ′b, fc) that are applied upon a flat surface (the directions b and

c are respectively parallel and normal to the terrace). For Cu(11n) vicinals, the components

of the dipole force are linked by the relation f ′b =
√

2 fc where the modulus of fc is the same

as in Cu(0 1 M) vicinals. From the equilibrium relaxation due to the dipole forces, the

step energy has been adjusted to the function G23(L) where the component proportional to

1/L2 is close to that given by the MP model (G2/L
2 is equal to +15 a2/L2 meV/a). It

corresponds to the elastic energy minimization of the vicinal system (surface + bulk) due

to the presence of the dipole forces. Nevertheless, this energy minimization cannot predict

that a monopole force Fb is applied in addition to the dipole force at the step position. The

force monopole Fb is parallel to the terrace, is directed towards the descending steps and its

modulus decreases as 1/L. It is responsible of the terms of order 1/L that are present in

the step deformations in the two directions b and c while they are absent in the MP model.

Finally, it is linked to the variation as 1/L in the step stress in the tensor directions ′bb′,

′cc′, ′yy′ and ′xx′. Because the surface stress is zero in the direction ′zz′, the step energy has

been adjusted to the function H12(L) that corresponds to a specific step stress multiplied by

the step deformation in the direction ′bb′. This effect due to the step stress is considered as

masked in the step energy because the two functions H12(L) and G23(L) are quantitatively

equivalent. In particular, the component of order O(1/L) in the step deformation in the

direction ′bb′ is limited (obscured) by the displacement normal to the terrace deduced in the

MP model. In addition to the step energy of vicinals, it is therefore essential to study the

step stress and its variation as 1/L for better understanding of the equilibrium of vicinals.

The step stresses in the directions ′bb′, ′cc′, ′yy′ and ′xx′ vary as 1/L (the direction

x and y are the directions of the vicinal surface parallel and perpendicular to the steps,

respectively). They are calculated by using two calculation methods. The ‘Force’ method

directly calculates the surface pressure forces. The ‘∆ E’ method calculates the energy

excess proportional to the applied strain εh
αα when the vicinal is homogeneously deformed

by a factor of (1 + εh
αα), the direction ′αα′ being parallel to the vicinal surface (α = x or y).
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We note that the step stress is identical by using the two methods in the direction parallel

to the steps ′xx′ but not in that perpendicular ′yy′.

In the ‘Force’ method, we calculate the pressure forces that exist on the vicinal surface.

The step stresses (sum of the pressure forces) vary as σIS
αα + σInt

αα /L. The step stress in the

direction ′yy′ is the sum over the two step stresses in the directions ′bb′ and ′cc′. For infinite

L, the step stress in the direction ′cc′ is zero (it is equal to this in the direction ′zz′).

In the ‘∆ E’ method, we calculate the energy excess proportional to the strain applied.

The interaction term in the energy excess corresponds to the crossed term located at the

step position between an isolated step stress and the deformation due to neighbouring steps.

For the direction ′cc′, the isolated step stress is zero. Therefore, the step stress in the

direction ′yy′ does not include the step stress calculated in the direction ′cc′ by using the

‘Force’ method. In the ‘∆ E’ method, the step stress in the direction parallel to the vicinal

surface ′yy′ is the step stress calculated in the direction parallel to the terrace ′bb′ by using

the ‘Force’ method. This explains why the step stress is different in the direction ′yy′ when

using the two methods.

In the direction ′yy′, we summarize that the step stress calculated by the ‘Force’ method

corresponds to pressure forces that are present on surface. It includes two components

parallel and normal to the terrace: σSt
yy = σSt

bb +σSt
cc . When we deform the vicinal by a factor

of (1 + εh
yy), we can calculate the energy excess proportional to the strain εh

yy by using the

step stress σSt
yy. However, the normal component σSt

cc is excluded for this energy calculation

even if the surface stress is really the sum of pressure forces present on non-deformed surface.

Finally, we must consider the surface pressure forces not only for calculating the energy

excesses when the surface is deformed but also in the understanding of equilibrium of sur-

faces. Only, the minimization of the total energy does not allow to determine the equilibrium

structure of surfaces. The surface stress can modify the equilibrium structure of surfaces

without decreasing the total energy. Again, we write that the steps are repulsed by both

the step energy and the step stress due to their decreasing when increasing L. The step

stresses parallel to the vicinal surface correspond to pressure forces that must be as small

as possible.
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