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The step energy and the step stresses are calculated as a function of the distance L between steps for vicinals Cu(1 1 n). In addition to the well-known Marchenko-Parshin model where the steps behave as dipole forces, we show that the steps are displaced in the direction parallel to the terrace with respect to the dipolar displacements. This results from the application at the step of a monopole force, F b , whose modulus decreases as 1/L. The extra displacement due to F b does not modify the step energy with respect to the M P model but is linked to the presence of the interaction term in the step stresses, that vary as 1/L. Because the step stress is calculated with respect to the nominal surface stress, we calculate the diagonal surface stresses in both the vicinal system (x, y, z) where z is normal to the vicinal and the projected system (x, b, c) where c is normal to the nominal terrace. Moreover, we calculate the surface stresses by using two methods: the first called the 'Force' method, from the surface pressure forces and the second called the '∆ E' method, by homogeneously deforming the vicinal in the parallel direction, x or y, and by calculating the surface energy excess proportional to the applied strain. We confirm that the variation of the step stress in the tensor direction xx is the same between the two methods while it is different in the direction yy . In the 'Force' method, the step stress in the direction yy is the sum of the two step stresses in the directions bb and cc . In the '∆ E' method, the step stress in the direction yy equals this calculated in the direction bb (parallel to the terrace) in the 'Force' method, this in the normal direction cc being excluded.

Introduction

Stepped surfaces are widely used as templates in various experimental and theoretical studies, as well as in numerical simulations. Surface steps and kinks (step defects) play an important role in catalytic reactions, growth kinetics, crystal morphologies, faceting, and roughening transitions [1,2,3]. Steps can have direct evidence in both adsorption and reaction properties of surfaces. Moreover, vicinals can be used as support for better arrangement of quantum wires during their growth, as in the case of vicinals of InP (001) with InAs quantum wires [4].

In the paper, we study the surface energies and surface stresses of Cu(1 1 n) vicinals and their dependency on the distance between steps L (L is the distance in the projected direction, that is, parallel to the (001) terrace). The surface stresses are calculated by using two different coordinate systems (x, y, z) and (x, b, c) as showed in Fig. 1. The (x, y, z) reference system is called the one vicinal while this (x, b, c) is called the one projected.

Contrary to the step energies, the calculation of the step stresses depend on the directions in the two reference systems. The vicinals of type (1 1 n) are more often used in experiment Here we present the two reference systems used in the paper.

The reference system (x, y, z) is this vicinal while the reference system (x, b, c) is this projected. The direction b is parallel to the (001) terrace. The direction x is not presented because it is directed along the steps. The vicinal angle is the tilt angle between the two reference systems. The length unit a is the distance between nearest atoms in the direction b. The unit a is also the real distance between nearest neighbours in bulk.

than the vicinals of type (0 1 M ) [5,6,7,8]. The Cu(0 1 M ) vicinals were first examined [9,10] because the three principal directions of the terrace are the principal directions of the f cc cell and thus, the understanding of findings are less laborious. The interactions being limited to nearest neighbours, the geometric simplifications have helped us a lot in the study of vicinals of type (0 1 M ), and notably when studying the surface stresses. In addition, the difficulties linked to the anisotropy of the f cc metal are avoided at best. For Cu(0 1 M ) vicinals, the components of the dipole force f = (0, f y , f z ) that characterizes the step in the Marchenko-Parshin (M P ) model [11] have the same modulus (f y = f z = -0.15 naN ).

For Cu(11n) vicinals, the direction normal to the terrace, c, is unchanged ((001) terrace)

while the directions x and b are parallel to the diagonals of the faces of the f cc cell. So, the directions x and b correspond to the two dense directions of the terrace. With respect to Cu(0 1 M ) vicinals, we will see in this way that the component f b is multiplied by √ 2 while the component f c does not change.

The step stresses are calculated in the diagonal directions of the two reference systems, on the one hand in the directions xx , bb and cc , and on the other hand in the directions yy and zz . By using the five diagonal directions, we will understand why the interaction stress between steps is different in the direction yy when using two methods of calculation of the step stresses. In the first method called the 'Force' method, we directly calculate the interaction forces between atoms in the first surface monolayers while they are nonexistent in bulk. The step stress is always zero in the direction normal to the vicinal surface 'zz'.

In the second method called the '∆ E' method, we calculate the step stress by deforming all the system in one direction parallel to the vicinal surface, xx or yy . From the energy excess proportional to the applied strain, we can easily deduce the step stress in the two directions xx and yy . The use of the two methods will show that the interaction stress in the direction yy is different while it is the same for the direction parallel to the steps xx .

The difference will be explained in the paper.

The paper is organized as follows: Section 2 presents the potential chosen in our simulations as well as the minimization method of the total energy of the periodic system at T = 0K. Section 3 explains how to calculate the step energy and the step stress for vicinals.

The two methods, the one 'Force' and the one '∆ E', are detailed in this section as well as the Shuttleworth relationship between the two fundamental surface quantities, the surface energy and the surface stress [12]. Section 4 gives the step energy of vicinals Cu(1 1 n)

and the surface displacements with respect to the nominal surface. Section 5 is devoted to the step stresses of vicinals Cu(1 1 n) for different diagonal directions in the two reference systems cited above (this vicinal and this projected). Section 6 demonstrates why the step stress in the diagonal direction yy is different between the two methods of calculation of step stresses. Section 7 displays the conclusion.

Simulation model and RGL potential adapted to Cu

The equilibrium configurations of the flat and vicinal surfaces at T = 0K are obtained by the quenched molecular dynamics method [START_REF] Bennett | Diffusion in Solids, Recent Developments[END_REF]. All our calculations use a slab delimited by two identical surfaces. Periodic boundary conditions are applied along the surface directions

x and y. In the direction z, the slab is sufficiently large enabling to correctly reproduce the bulk properties in the center of the slab. Between the two surfaces, the number of planes perpendicular to the direction c is larger than 200. We use the RGL potential which is a many-body potential [START_REF] Rosato | [END_REF]. This potential has been adjusted to the bulk elastic constants and the cohesive energy. The lattice constant is equal to the value determined in experiment.

For Cu, it is equal to a √ 2 = 3.61 Å. The length unit a is the distance between nearest neighbours in the dense row direction (direction x or b). The interactions between atoms are limited to their nearest neighbours. For this cut-off radius, the parameters of the RGL potential are given in Ref. [START_REF] Rosato | [END_REF]. We use this potential because this reference shows that the agreement with the experiment has proven to be good for low and intermediate temperatures (< 900K for Cu).

Calculating step energy and step stress

In bulk, the cohesive energy is calculated by using the RGL potential and by adding up the interaction energies between one atom and its twelve neighbours. For Cu, the cohesive energy equals -3.5 eV . For T = 0K and at zero pressure, the atomic energy is minimum and consequently, the pressure forces between the bulk atom and its neighbours are zero.

For the Cu(001) surface, the atoms of the first monolayer have lost four neighbours with respect to bulk. At equilibrium, we note that the two first monolayers are contracted in the direction normal to the surface z. The surface is relaxed in the direction z in order to cancel the diagonal surface stress σ 0 zz , in the direction normal to the surface. Due to the loss of four neighbours in the first monolayer and because in the direction parallel to the surface, the distance between surface atoms cannot vary with respect to bulk; the diagonal surface stress parallel to the surface is not cancelled: σ 0 xx = σ 0 yy = 0.367 eV /a 2 . Here, we consider that the non-diagonal surface stresses are nonexistent for the nominal surface and their vicinals (σ 0 αβ with α = β is nonexistent). The surface energy is the energy excess with respect to bulk energy. It is calculated per surface area unit and is added up along the z axis from the surface up to bulk. For Cu(001), the surface energy γ 0 is equal to 0.455 eV /a 2 .

The surface stress is the sum of pressure forces that exist on the surface and are null in bulk. The pressure forces are r mnα × F mnα where r mnα = (R mα -R nα ) is the position of atom m relative to the neighbour n in the direction α and F mnα is the partial force applied on the atom m due to the neighbouring atom n in the direction α. The diagonal pressure forces between the atoms m and n are calculated as minus half of r mnα multiplied by the derivative of the potential of the atom m with respect to r mnα . When deforming the surface in the diagonal direction parallel to the surface and when omitting the variation of the surface energy due to the variation of the atomic surface area (we omit, therefore, the term γ 0 in the Shuttleworth relation [12]), the method of Ackland and Finnis [15] writes that the surface stress σ 0 αα can be calculated in numerical methods in the atomic scale as

σ 0 αα = 1 A 0 ∂A 0 γ 0 ∂ αα αα=0 = 1 A 0 ∂ m Φ m ∂ αα = 1 2A 0 m n =m r mnα ∂Φ m ∂r mnα = - 1 2A 0 m,n =m r mnα F mnα (1) 
where A 0 is the periodic surface area and Φ m is the potential energy of the atom m. This equation gives the diagonal surface stress σ 0 αα by calculating the pressure forces that exist when the surface is not homogeneously deformed by αα . Therefore, the derivative of the energy A 0 γ 0 with respect to αα is taken at αα = 0. Here, αα is called the homogeneous strain when it is applied everywhere, in the periodic system. In the following, the homogeneous strain is called h αα instead of αα . This method for calculating the surface stress σ 0 αα is called the 'Force' method (calculation of the pressure forces for h αα = 0). When the system (surface and bulk) is deformed by a factor of (1 + h αα ) in the direction α, the equilibrium energy excess due to the strain h αα is

∆E = ∆E 1o + ∆E 2o + • • • (2) 
where ∆E 1o and ∆E 2o are the first and the second-order energies as a function of the deformations due to h αα . In this paper, we treat only the first-order energy ∆E 1o because the quantity ∆E 1o is enough to explain the presence of the surface stress for the nominal surface and the corresponding vicinals. By using the reference system (x, y, z), the first-order energy ∆E 1o is written as

∆E 1o = m,n K 1,x,m,n ∆(x m -x n ) + K 1,y,m,n ∆(y m -y n ) + K 1,z,m,n ∆(z m -z n ) = ∆E xx + ∆E yy + ∆E zz . (3) 
Between the initial (I) and final (F ) configurations, ∆(α m -α n ) is the local deformation between two atoms m and n in the direction α (∆(α m -

α n ) = [(α m -α n ) F -(α m - α n ) I ]/(α m -α n ) I ).
The constants K 1,α,m,n are the first-order elastic constants calculated in the initial configuration I. For the nominal surface, the configuration I is the nondeformed flat surface. For the vicinal, and by using the reference system (x, b, c) (Fig. 1), the configuration I corresponds to two Cu(001) relaxed surfaces that are distant, at the step position (b = 0), from a/2, the step width l = a/2 and the step height h = a/ √ 2 in the directions x, b and c, respectively.

For the nominal surface, under homogeneous strain parallel to the surface (α = x or y), the surface energy γ( αα ) is

γ( αα ) = γ 0 + ∂γ 0 ∂ αα αα=0 × αα + • • • = γ 0 + σ 0 αα -γ 0 ) × αα + • • • (4) 
In Eq. ( 4), the term -γ 0 × αα results from the fact that the surface energy is defined per constant surface area unit, a 2 here, while the atomic surface varies by a factor of (1 + αα ).

This term is necessary in order to respect the matter conservation rule in the calculation of γ( αα ). In the following, we suppose that the quantity of matter is not corrupted, and if so, we omit the term -γ 0 × αα . The term σ 0 αα × αα in Eq. ( 4) is the first-order energy as a function of the deformations, i.e ∆E 1o in Eq. ( 2).

When we deform the Cu(001) flat surface under the strain h yy , for example, the firstorder energy is ∆E 1o = ∆E yy with ∆(y m -y n ) = h yy . The sum of the elastic constants K 1,y,m,n is equal to the surface stress σ 0 yy . ∆E xx is zero because ∆(x m -x n ) is zero and ∆E zz is zero because the elastic constants K 1,z,m,n and their sum σ 0 zz = 0 are zero. From the first-order energy ∆E 1o , we can therefore deduce the surface stress σ 0 yy by using the relation ∆E 1o = σ 0 yy × h yy . We call this method of calculation of σ 0 yy the '∆ E' method that consists of deforming the system by h αα and then deducing the first-order energy excess ∆E 1o due to h αα .

On vicinals, we calculate the surface stresses by using both calculation methods (the 'Force' method and the '∆ E' method). Because the step stress is the stress excess with respect to the surface stress of the nominal surface, we calculate, firstly, the step stresses in the projected reference system (x, b, c). From this system, we can then, and more easily, deduce the step stresses in the vicinal reference system (x, y, z), knowing that the zz step stress is zero in the direction normal to the vicinal surface, irrespective of the vicinal angle θ.

We note that the two calculation methods, the 'Force' and the '∆ E', give the same quantity for the stress, with the exception of the interaction stress between steps in the direction perpendicular to the step (diagonal direction yy ). A part of the interaction stress calculated by using the 'Force' method is not used when we deform the system in the direction yy [10]. This shows that the equivalence between the two methods is not valid only for the interaction stress in the direction yy while it is valid for the direction xx , parallel to the step. We will explain this difference in a later section (section 6).

4.

Step energy on vicinals Cu(1 1 n) Fig. 2 gives the step energy E St as a function of the distance L between steps for Cu(11n)

vicinals. The step energy has been fit with two functions and

G 23 (L) = G 0 + G 2 L -2 + G 3 L -3
G 23 (L) = G 0 + G 2 L -2 + G 3 L -3 and H 12 (L) = H 0 + H 1 L -1 + H 2 L -2 .
H 12 (L) = H 0 + H 1 L -1 + H 2 L -2 .
In the function G 23 (L), the term proportional to 1/L is not present. The use of G 23 (L) results from the M P model [11]. In the M P model, the step behaves as one dipole line applied upon a flat surface. If the applied force per length unit is f = (0, f b , f c ) and if it is applied at the origin line b = 0, the M P model gives the surface displacement u(b) as follows

u(b) = - 2(1 -ν 2 ) πE f b = -Λ f b ( 5 
)
where ν is Poisson's ratio and E is Young's modulus. In the M P model and from Eq. ( 5), the interaction energy between steps can be easily deduced. It is

Γ M P = ∞ n=1 Λ f 2 (nL) 2 = π 2 6 Λ (f 2 b + f 2 c ) L 2 . ( 6 
)
The interaction energy between steps Γ M P results from the product at the step position (b = 0) of the dipole force multiplied by the sum of the displacements due to neighbouring steps located at y = nL, n being a non-zero integer. In addition, Γ M P supposes that the work of the surface forces W is twice that minus the second-order energy as a function of the deformations due to lines of dipole forces (W = -2 E 2o ). The energy E 2o is calculated by using the deformations within the entire periodic vicinal system.

When forces are applied upon a flat surface, the first-order energy due to forces, E 1o , does not exist. On vicinals, the first-order energy E 1o is present and it is calculated by using the deformations in only a few surface monolayers. As for the forces applied upon a flat surface, the equilibrium verifies to a good approximation the relation E 1o = -2E 2o and consequently, the sum E 1o + E 2o ≈ -E 2o (we ignore here the third-order energy and more).

Because the terrace between steps tends to contract (σ 0 yy > 0), Eqs. ( 5) and ( 6) are modified with respect to the M P model. Consequently and in the paper, we instead use the following equations [16] 

u b (b) = -Λ f b (1 + X) b = -Λ f b b u c (b) = -Λ f c b (7) 
Γ M P = π 2 6 Λ (f 2 b (1 + 2X) 2 + f 2 c ) L 2 (8) 
where X corresponds to the recursive extra contraction of the terrace with respect to the M P model when the dipole lines f are applied on the flat surface: 2 . This shows that the difference between Γ M P and Γ M P results from the fact that the surface tends to contract at equilibrium due to the existence of the surface stress in the direction parallel to the terrace. The normal component f c is not modified because the surface stress is zero in the direction normal to the surface. Fig. 3 gives the surface displacements in the two directions b and c for L = 32.5 a. By adjusting these displacements to the sum of the displacements due to neighbouring steps, we find that the elastic constant Λ and the dipole force f c are identical to those deduced in vicinals Cu(0 1 M ) [10], namely Λ = 0.0683 a 2 /naN and f c = -0.15 naN . Concerning the component parallel to the terrace, we find that

X = -λf b (1 -λf b (1 - λf b (. . .))) = (-λf b /(1 + λf b )). For Cu(001), we use the constant λ = 0.8 naN -1 [16]. Note that the parallel component f b is replaced by the component f b while the corresponding component in the step energy Γ M P is not proportional to f 2 b = f 2 b (1+X) 2 but to f 2 b (1+2X)
f b is equal to f c × √ 2, that f b is -0.18 naN
and X is 0.17. Because the width and the height of the step are, respectively, l = a/2 and 

h = a/ √ 2, we can write that f b × l is equal to f c × h.
b = f c √ 2 instead of f b (1 + X) = f c √ 2.
The difference is thus important between the M P model and this modified model due to the tendency to contraction of the terrace between steps.

The step-step interaction energy Γ M P is almost 3/2 times larger for Cu(1

1 n) vicinals than for Cu(0 1 M ) vicinals. Because f b = f c √ 2, the contribution due to the parallel component f b is twice for Cu(1 1 n) vicinals.
To a good approximation, we can deduce the step-step interaction energy Γ M P for other f cc metals. There is a direct link between the component f b and the nominal surface stress

σ 0 yy . The link is f b ≈ σ 0 yy × a. Then, we deduce the component f c = f b / √ 2.
The values of Λ and X in Eq. ( 8) are given in Ref. [16] for different f cc metals. So, we can have a good estimate of the interaction energy Γ M P for vicinals of type (1 1 n), by using the modified

M P model.
In order to understand the usefulness of the other adjustment function H 12 (L) in Fig. 2, we give here the behavior of Cu(11n) vicinals with respect to Cu(001) surfaces with opposite steps, i.e for which the component f c changes sign between neighbouring steps. This was shown by studying Cu(0 1 M ) vicinals [9]. 

a cb (0) = u c (+a/4) -u c (-a/4) a . (9) 
For vicinals and assuming that only the modified M P model allows one to describe the surface displacements u b (b) and u c (b) from Eq. ( 7), bb (0) and cb (0) should vary as (π 2 /3)Λf b /L 2 and (π 2 /3)Λf c /L 2 , respectively [9]. They are respectively equal to -0.048 a 2 /L 2 and -0.034 a 2 /L 2 . For surfaces with opposite steps, only the component f c changes sign between neighbouring steps, and we can write that the parallel step deformation bb (0) should be identical to those calculated for vicinals. However, Fig. 4 shows that the variations are different between vicinals and surfaces with opposites steps. On vicinals, we note that the 

F c (b) = a L (- u 1 2 + u 1 L b + Q), (10) 
with u 1 = 0.002 a and Q = -0.013 a. This is shown in Fig. 9 for L = 9.5 a as one example. Due to relevant differences between vicinals and surfaces with opposite steps, we conclude that the step is under the influence of the monopole force F b in the direction of the descending steps and for which the modulus decreases as 1/L [17,9].

In the step deformation bb (0), the ratio between the component of order O(1/L) and the has been adjusted to the step deformation bb (0) multiplied by a specific step stress that we call σ S,1o bb : E 1o ≈ σ S,1o bb × bb (0). The adjustment of E 1o is made within a constant, and we find that σ S,1o bb is equal to -0.40 eV /a. When supposing that the constant σ S,1o bb = -0.40 eV /a is calculated in the first surface monolayer and over the distance a, it corresponds to a dipole force in the direction b, applied at the step position and equal to -0.25 naN .

Due to the equilibrium relation E 1o ≈ -2E 2o , we have thus the equilibrium relation 

π 2 3 Λ (f 2 b (1 + 2X) 2 + f 2 c ) L 2 ≈ σ S,1o bb bb (0), (11) 
(1 + 2X) 2 + f 2 c ) and σ S,1o bb × (f b (1 + X) + f c ) with σ S,1o
bb , f b , f c and X respectively equal -0.25 naN , -0.18 naN , -0.15 naN and 0.17. On the one hand, the term of order O(1/L) is omitted in the fit to the function G 23 (L) because the M P model takes into account only the displacements due to neighbouring steps and is calculated in all the system (surface + volume). More specifically, when excluding the deformations due to the origin step, the second-order interaction energy due to lines of monopole force F b does not vary as 1/L but rather as 1/L 2 and is small with respect to the modified M P model [17,9,10]. On the other hand, the component of order

O(f 2 c /L 2 )
is not taken into account in the fit to the function H 12 (L) because the step-step interaction stress is zero in the direction normal to the surface. 10). It varies as 0.002a 2 /L 2 b. The displacement is normal to the terrace and proves that the step is under the influence of a monopole force F b in the direction parallel to the terrace, towards the descending steps and for which the modulus decreases as 1/L. The small derivative at the middle of the terrace shows that its contribution in the second-order energy is negligible with respect to the modified M P model [17,9].

Because the two functions

screened by the component of order O(f 2 c /L 2 ) in the modified M P model. Consequently, the presence of the interaction stress between steps does not modify the interaction energy between steps calculated from the modified M P model. It is only masked because the energy calculated from the modified M P model is regulated by the presence of the bulk and the two components of the dipole force f are closely related to each other and to the nature of the step.

The original M P model does not show that the surface displacement can be modified in order to decrease the surface stress on the terrace between steps [16]. When supposing that this effect is nonexistent (original M P model), the component of the dipole force parallel to the terrace should be equal to f 0 y whose intensity is equal to that of f c × √ 2. By accounting the effect due to the surface stress, the intensity of the parallel component f b is not equal to the intensity of f 0 b (1 + X) but rather to that of f 0 y . So the strong relation between the two components of the dipole force f still holds, namely

f b = f b (1 + X) = f c × √ 2.
It is as if the effect due to the surface stress should be nonexistent. In contrast, the paper [9] shows that the equilibrium relation E 1o ≈ -2E 2o is slightly modified with respect to the original M P model because the corresponding interaction energy due to f y is not proportional to 2 . This has been confirmed by the presence of the oscillations of the surface displacement near the step for vicinals Au(0 1 M ) for which the constant X is equal to 0.40 instead of 0.17 for Cu. We conclude that the surface energy and the surface stress must be studied separately in order to better understand the physics of surfaces. The modification due to the surface stress may not be visible in the surface energy with respect to the configuration where the surface stress should be absent. In next section, we study the surface stress of Cu(1 1 n) vicinals.

f 2 b (1 + X) 2 but to f 2 b (1 + 2X)

Step stress on vicinals Cu(1 1 n)

In this section, we give the surface stress on vicinals Cu(1 1 n). In the paper [10], the same calculations were also made on vicinals Cu(0 1 M ).

The 'Force' method

The step stresses are stress excesses with respect to the nominal surface stress σ 0 xx = σ 0 yy . As for the flat surface, the step stress normal to the vicinal surface always vanishes and the non-diagonal stresses are nonexistent. On vicinals, we study the step stresses in the two reference systems, this vicinal (x, y, z) and this projected (x, b, c). Thus, we study the 

σ St αα = σ IS αα + σ Int αα L ( 12 
)
where σ IS αα is the isolated step stress and σ Int αα /L is the interaction stress between steps. The interaction stresses are linked to the presence of the components of order O(1/L) in the step deformations bb (0) and cb (0) when the vicinals are not deformed by h xx or by h yy . So, the interaction stresses result from the presence of the monopole line F b that is added to the 18 dipole line f at the step position (see previous section). The monopole force F b is present when the vicinal is not homogeneously deformed, and its modulus decreases as 1/L and disappears for infinite L.

In this section, we homogeneously deform the vicinals by a factor of (1 + h xx ) or (1 + h yy ), and we give the differences in the step deformations with respect to the non-deformed vicinals. They are called ∆ bb (0) and ∆ cb (0). In next section (the '∆ E' method), we will give the excesses in the step energy that are proportional to h xx or h yy . When the vicinals are homogeneously deformed by h xx or by h yy , a monopole force proportional to the homogeneous strain is added to the monopole force F b . We call it F , which does not depend on the distance L. For h xx < 0 or h yy < 0, F is directed towards the descending steps, and we consider that its direction is parallel to the terrace as for F b . Under homogeneous strain, the monopole force F is responsible for the terms of order O(1/L) in the extra step deformations ∆ bb (0) and ∆ cb (0). Figs. 11 and12 give the variations of ∆ bb (0) and ∆ cb (0) as a function of L for the strains h yy = -10 -3 and h xx = -10 -3 , respectively. For h yy = -10 -3 , Fig. 11 Deformation (10

-3 ) yy = -10 -3 ∆ bb (0) ∆ cb (0) 0. 53 10 -3 /L Figure 11:
Step deformations ∆ bb (0) and ∆ cb (0) due to homogeneous strain -h yy = 10 -3 . They vary as -0.68 10 -3 + 0.53 10 -3 /L and -0.73 10 -3 + 0.52 10 -3 /L for the tensor directions bb and cb , respectively. Deformation (10

-3 ) xx = -10 -3 ∆ bb (0) ∆ cb (0) 0. 29 10 -3 /L 0. 23 10 -3 /L Figure 12:
Step deformations ∆ bb (0) and ∆ cb (0) due to homogeneous strain -h xx = 10 -3 . They vary as -0.0625 10 -3 +0.29 10 -3 /L and -0.53 10 -3 +0.23 10 -3 /L for the tensor directions bb and cb , respectively.

shows that ∆ bb (0) and ∆ cb (0) vary as 1/L by almost the same factor (0.53/L and 0.52/L).

For h xx = -10 -3 (strain parallel to the steps), the parallel and normal deformations ∆ bb (0) and ∆ cb (0) vary as 0.29/L and 0.23/L, respectively.

The '∆ E' method

As for the nominal surface, we can calculate the surface stress when we homogeneously deform the vicinal surface in the direction parallel to the surface, and we calculate the energy excess proportional to the applied strain (see section 3). We will see that a difference exists between the two methods concerning the interaction stress for the applied strain perpendicular to steps h yy . We note that we calculate only the first-order energy excesses proportional to h xx or h yy in order to deduce the step stresses. The first-order energies ∆E 1o are firstly calculated in the two directions bb and cc , ∆E 1o = ∆E bb +∆E cc and with respect to the deformed nominal surface. Then and by rotation transformations, we can deduce the components in the vicinal directions, ∆E 1o = ∆E yy +∆E zz . For h xx , we omit the component in the direction xx because it does not contribute to the interaction stress between steps.

For the applied strain h yy = -10 -3 , Fig. 13 gives the variation as a function of L of the first-order energies ∆E bb , ∆E cc and their sum ∆E 1o by using the deformations in the projected reference system. As for the extra step deformations ∆ bb (0) and ∆ cb (0), the two energies ∆E bb and ∆E cc vary as 1/L by the same factor. Within a constant, ∆E bb and ∆E cc are equal to K × ∆ bb (0) and K × ∆ cb (0), respectively, with K = -0.255 eV /a. In the vicinal system for which the surface stress vanishes in the direction zz , Fig. 14 gives the variation of the corresponding first-order energies ∆E yy , ∆E zz and the same sum ∆E 1o as for the projected system. From this figure, we consider that the variation of ∆E zz is negligible with respect to the variation of ∆E yy . To a good approximation, we write that the variation of ∆E 1o is that of ∆E yy , i.e in the direction of the applied strain h yy . By applying the rotation transformations in the step deformations ∆ bb (0) and ∆ cb (0), we deduce the step deformation ∆ yy (0) in the direction of the homogeneous strain yy .

When neglecting the terms of O(1/L 2 ) and by writing that sin(θ) varies as √ 2/2L, we have

∆ yy (0) = ∆ bb (0) cos(θ) -∆ cb (0) sin(θ) ≈ ∆ bb (0) -∆ cb (0) √ 2 2L . ( 13 
)
This is shown in Fig. 15 for h yy = -10 -3 . It makes clear that ∆ yy (0) varies as -1.04 (a/L)× h yy instead of -0.53 (a/L) × h yy for the variation of ∆ bb (0). Because the interaction energy ∆E zz is negligible in the variation of ∆E 1o , we can write that the variation of ∆E 1o is equal to a constant multiplied by the variation of ∆ yy (0). Here the constant is equal to -0.27/1.04 = -0.26 eV /a. In this case, it is correct to write that the variation of the step stress depends on the variation of the step deformation ∆ yy (0) in the direction of the applied strain, yy , rather than this in the direction bb . In next section, we will see that it is also correct to write that the same variation also depends on the variation of the step deformation ∆ bb (0) in the direction parallel to the terrace bb because the contribution in the direction normal to terrace cc is excluded. To validate the calculations made by using the first-order energies ∆E 1o , we can calculate the step energies from the sum of the atomic potentials for the two signs of the applied strain h yy = ±10 -3 . Because | h yy | is small, we can ignore the terms from the third-order onwards. For a given vicinal angle θ, we call the surface energy of the nominal Cu(001) and that of the θ vicinal surface per projected area unit γ + 0 and γ + P (θ), the two surfaces being deformed with h yy > 0. Likewise, we call γ - 0 and γ - P (θ) the corresponding surface energies for the negative sign of the strain h yy < 0. The quantity [γ - P (θ) -γ - 0 ][L(1 + h yy )], with h yy < 0, is the step energy Γ -(L). We do the same for h yy > 0, which gives Γ + (L). Because | h yy | is small, half the difference of the step energies for the two signs of h yy , [Γ + (L) -Γ -(L)]/2 gives, to an excellent approximation, σ St yy × | h yy |. Their variation as a function of L is given in Fig. 16. The interaction stress is close to that calculated by using the '∆ E' method (Fig. 13 or Fig. 14). This makes sure that the method using the first-order energies, ∆E 1o , is correct. As for Cu(0 1 M ) vicinals [10], the interaction stress between steps is different between the two calculation methods, the 'Force' and the '∆ E', only for the homogeneous strain in the direction yy . In the strain direction parallel to the step, xx , we have checked that the interaction stresses are identical for the used methods (= 0.11 ± 0.01 a/L eV /a). For the direction perpendicular to the steps yy , it is equal to 0.43 a/L eV /a for the 'Force' method while it is equal to 0.27 a/L eV /a for the '∆ E' method.

Different results for the applied strain parallel to steps, h xx = -10 -3 , are not illustrated in the paper. They are summarized and compared with the previous strain perpendicular to steps in Table 1.

Why σ Int yy is different

In the 'Force' method, we calculate the forces that exist on the surface when it is not deformed ( h xx = h yy = 0). This gives the step stresses that are calculated in the directions of the two reference systems. They are stress excesses with respect to the nominal surface.

In the direction zz , the step stress σ St zz is always zero. Because it is zero, we have the equivalence between the two reference systems σ St yy = σ St bb + σ St cc . For infinite L, the step and12). At the bottom, we list the step stresses calculated by using the two methods. By using the 'Force' method, the variation of the step stresses are showed in Fig. 10. They vary as σ Int αα /L. We note that the constant σ Int yy is different when using the '∆ E' method with respect to the 'Force' method, while the constant σ Int xx is identical by using the two methods. stresses are the isolated step stresses σ IS αα for the five diagonal directions α = x, y, z, b and c. For infinite L, the direction b and c are the direction y and z. In addition, we have therefore the equivalence between the isolated step stresses: σ IS cc = σ IS zz = 0 and σ IS bb = σ IS yy . When using the '∆ E' method, we calculate the step energy excess proportional to the applied strain h xx or h yy . When deforming a vicinal by the applied strain h yy , the first-order step energy excess is σ St yy × h yy but we note that the step stress σ St yy is not equal in the two calculation methods. We find that the step stress σ St yy in the '∆ E' method is equal to the step stress σ St bb in the 'Force' method. The step stress σ St cc calculated in the direction cc in the 'Force' method is thus excluded when we use the '∆ E' method. For a given direction αα , the interaction term of the first-order step energy excess corresponds to a constant multiplied by the interaction term of the step deformation proportional to the applied strain. We call this constant the step stress σ ∆E αα that exists when the vicinal is not deformed. In the direction normal to the terrace cc , σ ∆E cc is always zero as for σ ∆E zz . This explains why the step stress σ St cc is excluded when using the '∆ E' method. In addition, we note that the two step stresses σ ∆E yy and σ ∆E bb are not equal because the interaction terms of the step deformations ∆ bb (0)/ h yy and ∆ yy (0)/ h yy are not. When admitting that the interaction term of σ St yy is equal to σ ∆E bb multiplied by the interaction term of ∆ bb (0)/ h yy as well as to σ ∆E yy multiplied by the interaction term of ∆ yy (0)/ h yy , we have σ ∆E bb = -0.51 eV /a and σ ∆E yy = -0.26 eV /a. The values of σ ∆E bb and σ ∆E yy correspond to the dipole forces f × 1.51 and f × 0.76 in the direction b and y, respectively. The difference between σ ∆E bb and σ ∆E yy results from both the fact that the step stress is calculated with respect the nominal surface (normal to the terrace is c) and the step stress is always zero in the direction normal to the vicinal surface (direction zz ).

Conclusion

By the molecular dynamics method at T = 0K, we have calculated the equilibrium configurations of the Cu(1 1 n) vicinals, their step energies and step stresses. By varying the distance between steps L, we have given the step energies and stresses as a function of L. The step stresses in the directions bb , cc , yy and xx vary as 1/L (the direction

The step energy has been adjusted to two functions

G 23 (L) = G 0 + G 2 L -2 + G 3 L -3 and H 12 (L) = H 0 +H 1 L -1 +H 2 L -2 .
x and y are the directions of the vicinal surface parallel and perpendicular to the steps, respectively). They are calculated by using two calculation methods. The 'Force' method directly calculates the surface pressure forces. The '∆ E' method calculates the energy excess proportional to the applied strain h αα when the vicinal is homogeneously deformed by a factor of (1 + h αα ), the direction αα being parallel to the vicinal surface (α = x or y).

We note that the step stress is identical by using the two methods in the direction parallel to the steps xx but not in that perpendicular yy .

In the 'Force' method, we calculate the pressure forces that exist on the vicinal surface.

The step stresses (sum of the pressure forces) vary as σ IS αα + σ Int αα /L. The step stress in the direction yy is the sum over the two step stresses in the directions bb and cc . For infinite L, the step stress in the direction cc is zero (it is equal to this in the direction zz ).

In the '∆ E' method, we calculate the energy excess proportional to the strain applied.

The interaction term in the energy excess corresponds to the crossed term located at the step position between an isolated step stress and the deformation due to neighbouring steps.

For the direction cc , the isolated step stress is zero. Therefore, the step stress in the direction yy does not include the step stress calculated in the direction cc by using the 'Force' method. In the '∆ E' method, the step stress in the direction parallel to the vicinal surface yy is the step stress calculated in the direction parallel to the terrace bb by using the 'Force' method. This explains why the step stress is different in the direction yy when using the two methods.

In the direction yy , we summarize that the step stress calculated by the 'Force' method corresponds to pressure forces that are present on surface. It includes two components parallel and normal to the terrace: σ St yy = σ St bb + σ St cc . When we deform the vicinal by a factor of (1 + h yy ), we can calculate the energy excess proportional to the strain h yy by using the step stress σ St yy . However, the normal component σ St cc is excluded for this energy calculation even if the surface stress is really the sum of pressure forces present on non-deformed surface.

Finally, we must consider the surface pressure forces not only for calculating the energy excesses when the surface is deformed but also in the understanding of equilibrium of surfaces. Only, the minimization of the total energy does not allow to determine the equilibrium structure of surfaces. The surface stress can modify the equilibrium structure of surfaces without decreasing the total energy. Again, we write that the steps are repulsed by both the step energy and the step stress due to their decreasing when increasing L. The step stresses parallel to the vicinal surface correspond to pressure forces that must be as small as possible.

Figure 1 :

 1 Figure 1: Side view of the Cu(1 1 15) vicinal. Here we present the two reference systems used in the paper.

Figure 2 :

 2 Figure 2: Step energy E St as a function of the distance L between steps. It is adjusted to two different functions G 23(L) = G 0 + G 2 L -2 + G 3 L -3 and H 12 (L) = H 0 + H 1 L -1 + H 2 L -2 . The function G 23 is

  The function G 23 is the one used in the M P model for which the term of order O(1/L) is not present. The second function takes into account the variation of order O(1/L) because the step deformation in the diagonal direction bb , bb (0), includes a term proportional to 1/L.

Figure 3 :

 3 Figure 3: Surface displacements on a Cu(1 1 n) vicinal with n = 65. The displacements are calculated with respect to the atomic positions of the nominal surface Cu(001). The b and c directions are respectively parallel and normal to the terrace (see Fig. 1). The positions on both sides of the terrace, b = a/4 and b = L -a/4, are those of the lower and upper corners of the step. From these displacements, we can deduce the dipole force f = (0, f b , f c ) in the modified M P model. To a good approximation, f b = f c × √ 2 and f c = -0.15 naN .

Fig. 4 and

 4 Fig.4and Fig.5give the variations of the step deformations as a function of the distance L. For clarity, we write the step deformations bb (0) and cb (0) with respect to the length unit used here (= a) as

  step deformations include a component of order O(1/L) in addition to the component of order O(1/L 2 ) in the modified M P model. This is checked because in Figs. 4 and 5, different Vicinal Cu(11n) 0. 0271 -0. 0022/L -0. 055/L 2 Opposite steps on Cu(001) 0. 0271 -0. 052/L 2 + 0. 030/L 3

Figure 4 : 2 .

 42 Figure 4: Step deformations bb (0) on the first monolayer for Cu(1 1 n) vicinals and surfaces with opposite steps, as a function of the distance L. The step deformations are calculated by using Eq. (9). They are calculated over the length unit a while the two corners of the step are distant from a/2 in the direction b. They are adjusted to the function C 0 + C 1 /L + C 2 /L 2 for vicinals and to the function C 0 + C 2 /L 2 + C 3 /L 3 for surfaces with opposite steps. The constant C 2 is close to the expected value (π 2 /3)Λf b = -0.048 a 2 .

Figure 5 :

 5 Figure 5: Step deformations cb (0) on the first monolayer for Cu(1 1 n) vicinals and surfaces with opposite steps, as a function of the distance L. The step deformations are calculated by using Eq. (9). They are calculated over the length unit a while the two corners of the step are distant from a/2 in the direction b. They are adjusted to the function C 0 + C 1 /L + C 2 /L 2 for vicinals and to the function C 0 + C 2 /L 2 + C 3 /L 3 for surfaces with opposite steps. The constant C 2 is close to the expected value (π 2 /3)Λf c = -0.034 a 2 .

Figure 6 :Figure 7 :

 67 Figure 6: On Cu(11n) vicinals and from the surface displacement u b (b), we have subtracted the displacements proportional to 1/b in the modified M P model with f b = -0.15 × √ 2 naN . This gives the reduced displacements ∆ω b (±a/4) for the two corners of the step. Their variations as a function of L are adjusted to the function C 0 + C 1 /L + C 2 /L 2 and then we plot the two functions C 1 /L for the two step corners. The difference between the two functions C 1 /L is close to the component of order O(1/L) in the step deformation bb (0) (= +0.0022/L). component of order O(1/L 2 ) is quantitatively close to f z /f y = 1/ √ 2. Indeed, if we adjusted the step deformation bb (0) to the function of the form C 0 + C 2 /L 2 + C 3 /L 3 , the constant C 2 would be equal to -0.081 a 2 , which is close to (π 2 /3)Λ(f b + f c )/L 2 = -0.081 a 2 /L 2 . Therefore, we consider that the component of order O(1/L) in bb (0) is limited quantitatively by the surface displacement normal to the terrace deduced in the modified M P model, i.e proportional to the component f c of the dipole force f . The fit to C 0 + C 2 /L 2 + C 3 /L 3 for the step deformation of vicinals is not correct because C 2 is too high with respect to the modified M P model and because it is different from the constant C 2 adjusted for surfaces with opposite steps. This shows that for vicinals, the component of order O(1/L) is present in the step deformation bb (0).On vicinals, the presence of the term proportional to 1/L in the step deformation bb (0) is linked to the existence of the interaction stress which varies as 1/L. No interaction stress between steps exists for surfaces with opposite steps. For surfaces with opposite steps, we can calculate the step energy from the M P model and by assuming that the first-order
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 87 Figure 8: Surface displacement u c (b) at the middle of the terrace b = L/2 for Cu(1 1 n) vicinals. It is adjusted to the function -0.013 a 2 /L for large L. The constant -0.013 is almost the middle between the two constants C 1 deduced from the reduced displacements ∆ω c (±a/4) of the two step corners in Fig. 7 (-0.012 a 2 /L and -0.014 a 2 /L).

Figure 9 :

 9 Figure 9: For L = 9.5 a, this figure gives the linear variation of ∆ω F c (b) in Eq. (10). It varies as 0.002a 2 /L 2 b. The displacement is normal to the terrace and proves that the step is under the influence of a monopole force

  diagonal step stresses σ St xx , σ St yy , σ St bb and σ St cc . The step stress σ St zz in the direction zz vanishes over the period. This is an important characteristic of the step stress in the equilibrium of vicinal surfaces. Because σ St zz = 0, we have the relation σ St yy = σ St bb + σ St cc . Fig. 10 gives the variation of the step stresses as a function of the distance between steps L. The step stresses σ St xx , σ St yy , σ St bb and σ St cc vary as

Figure 10 :

 10 Figure 10: Step stress σ St αα as a function of the distance L. The step stress is calculated in the three directions of the vicinal system (x, y, z) on the one hand and in the directions b and c of the projected system (x, b, c), on the other hand. Each isolated step stress σ IS αα is subtracted. It is equal to +0.055, -0.42 and 0.0 eV /a for the directions x, y and z, respectively. The values of σ IS αα do not change for the corresponding directions in the projected system x, b and c. Except for the normal z where σ St zz = 0, the step stresses vary as σ Int αα /L. The constants σ Int αα are equal to 0.105, 0.43, 0.29 and 0.14 eV for the directions x, y, b and c, respectively. We also note that σ Int yy is the sum of the constants σ Int bb and σ Int cc .

Figure 13 :

 13 Figure 13: Variation as a function of L of the first-order energy ∆E 1o and their components in the projected system (x, b, c) for the vicinals under homogeneous strain h yy = -10 -3 . In the plot log-log, the constants proportional to h yy are subtracted. The component ∆E bb varies as [-0.20 + 0.134/L] × h yy eV /a and the component ∆E cc varies as [-0.27+0.132/L]× h yy eV /a. The sum ∆E 1o varies as [-0.47+0.27/L]× h yy eV /a.

Figure 14 :

 14 Figure 14: Variation as a function of L of the first-order energy ∆E 1o and their components in the vicinal system (x, y, z) for the vicinals under homogeneous strain h yy = -10 -3 . In the plot log-log, the constants proportional to h yy are subtracted. They are identical to those calculated in the projected system. The component ∆E yy varies as [-0.20+0.29/L]× h yy eV /a and the component ∆E zz varies as [-0.27-0.02/L]× h yy eV /a. The sum ∆E 1o varies as [-0.47 + 0.27/L] × h yy eV /a.
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 10315 Figure 15: Step Deformation ∆ yy (0) and ∆ bb (0) as a function of the distance L for h yy = -10 -3 .
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 3 Figure 16: [Γ + (L) -Γ -(L)]/2 as a function of L. By deforming the vicinals and calculating their step energy, this figure shows that the step stress equals -0.42 + 0.27 a/L eV /a.

  The difference between G 23 (L) and H 12 (L) is marked by the presence or absence of a term proportional to 1/L. In the well-known M P model, the steps behave as dipole forces f = (0, f b , f c ) that are applied upon a flat surface (the directions b and c are respectively parallel and normal to the terrace). For Cu(11n) vicinals, the components of the dipole force are linked by the relation f b = √ 2 f c where the modulus of f c is the same as in Cu(0 1 M ) vicinals. From the equilibrium relaxation due to the dipole forces, the step energy has been adjusted to the function G 23 (L) where the component proportional to 1/L 2 is close to that given by the M P model (G 2 /L 2 is equal to +15 a 2 /L 2 meV /a). It corresponds to the elastic energy minimization of the vicinal system (surface + bulk) due to the presence of the dipole forces. Nevertheless, this energy minimization cannot predict that a monopole force F b is applied in addition to the dipole force at the step position. The force monopole F b is parallel to the terrace, is directed towards the descending steps and its modulus decreases as 1/L. It is responsible of the terms of order 1/L that are present in the step deformations in the two directions b and c while they are absent in the M P model. Finally, it is linked to the variation as 1/L in the step stress in the tensor directions bb , cc , yy and xx . Because the surface stress is zero in the direction zz , the step energy has been adjusted to the function H 12 (L) that corresponds to a specific step stress multiplied by the step deformation in the direction bb . This effect due to the step stress is considered as masked in the step energy because the two functions H 12 (L) and G 23 (L) are quantitatively equivalent. In particular, the component of order O(1/L) in the step deformation in the direction bb is limited (obscured) by the displacement normal to the terrace deduced in the M P model. In addition to the step energy of vicinals, it is therefore essential to study the step stress and its variation as 1/L for better understanding of the equilibrium of vicinals.

Table 1 :

 1 At the top, we give the step deformations ∆ bb (0) and ∆ cb (0) divided by the homogeneous strain

h xx and h yy for the two strain directions xx and yy , respectively (from Figs. 11
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Step stress vary as