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Abstract

In this study, the mathematical expressions and numerical methods for the

free-surface Green function of the linearized wave-structure problem in deep wa-

ter and in the frequency domain are investigated. Twelve different expressions

are reviewed and analyzed. All these expressions are exact mathematical solu-

tions for the propagation of waves from a pulsating source located in the fluid

domain. However, their numerical evaluation is challenging. Dedicated numer-

ical methods have been developed. They include series expansions, polynomi-

als, table interpolations, multipole expansions, approximations with elementary

functions, etc. In this work, four methods were implemented: the Newman’s

method [1], the Delhommeau’s method [2], the Telste-Noblesse’s method [3] and

the Wu et al.’s method [4]. Their CPU time and accuracy are compared. It is

found that the average computational time for Newman’s method is 5.745×10−7.

It is 5.782× 10−8 for the Delhommeau’s method. For Telste-Noblesse’s method

and Wu et al.’s methods, they are 4.642× 10−8 and 1.491× 10−9, respectively.

The accuracy is respectively 6D(6 decimals), 5D and 3D for the Newman’s

method, the Telste-Noblesse’s method and the Wu et al.’s method. For the

Delhommeau’s method, it is 3D except when the vertical coordinate is close to

0. The accuracy of the Delhommeau’s method can be increased significantly by
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refining the discretization of the space variables for the tabulated functions and

by using higher interpolation methods, at cost of increased computational time.

Keywords: Wave-structure interaction, linear potential theory, Green

function, Numerical modeling

1. Introduction

The diffraction and radiation of water waves by floating bodies with zero

mean forward speed and in deep water are phenomena of uttermost impor-

tance in ocean engineering. They must be taken into account in the design

of marine structures such as oil and gas platforms or marine renewable energy5

converters. In the industry, boundary element methods (BEM)-based codes are

usually used to calculate these effects and determine the pressure fields and

wave-induced forces acting on the structures. BEM codes rely on the linear

free surface potential flow theory which itself relies on the free-surface Green

function and its derivatives.10

Two distinct numerical problems must be overcome in the implementation

of BEM codes [1]. Firstly, the discretization of the body surface by a large

number of panels leads to the construction of a dense linear system of equa-

tions which must be solved by suitable algorithms. Secondly, the evaluation of

the Green function and its derivatives is challenging because of their singular15

behaviour at the origin. Typically, the numerical complexity of BEM codes is

proportional to O(N2) or O(N3) with N the number of unknowns. The Green

function is computed O(N2) times to set up the linear system. The linear sys-

tem is solved either by an iterative method with O(N2) complexity or by Gauss

elimination with O(N3) complexity. The complexity can be reduced down to20

O(NlogN) using acceleration algorithms such as the precorrected Fast Fourier

Transform(pFFT) [5]. Although the computational time for the evaluation of

the Green function and its derivatives is not fully representative of the compu-

tational time needed by a BEM code to evaluate the diffraction and radication

by a floating body, it is still considered as one of the challenges for efficient25
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three-dimensional computation of hydrodynamic coefficients and forces.

In the frequency domain, this Green function is solution of the following

boundary value problem:

∇2G∞ = δ(xM − xP )δ(yM − yP )δ(zM − zP ) in z < 0

G∞z − ω2/gG∞ = 0 on z = 0

G∞ = O(1/
√
R) as R → ∞

(1)

where G∞ is the Green function in deep water, δ is the Dirac function, R

is the distance between the source point M(xM , yM , zM ) and the field point30

P (xP , yP , zP ). ω is the wave frequency and g is the gravity. In Eq. 1, the first

equation is the Laplace equation; the second equation derives from the linearized

free-surface conditions and the last equation is the radiation condition at infinity.

This boundary value problem was studied extensively during the 1940s and

1950s and exact mathematical expressions for its solution were obtained and35

those expressions were reviewed by Wehausen and Laitone [6]. Later, Ursell [7]

developed an expression involving a series of spherical harmonics for a heav-

ing semi-sphere. A modified Green function from Haskind’s representation was

then proposed by Kim [8]. It was implicitly provided by Havelock in [9]. This

modified expression was also re-derived by Hearn [10]. Finally, an integral rep-40

resentation in terms of an exponential integral was introduced independently by

Guevel [11], Martin [12] and Noblesse [13].

The numerical evaluation of these expressions (and the evaluation of their

derivatives) is challenging because of the complexity of the involved mathe-

matical expressions, the mathematical singularity in M = P and the associ-45

ated computational time [1] [3]. This is an issue for BEM codes because the

Green function (and its derivatives) must be evaluated many times to solve the

wave-structure interaction problem for each considered frequency. Thus, with

the rapid development of computing resources, the focus shifted in the 1980s

from the derivation of mathematical expressions for the Green function towards50

the algorithms and numerical methods for its efficient numerical computation.

Noblesse [13] [14] proposed two complementary near-field and far-field single
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integral representations in terms of the exponential integral. An asymptotic ex-

pansion and convergent ascending series are used to calculate the Green function

for large and small distances between the source and field point, respectively.55

Two complementary Taylor series expansions are also provided when the non-

dimensional spatial coordinates approach zero. In 1986, Telste and Noblesse

[3] published a numerical code for the evaluation of the Green function and its

derivatives based on Noblesse’s previous study [14]. The computational domain

was divided into five sub-domains.60

In 1984, Newman [15] used the Romberg quadrature to evaluate the finite

integral of the free-surface Green function with double precision accuracy. In the

same year, he proposed a new series expansion [16]. It is computationally effi-

cient at small and moderate radial distances between the source and field points.

A year later, he [1] proposed an algorithm for the evaluation of Green function65

and its derivatives in infinite and constant finite depth. The computational

domain is divided into several domains for which polynomial approximations

are provided including the series expansion from his previous paper[16]. This

algorithm is implemented as a standard subroutine named as ”FINGREEN” in

the boundary element method (BEM)-based code WAMIT [1, 17].70

In 1991, a new algorithm based on a polynomial series approximation was

proposed by Chen et al. [18, 19, 20]. Double Chebyshev polynomials approx-

imations with special functions are used to evaluate the Green function for

infinite and finite water depth. Chen’s algorithm is implemented in the BEM

code HYDROSTAR. A similar algorithm with double Chebyshev polynomials75

is also proposed by Wang in [21].

To reduce the computational time, Delhommeau developed a technique in-

volving four tabulated functions and Lagrange interpolations. This technique

is implemented in the BEM code AQUADYN [2] and in the open source code

NEMOH [22].80

Other expressions and numerical methods are available. In a number of re-

search works, the Green function is decomposed into three parts: a free-space

singularity, a non-oscillatory local flow and waves. Ba et al. [23] and Ponizy et
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al. [24] provided approximation methods for the non-oscillatory local flow term

based on the use of a coordinates-transformation and a function-transformation.85

Proper coordinates and function transformations reduce the problem of approx-

imating singular functions for unbounded domains into that of approximating

smoothly varying functions over finite domains. Linear table interpolation can

thus be used. Peter and Meylan proposed an eigenfunction expansion rep-

resentation [25]. In 2011, a semi-analytical method was developed with the90

Haskind-Havelock kernel calculated by a singularity subtractive technique [26].

The same year, the multipole expansion was extended for the infinite water

depth free surface Green function [27].

Recently, Wu et al.[4] proposed a global approximation of the Green function

and its derivatives based on Noblesse’s paper[14, 3]. A simple approximation95

involving elementary functions is given for the local flow component. It does

not require dividing the computational domain into multiple sub-domains.

A completely different approach was proposed by Clément [28]. It is based

on a second order differential equations for the Green function. However, a

challenge with this method is its initialization.100

It should be noted that the numerical errors associated to BEM-based codes

stem from several sources as discussed in [4]. They include the approximation

of the body surface by a large number of panels; the approximation of the

variations (piecewise constant, linear, quadratic, or higher-order) of the densities

of the singularities (source, dipole) distributions over the surface panels; the105

numerical integration of the Green function and its gradient over the panels;

and the numerical evaluation of the Green function and its gradient. Thus, the

effect of numerical errors in the numerical evaluation of the Green function and

its derivatives for practical computations is difficult to estimate. Liang et al. [29]

investigated the accuracy of linear and second order wave loads for a hemisphere110

and a freely Floating Production Storage and Offloading (FPSO) unit. They

used the Wu et al.’s method. They showed that using this 3D accuracy method

for the Green function and its gradient doesn’t make much difference for the

hydrodynamic coefficients and forces when compared to results obtained using
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highly accurate methods. Howevever, the conclusion may not be same for other115

practical cases.

In this paper, various expressions for the free-surface Green function are re-

viewed and presented. Several numerical methods have been proposed among

which four methods were selected and compared with respect to accuracy and

computational time. The two first ones are the Newman’s and Telste-Noblesse’s120

methods. They were selected because they are widely known in the industry

and academia. The Newman’s method is implemented in the industry standard

BEM code WAMIT. The Delhommeau’s method was selected because it is im-

plemented in the open source code NEMOH. The fourth method is that of Wu

et al.. It was selected because it provides a global approximation which is easy125

to implement and doesn’t need subdivisions. Thus it may be more suitable for

parallel computation.

2. Mathematical expressions for the free-surface Green function in

deep water

In this study, the time factor of the complex potential is taken as e−iωt. The130

coordinates and variables are depicted in Fig. 1. The mean free surface level is

located at the plane z = 0. The vertical axis z points upwards. The source point

P (xP , yP , zP ) and the field point M(xM , yM , zM ) are both lying on or under

the free surface (zP ≤ 0, zM ≤ 0). The image source point P ′(xP , yP ,−zP ) is

the mirror of the source point P with respect to the mean free surface. The135

horizontal distance between the source point P and the field point M is denoted

by r. The vertical distance between the image source point P ′ and the field

point M is −Z. The distance between the source and field points is denoted

by R and the distance between the image source point and the field point is

R1 =
√
r2 + Z2. The angle θ is defined by cos θ = −Z/R1. The relations140

6



between the coordinates are given by:

r =
√

(xM − xP )2 + (yM − yP )2

Z = zM + zP

R =
√

(xM − xP )2 + (yM − yP )2 + (zM − zP )2

(2)

Figure 1: source and field point

2.1. Expressions of the first type

We define the expressions of the Green function of the first type as the

expressions that can be written as:

−4πG∞(r, Z, ω) =
1

R
− 1

R1
+ g−(r, Z, ω) + 2iπk0e

k0ZJ0(k0r) (3)

g−(r, Z, ω) is called the free-surface term whereas the first two terms are the145

Rankine source (1/R) and the image source (1/R1) contributions, respectively.

One can note that these two source distributions cancel each other when the

field point is located on the mean free surface z = 0. k0 is the wave number

defined by k0 = ω2/g and J0(k0r) is the zeroth order Bessel function of the first

kind.150
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2.1.1. Expression 1

The classical expression for the free-surface term reads [28]:

g−(r, Z, ω) = 2PV

∫ ∞

0

k

k − k0
ekZJ0(kr)dk (4)

where PV
∫

represents the Cauchy principal integral. For ω = 0 and ω → ∞,

one can show that:






g−(r, Z, 0) =
2

R1

g−(r, Z,+∞) = 0
(5)

2.1.2. Expression 2155

The expression used in the BEM codes NEMOH and AQUADYN [2], [22]

is:

g−(r, Z, ω) =
2k0
π

Re

[

∫ π
2

−π
2

[J(ζ)− 1

ζ
]dθ

]

(6)

where ζ = k0(Z + ir cos θ) and J(ζ) = eζ [E1(ζ) + iπ]. E1(ζ) is the complex

exponential function. In this expression, the free-surface term only involves

a finite integral of the complex exponential integral whereas it is an infinite160

integral in the classical expression 4. Therefore, a direct numerical integration

may be used to evaluate it. However, it should be noted that the integration

kernel tends to infinity with a logarithmic behavior when both r and Z tend to

0.

Note that in the BEM codes NEMOH and AQUADYN, the evaluation of165

the Bessel function in the imaginary part of the Green function is replaced by

the evaluation of the following expression:

Im [−4πG∞(r, Z, ω)] = 2k0Re

[

∫ π
2

−π
2

eζdθ

]

(7)

2.2. Second type

We define the expressions of the Green function of the second type as:

−4πG∞(r, Z, ω) =
1

R
+ g0(r, Z, ω) + 2iπk0e

k0ZJ0(k0r) (8)

By comparing to the expressions of the first type, one can see that the170

contribution of the image source is included in the free-surface term g0(r, Z, ω).
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2.2.1. Expression 3

The free-surface term g0 is given in Wehausen and Laitone’s book [6], equa-

tion (13.17′′). It reads:

g0(r, Z, ω) = PV

∫ ∞

0

k + k0
k − k0

ekZJ0(kr)dk (9)

It can be shown that it is equivalent to expression 1 by using the Lipschitz’s175

integral: 1/R1 = 1/
√
r2 + Z2 =

∫∞
0

ekZJ0(kr)dk. Notably, expression 3 is used

in Newman’s paper [1].

2.2.2. Expression 4

Another expression of g0 can be found in [9], [25], [30],:

g0(r, Z, ω) =
2

π

∫ ∞

0

((k2 − k20) cos(kZ) + 2kk0 sin(kZ))
K0(kr)

k2 + k20
dk

− 2πk0e
k0ZY0(k0r)

(10)

where K0(kr) is the modified Bessel function of the second kind and Y0(k0r) is180

the Bessel function of the second kind. This expression is known to be difficult to

evaluate numerically due to the singular behavior ofK0(kr). It has a logarithmic

singular behavior close to k = 0 and a slowly decaying behavior of the integrand

when r is small.

2.3. Third type185

We define the expressions of the Green function of the third type as:

−4πG∞(r, Z, ω) =
1

R
+

1

R1
+ g+(r, Z, ω) + 2iπk0e

k0ZJ0(k0r) (11)

For the expressions of this type, it can be noted that the sum of the contribu-

tions of the Rankine and image source term satisfies the homogeneous Neumann

boundary condition on the mean free surface (∂/∂n(1/R) + ∂/∂n(1/R1) = 0).

2.3.1. Expression 5190

Applying Lipschitz’s integral into equations (4) or (9), the free-surface term

can be written by:

g+(r, Z, ω) = 2k0PV

∫ ∞

0

1

k − k0
ekZJ0(kr)dk (12)
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Note that it is equivalent to equation (13.15) in Wehausen and Laitone’s

book[6]. When r = 0, the free-surface term given can be written:

g+(0, Z, ω) = −2k0e
k0ZEi(−k0Z) (13)

where Ei(x) is the exponential integral. When r = 0 and Z → 0, g+(r, Z, ω)195

has a logarithmic behavior.

2.3.2. Expression 6

In [9], [30], the following expression was given by Havelock:

g+(r, Z, ω) = −4k0
π

∫ ∞

0

(k0 cos(kZ)− k sin(kZ))
K0(kr)

k2 + k20
dk − 2πk0e

k0ZY0(k0r)

(14)

This expression corresponds to equation 3 in Peter and Meylan’s paper [25]

and to equation (13.17 ′′′) in Wehausen’s book [6]. One may note the similarity200

with equation (10).

2.3.3. Expression 7

Expression 7 was proposed by Haskind [31]. It corresponds to the equation

(13.17′) in Wehausen’s Book [6]:

g+(r, Z, ω) = 2k0e
k0zM

∫ zM

∞

e−k0z

R1
dz − 2πk0e

k0ZY0(k0r) (15)

2.3.4. Expression 8205

A modified Haskind Green function was studied by several researchers [8],

[9], [10], [32]. It is called the Haskind-Havelock representation in D’eĺıa et al.’s

paper [26]. It reads:

g+(r, Z, ω) = −πk0e
k0Z

[

H0(k0r) + Y0(k0r) +
2

π

∫ 0

Z

e−k0t

√
t2 + r2

dt

]

(16)

where H0(k0r) is the Struve function as defined in [33]. This expression is

equivalent to equation (3b) in Newman’s paper [1] and equation (12) in Liapis’s210

paper [34] where it is called as a Havelock’s finite integral.
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It is well suited for evaluating the Green function when Z is small. When

the source and field points are both located on the free-surface (z = 0), it can

be simplified to:

g+(r, 0, ω) = −πk0[H0(k0r) + Y0(k0r)] + 2iπk0J0(k0r) (17)

2.3.5. Expression 9215

The Bessel function of the second kind in equation (16) is singular when

kr = 0. Kim [8] introduced a regularized Bessel function N0 to remove this

singularity. This regularized Bessel function reads:

N0(k0r) = Y0(k0r)−
1

2
π ln(k0r) (18)

Substituting (18) into equation (16) leads to:

g+(r, Z, ω) = −πk0e
k0Z

[

H0(k0r) +N0(k0r) +
2

π
ln[k0(R1 − Z)]

+
2

π

∫ 0

Z

e−k0t − 1√
t2 + r2

dt

]
(19)

2.3.6. Expression 10220

The near-field expression was introduced by Noblesse [14], equation (5.11).

It reads:

g+(r, Z, ω) = −2πk0e
k0ZH0(k0r) +

4k0
π

Re

[

∫ π/2

0

eζE1(ζ)dθ

]

(20)

When the source point and the field point have the same horizontal coordi-

nates (i.e. r = 0), the near-field expression simplifies to:

g+(r = 0, Z, ω) = 2k0e
k0ZRe [E1(k0Z + i0)] (21)

The near-field expression includes special functions and a finite integral225

which can be evaluated by direct numerical integration techniques.

2.3.7. Expression 11

The far-field expression is given by equation (5.21) in [14]. It reads:

g+(r, Z, ω) = −2πk0e
k0ZY0(k0r) +

4k0
π

Im

[

∫ π/2

0

eζE1(ζ) sec θdθ

]

(22)
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Similarly to the near-field expression given in the equation (21), the far-field

expression includes special functions and a finite integral which can be evaluated230

by direct numerical integration techniques.

2.4. Fourth type

2.4.1. Expression 12

An eigenfunction representation of the Green function was proposed by Peter

and Meylan [25]:235

−4πG∞(r, Z, ω) =
ik0
2

ek0ZH
(1)
0 (k0r)+

1

π2

∫ ∞

0

dk
k2

k2 + k20
K0(kr)

×
{

cos(kzM ) +
k0
k

sin(kzM )

}{

cos(kzP ) +
k0
k

sin(kzP )

}

(23)

H
(1)
0 is the Hankel function of the first kind of first order. There is no sin-

gularity in the integrand. Numerical quadrature is used to evaluate the integral

in their work.

2.5. Summary of the analytical expressions

Expressions 1 to 12 of free-surface Green function are summarized in Table240

1. In practice, it is convenient to use non-dimensionalized coordinates rather

than dimensional ones since it reduces the integral to a function of only two

variables. Therefore, let us define the non-dimensional variables X = k0r,

Y = k0Z, YM = k0zM and YP = k0zP . Expressions 1 to 12 can be rewritten as

function of these non-dimensional variables given in Table 2.245
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]
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−
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1

√
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+
r
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g +
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,ω
)
=

−
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0
ek

0
Z
H

0
(k

0
r)

+
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0
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e
∫
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2
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1
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θ
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=
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0
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0
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0
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/
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=
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0
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H
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0
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+
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0 k
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+
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+
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∞
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+
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=
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=

2 π
R
e
∫
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+
iπ
}−

1
Y
+
iX

c
o
s
θ
]d
θ

G
u
év
el

[2
],
[2
2
]

-D
el
h
o
m
m
ea
u

−
4
π
G

∞
=
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=
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=
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∞
=
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+
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+
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=
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=
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=
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∞
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√
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=
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+
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=
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+
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+
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+
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√
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=
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+

4 π
R
e
∫
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+
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=
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+
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+
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∞
=
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=
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+
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+
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3. Numerical methods for the evaluation of the Green function and

its derivatives

In this section, the numerical methods for the evaluation of the Green func-

tion and its derivatives developed by Newman [1], Delhommeau [2], Telste and

Noblesse [3] and Wu et al. [4] are reviewed.250

3.1. Newman’s method

Newman’s method proposed in 1985 is based on the non-dimensional versions

of (9) and (16). For the efficient evaluation of the integrals in these expressions,

Newman divided the quadrant (X,Y ) into six sub-domains. Corresponding sub-

domains are depicted in Fig. 2. The derivatives of the Green function can be255

calculated by using the chain rule:

− 4π
∂G∞

∂r
=

∂

∂r

(

1

R
+

1

R1

)

+ k0
∂

∂X

(

k0G+(X,Y ) + 2πik0e
Y J0(X)

)

− 4π
∂G∞

∂Z
=

∂

∂Z

(

1

R
+

1

R1

)

+ k0
∂

∂Y

(

k0G+(X,Y ) + 2πik0e
Y J0(X)

)

(24)

where G+(X,Y ) is the non-dimensionalized free-surface term.

According to equation (16), ∂G+(X,Y )/∂Y = −G+(X,Y ) − 2/R1. There-

fore, only algorithms for G+(X,Y ) and ∂G+(X,Y )/∂X are required to evaluate

the Green function and its derivatives. For the sake of convenience, the finite260

integral in equation (16) is written as I(X,Y )

I(X,Y ) = −ek0Z

∫ 0

Z

e−k0t

√
t2 + r2

dt =

∫ −Y

0

et+Y

√
X2 + t2

dt (25)
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Figure 2: The six sub-domains in Newman’s method

3.1.1. Sub-domain 1

Sub-domain 1 is defined byX > 8 and −Y > 20. There, the non-dimensional

version of equation (16) is used. The integral is approximated by Legendre

polynomials:265

I(X,Y ) ≈
4

∑

n=0

n!Pn(α)d
−(n+1) (26)

∂I(X,Y )

∂X
≈

4
∑

n=0

− n!

dn+3

{

−XY

d

∂Pn(α)

∂α
+ (n+ 1)Pn(α)X

}

(27)

where Pn is the Legendre polynomial and (d, θ) denote the polar coordinates

such that X = d cos θ and −Y = d sin θ and d = k0R1, α = sin θ. According to

[1], the truncation order of 4 leads to a 6 decimals accuracy in this sub-domain.

3.1.2. Sub-domain 2

For −X/Y < 0.5, equation (9) is used. The free-surface term G+(X,Y ) can270

be rewritten as:

G+(X,Y ) = 2

∞
∑

n=0

(−X2/4)n

(n!)2

{

2n
∑

m=1

(m− 1)!

(−Y )m
− eY Ei(−Y )

}

(28)
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∂

∂X
G+(X,Y ) = 2

∞
∑

n=0

2n

X

(−X2/4)n

(n!)2

{

2n
∑

m=1

(m− 1)!

(−Y )m
− eY Ei(−Y )

}

(29)

The calculation of Ei(−Y ) depends on the definition in [33]. The series are

truncated at n = 9 to achieve a 6 decimals accuracy.

3.1.3. Sub-domain 3275

For X > 3.7, −X/Y > 4, the integral is approximated by:

I(X,Y ) =
1

X

∞
∑

n=0

(−1)n
X−2n

n!

{

1

2
· 3
2
· 5
2
...
(n− 1)

2

}

I2n(−Y ) (30)

∂I(X,Y )

∂X
=− 1

X2

∞
∑

n=0

(−1)n
X−2n

n!

{

1

2
· 3
2
· 5
2
...
(n− 1)

2

}

I2n(−Y )

− 2

X

∞
∑

n=0

(−1)nn
X−2n

n!X

{

1

2
· 3
2
· 5
2
...
(n− 1)

2

}

I2n(−Y )

(31)

where

I0 = 1− eY and I2n =

∫ −Y

0

et+Y t2ndt (32)

The integral I2n is solution of the recursion relation:

I2n = (−Y )
2n − 2n(−Y )

2n−1
+ 2n(2n− 1)I2n−2 (33)

The series in equations (30) and (31) are truncated at n = 3 to achieve a 6

decimals accuracy.280

3.1.4. Sub-domain 4

For 0 < X < 3.7, 0 < −Y < 2, G+(X,Y ) is approximated using a series

expansion [16]:

G+(X,Y ) = −2eY
[

J0(X) log
{

−Y/X + (1 + Y 2/X2)1/2
}

+
π

2
Y0(X) +

π

2X
H0(X)(X2 + Y 2)1/2

+(X2 + Y 2)1/2
∞
∑

m=0

∞
∑

n=1

CmnX
2m(−Y )n

]

(34)
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∂

∂X
G+(X,Y ) = −2eY

[

−J1(X) log
{

−Y/X + (1 + Y 2/X2)1/2
}

+ J0(X)

{

−Y

X
+

(

1 +
Y 2

X2

)1/2
}−1 {

Y

X2
− Y 2

X3

(

1 +
Y 2

X2

)−1/2
}

− π

2
Y1(X)− π

2

1

X2
H0(X)(X2 + Y 2)1/2 − π

2X
H1(X)(X2 + Y 2)1/2

+
π

2
H0(X)(X2 + Y 2)−1/2 +X(X2 + Y 2)−1/2

∞
∑

m=0

∞
∑

n=1

CmnX
2m(−Y )n

+(X2 + Y 2)1/2
∞
∑

m=0

∞
∑

n=1

2mCmnX
2m−1(−Y )n

]

(35)

where the coefficient Cmn is defined by:

C0n = [(n+ 1)(n+ 1)!]−1

Cmn = −(
n+ 2

n+ 1
)Cm−1,n+2

(36)

The truncation of the double summation series is made both for m and n.285

According to Newman’s paper [1], the 6 decimals accuracy is achieved with a

total of 33 terms. In the present work, it was found that 43 terms are needed

to achieve the 6 decimals accuracy for the derivatives of the Green function.

3.1.5. Sub-domain 5

In sub-domain 5, the finite integral in equation (16) is approximated by:290

I(X,Y ) =
1√

X2 + Y 2
− eY

X
− Y

(X2 + Y 2)3/2
R(X,Y ) (37)

∂I(X,Y )

∂X
= − X

(X2 + Y 2)3/2
+

eY

X2
+

3XY

(X2 + Y 2)5/2
R(X,Y )

− Y

(X2 + Y 2)3/2
∂R(X,Y )

∂X

(38)

where R(X,Y ) is the slowly-varying residual functions in the given region.

R(X,Y ) and ∂R(X,Y )/∂X are approximated using Chebyshev polynomials

[35]. To calculate the coefficients of the Chebyshev polynomials, values of I
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are obtained by direct numerical integration. The Double Chebyshev polyno-

mial expansions are truncated to the desired accuracy by neglecting coefficients295

smaller than 10−6.

3.1.6. Sub-domain 6

The approximation for the remaining sub-domain is not defined in [1]. After

numerical tests, the algorithm for sub-domain 3 with n = 7 is used.

3.2. Delhommeau’s method300

In 1989, Delhommeau introduced an algorithm based on interpolations of

the Green function from a pre-calculated table [2]. The Delhommeau’s method

relies on equation (6). The derivatives are given by:

∂G∞

∂r
=

∂

∂r

(

1

R
+

1

R1

)

+
2k20
π

Re

[

∫ π/2

−π/2

i cos θ[J(ζ)− 1

ζ
]dθ

]

+ 2ik20Re

[

∫ π/2

−π/2

i cos θeζdθ

] (39)

∂G∞

∂Z
=

∂

∂Z

(

1

R
+

1

R1

)

+
2k20
π

Re

[

∫ π/2

−π/2

J(ζ)dθ +
π

k0R1

]

+ 2ik20Re

[

∫ π/2

−π/2

eζdθ

] (40)

3.2.1. Elementary functions

In Delhommeau’s method, the expressions of the Green function and its305

derivatives in equations can be expressed as the function of these four elementary

19



integrals:

D1(X,Y ) = Re

[

∫ π/2

−π/2

(−i cos θ)[J(ζ)− 1

ζ
]dθ

]

= Im

[

∫ π/2

−π/2

cos θ[J(ζ)− 1

ζ
]dθ

]

D2(X,Y ) = Re

[

∫ π/2

−π/2

(−i cos θ)eζdθ

]

= Im

[

∫ π/2

−π/2

cos θeζdθ

]

Z1(X,Y ) = Re

[

∫ π/2

−π/2

J(ζ)dθ

]

Z2(X,Y ) = Re

[

∫ π/2

−π/2

eζdθ

]

(41)

The algorithm for the calculation of the complex exponential integral function

can be found in appendix 3 in [36].

3.2.2. Tabulation method for near and moderate field310

In Delhommeau’s method, the four elementary integrals in equation (41)

are interpolated from tabulated data at selected interpolation nodes (Xi, Yj).

Lagrange polynomials of the fourth order are used for the interpolation. Di-

rect numerical integration is used for evaluation of the elementary integrals at

interpolations nodes. The integration interval [−π/2, π/2] is divided into 5001315

points. For the numerical integration, the Simpson’s rule is used. The by-

default tabulation domain in AQUADYN 2.1 and NEMOH is Xi ∈ [0, 100] and

Yj ∈ [−16,−1.58 × 10−6]. Since the integrals D1 et Z1 go to infinity with a

logarithmic behavior when X = 0 and Y tends to 0−, the interpolation nodes

should be more dense close to zero. Thus, the interpolation nodes (Xi, Yj) are320

defined by:

Xi =























0 for i = 1

10(i−1)/5−6 for i = 2, 31

4/3 + (i− 32)/3 for i = 32, 328

(42)

Yj =











−10j/5−6 for j = 1, 20

−10j/8−4.5 for j = 21, 46

(43)
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This discretization was found to be sufficient for simple bodies [2]. For com-

plex geometries, refinement of the grid of interpolation nodes may be required.

3.2.3. Asymptotic formulas for the far field

For X > 100 or −Y > 16, the four elementary integrals are approximated325

by:

D1 ≈ − πX

k30R
3
+ πeY

√

2π

X

{

cos
(

X − π

4

)

− 1

2X
sin

(

X − π

4

)

}

D2 ≈ eY
√

2π

X

{

sin
(

X − π

4

)

+
1

2X
cos

(

X − π

4

)

}

Z1 ≈ πY

k30R
3
− πeY

√

2π

X
sin

(

X − π

4

)

− π

k0R1

Z2 ≈ eY
√

2π

X
cos

(

X − π

4

)

(44)

3.3. Telste-Noblesse’s method

In the algorithm of Telste-Noblesse, three representations are used: The

modified Haskind representation (equation (16)), the near-field representation

(equation (21))and the far-field representation (equation (22)). The derivatives330

of Green function are expressed as the following:

∂G∞(r, Z, ω)

∂r
=

∂

∂r

(

1

R
+

1

R1

)

− 2k20
∂G+(X,Y )

∂X
− πik20e

Y J1(X)

∂G∞(r, Z, ω)

∂Z
=

∂

∂Z

(

1

R
+

1

R1

)

+ 2k20

{

1

k0R1
+G+(X,Y )

}

+ πik20e
Y J0(X)

(45)

Depending on the representation, the derivatives with respect to X of real

part of the free-surface term can be written:

∂G+(X,Y )

∂X
= −π[

2

π
−H1(X)− Y1(X)]eY + 2X

∫ −Y

0

e(t+Y ) 1
√
t2 +X2

3 dt

∂G+(X,Y )

∂X
= −2π[

2

π
−H1(X)]eY − 4

π
Im

[

∫ π/2

0

[eζE1(ζ)−
1

ζ
] cos θdθ

]

∂G+(X,Y )

∂X
= 2πY1(X)eY +

4

π
Re

[

∫ π/2

0

[eζE1(ζ)−
1

ζ
] sec2 θdθ

]

(46)
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In the algorithm of Telste-Noblesse, the computational domain is also split

into sub-domains. The sub-domains are shown in Fig.3.335

Figure 3: Sub-domains used in the Telste-Noblesse’s method

3.3.1. Sub-domain 1

For large to moderate values of d and X 6= 0, an asymptotic expansion is

applied for the far-field representation. For 0 ≥ Y ≥ Yt (Yt being a user-defined

variable set to −14.5 in the Telste-Noblesse’s algorithm), the free-surface term

is expanded as follows:340

G+(X,Y ) ≈ −2πY0(X)eY − 2

∞
∑

n=0

pn(α)

dn+1
(47)

α = −Y/d (0 ≤ α < 1) and the polynomials pn are defined by:

p0(α) = 1

p1(α) = α

pn(α) = (2n− 1)αpn−1(α)− (n− 1)2pn−2(α) for n ≥ 2

(48)

The derivatives with respect to X are given by:

∂G+(X,Y )

∂X
≈ 2πY1(X)eY + 2X

∞
∑

n=0

qn(α)

dn+3
(49)
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where the polynomials qn are defined by:

q0(α) = 1

q1(α) = 3α

qn(α) = (2n+ 1)αqn−1(α)− (n+ 1)(n− 1)qn−2(α) for n ≥ 2

(50)

When Yt ≥ Y , the wave term and its derivatives are approximated as follows:

345

G+(X,Y ) ≈ −2
∞
∑

n=0

pn(α)

dn+1
for Y → −∞ (51)

∂G+(X,Y )

∂X
≈ 2X

∞
∑

n=0

qn(α)

dn+3
for Y → −∞ (52)

The truncation order of the series is n = 10 outside the ellipse X2/122 +

Y 2/152 = 1 and n = 5 outside the ellipse X2/162 + Y 2/202 = 1. The ab-

solute errors are reported to be smaller than 10−6 in [3].

3.3.2. Sub-domain 2350

The sub-domain 2 corresponds to 0 ≤ X ≤ 1.2 − 0.15Y , −2 ≤ Y ≤ 0.

A convergent ascending series is used. The ascending series is based on the

near-field representation. The free-surface term is expressed as:

G+(X,Y ) = 2 [{− ln(d− Y ) + F0(Y )} J0(X) + 2S0(X,Y )] eY + 2T0(X,Y )

(53)

where F0(Y ), S0(X,Y ), T0(X,Y ) are defined as follows:

F0(Y ) = ln 2− γ −
∞
∑

n=1

(−Y )2

n · n!

S0(X,Y ) =

∞
∑

n=1







n′

∑

k=0

(−1)k
σn−2k

(n− 2k)k!(n− k)!







(

−X

2

)n

T0(X,Y ) =

∞
∑

n=1

Fn(Y )

(

−X2

4

)n

(54)

In these last equations, γ = 0.5772... is the Euler’s constant. n′ is the largest355

integer which does not exceed (n− 1)/2 and σ = X/(d− Y ). Fn(Y ) is defined
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as follows:

Fn(Y ) =
1

n!n!

∞
∑

k=0

{

2n
∑

m=1

1

m+ k

}

Y k

k!
(55)

A corresponding ascending series for the derivatives with respect to X is

given by:

∂G+(X,Y )

∂X
=− 2X

J0(X)

d(d− Y )
− 2 {− ln(d− Y ) + F0(Y )} J1(X)

− 2S1(X,Y )eY − 2T1(X,Y )

(56)

with360

S1(X,Y ) =
X

d
+

∞
∑

n=2





n′

∑

k=0

(−1)kσn−2k n/(n− 2k)− Y/d

k!(n− k)!





(

−X

2

)n−1

T1(X,Y ) =
X

2

∞
∑

n=1

nFn(Y )

(

−X2

4

)n−1

(57)

5 terms are required for the series T0 and T1 and 10 terms are required for

the series S0 and S1 to achieve 10−6 accuracy. For X < 0.55 − 2Y , less terms

are needed.

3.3.3. Sub-domain 3

A Taylor series expansion of the near-field integral representation is used in365

the neighborhood of the vertical axis X = 0:

G+(X,Y ) = 2J0(X)
{

eY Re [E1(Y + i0)]
}

+ 2

∞
∑

n=1

rn(Y )

(

− X2

4Y 2

)n

(58)

rn(Y ) is given by:

rn(Y ) = [1/(n!)2]

2n−1
∑

k=0

(2n− 1− k)!(−Y )k (59)

It is also solution of the recursion relation:

rn(Y ) = (2n− 2)!(2n− 1− Y )(n!)2 + (Y 2/n2)rn−1(Y ), n ≥ 2 (60)
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Similarly, a Taylor series expansion can be obtained for the derivatives:

∂G+(X,Y )

∂X
= −2J1(X)

{

eY Re [E1(Y + i0)]
}

− X

Y 2

∞
∑

n=1

n · rn(Y )

(

− X2

4Y 2

)n−1

(61)

Rational approximations are used for the calculation of
{

eY Re [E1(Y + i0)]
}

370

as in [3]. To achieve the accuracy of 10−6, five, ten and fifteen terms are re-

spectively retained in the series depending on whether X ≤ min(−0.3Y, 1.8),

X ≤ min(−0.5Y, 5.4) or X ≤ min(−0.7Y, 9.1) with 2 ≤ −Y ≤ 15.

3.3.4. Sub-domain 4

In the neighborhood of the horizontal plane Y = 0, a Taylor series expansion375

of the Haskind integral representation is used :

G+(X,Y ) = π {−H0(X)− Y0(X)} eY + 2

∞
∑

n=1

sn(X)

(

Y

X

)n

(62)

The polynomials sn are solution of the following recursion relation:

s1(X) = 1

s2n(X) =
X

2n
s2n−1(X), for n ≥ 1

s2n+1(X) = {Xs2n(X) + Cn} /(2n+ 1), for n ≥ 1

(63)

with

Cn = (−1)n {1 · 3 · 5 · · · (2n− 1)} / {2 · 4 · 6 · · · (2n)} (64)

For the derivative, the Taylor series expansion is:

∂G+(X,Y )

∂X
= −π

{

2

π
−H1(X)− Y1(X)

}

eY − 2

X

∞
∑

n=1

tn(X)

(

Y

X

)n

(65)

with380

t1(X) = 1

t2n(X) = Xt2n−1(X)/2n, for n ≥ 1

t2n+1(X) = Xt2n(X)/(2n+ 1) + Cn, for n ≥ 1

(66)

In the region 1.2 ≤ X ≤ 12, the truncation order is 10 if Y ≥ max(−0.4X +

0.15,−1.5) or 20 if Y ≥ −0.4X.

25



3.3.5. Sub-domain 5

The sub-domain 5 corresponds to the region where 1 < d < 10 along with

0.4 < −Y/X < 10/7. In this sub-domain, the modified Haskind representation385

is used. The free-surface term and its derivatives are given by:

G+(X,Y ) = π {−H0(X)− Y0(X)} eY − 2[F0(X) + I0(X)]eY+cX (67)

∂G+(X,Y )

∂X
= −π

{

2

π
−H1(X) + Y1(X)

}

eY − 2[F1(X) + I1(X)]eY+cX/X

(68)

where c is a special constant and F0(X), F1(X), I0(X,Y ) and I1(X,Y ) are

defined by the integrals:

F0(X) =

∫ c

0

e−X(c−τ)(1 + τ2)−1/2dτ (69)

390

F1(X) =

∫ c

0

e−X(c−τ)(1 + τ2)−3/2dτ (70)

I0(X,Y ) =

∫ −Y/X

c

e−X(c−τ)(1 + τ2)−1/2dτ (71)

I1(X,Y ) =

∫ −Y/X

c

e−X(c−τ)(1 + τ2)−3/2dτ (72)

These integrals involve the integrands (1 + τ2)−1/2 and (1+ τ2)−3/2. Those

terms can be approximated by polynomials. Then the integrals can be integrated

analytically which leads to series expansion forms of the solution. The special395

constant c is set to 0.4, 0.65, 0.85 and 1.1 for the regions 0.4 < −Y/X ≤
0.65, 0.65 < −Y/X ≤ 0.85, 0.85 < −Y/X ≤ 1.1 and 1.1 < −Y/X ≤ 10/7,

respectively.

3.4. Wu et al.’s method

A simple approximation of the Green function was proposed by Wu et al.400

[4] which valid in the whole domain. It derives from the Noblesse’s near-field
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representation [13]. The free-surface term is split into a local flow term L(X,Y )

and an out-going free-surface term W (X,Y ):

G0(X,Y ) = −{L(X,Y ) +W (X,Y )} (73)

with

L(X,Y ) = − 1

k0R1
− 4

π
Re

[

∫ π/2

0

eζE1(ζ)dθ

]

W (X,Y ) = 2πH0(X)eY

(74)

where ζ has the same definition as in section 2.1.2. The derivatives of Green405

function are:

∂G∞

∂r
=

∂

∂r

(

1

R

)

− k0(
∂L

∂X
+

∂W

∂X
)

∂G∞

∂Z
=

∂

∂Z

(

1

R

)

− k0(
∂L

∂Y
+W )

(75)

with
∂L

∂Y
(X,Y ) =

Y

k30R
3
1

− 1

k0R1
+ L(X,Y )

∂W

∂X
(X,Y ) = 2π[2/π −H1(X)]eY

∂L

∂X
(X,Y ) =

X

k30R
3
1

+ L∗(X,Y )

(76)

and

L∗(X,Y ) =
4

π
Im

[

∫ π
2

0

[eζE1(ζ)−
1

ζ
] cos θdθ

]

(77)

Wu et al. developed a simple approximation for the local flow term and its

derivative: L ≈ La, L∗ ≈ La
∗. The approximated local flow term La is:410

La = − 1

k0R1
+

2LP

1 + k30R
3
1

+ 2ρ(1− ρ)3LR (78)

with

LP = eY (log
k0R1 − Y

2
+ γ − 2k20R

2
1) + k20R

2
1 − Y

LR = (1− β)A− βB − αC

1 + 6αρ(1− ρ)
+ β(1− β)D

(79)
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where α = −Z/R1, β = r/R1, ρ = k0R1/(1+k0R1) and the polynomials A,B,C

and D are defined by:

A = 1.21− 13.328ρ+ 215.896ρ2 − 1763.96ρ3 + 8418.94ρ4 − 24314.21ρ5

+ 42002.57ρ6 − 41592.9ρ7 + 21859ρ8 − 4838.6ρ9

B = 0.938 + 5.373ρ− 67.92ρ2 + 796.534ρ3 − 4780.77ρ4 + 17137.74ρ5

− 36618.81ρ6 + 44894.06ρ7 − 29030.24ρ8 + 7671.22ρ9

C = 1.268− 9.747ρ+ 209.653ρ2 − 1397.89ρ3 + 5155.67ρ4 − 9844.35ρ5

+ 9136.4ρ6 − 3272.62ρ7

D = 0.632− 40.97ρ+ 667.16ρ2 − 6072.07ρ3 + 31127.39ρ4 − 96293.05ρ5

+ 181856.75ρ6 − 205690.43ρ7 + 128170.2ρ8 − 33744.6ρ9

(80)

The other term La
∗ is:

La
∗ =

2LP∗

1 + k30R
3
1

− 4LQ∗ + 2ρ(1− ρ)3LR∗ (81)

with415

LP∗ =
β +X

k0R1 − Y
− 2β + 2eY k0R1 −X

LQ∗ = e−k0R1(1− β)(1 +
k0R1

1 + k30R
3
1

)

LR∗ = βA∗ − (1− α)B∗ + β(1− β)ρ(1− 2ρ)C∗

(82)

The polynomials A∗, B∗ and C∗ are defined by:

A∗ = 2.948− 24.53ρ+ 249.69ρ2 − 754.85ρ3 − 1187.71ρ4 + 16370.75ρ5

− 48811.41ρ6 + 68220.87ρ7 − 46688ρ8 + 12622.25ρ9

B∗ = 1.11 + 2.894ρ− 76.765ρ2 + 1565.35ρ3 − 11336.19ρ4 + 44270.15ρ5

− 97014.11ρ6 + 118879.26ρ7 − 76209.82ρ8 + 19923.28ρ9

C∗ = 14.19− 148.24ρ+ 847.8ρ2 − 2318.58ρ3 + 3168.35ρ4 − 1590.27ρ5

(83)

3.5. Summary of numerical schemes

The mathematical formulas for the calculation of the free-surface term of

the Green function and its derivative for the four methods are summarized in

Table 3 and Table 4.420
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4. Comparison of the four methods

We implemented the algorithms of Newman, Delhommeau, Telste and No-

blesse and Wu et al. For the Telste-Noblesse’s method, the source code is given

in their paper [3]. However, it should be noted that we changed the precision

from single float to double float. For the Delhommeau’s method, the code fol-425

lows the NEMOH code (which is open source) with a few minor modifications in

the tabulated file. For the Newman’s and Wu et al.’s methods, we developed the

source code based on their papers. It should be noted that the computational

time may vary depending on the coding technique.

All the calculations were performed on a PC with intel(R) Core(TM) i7-430

6700 CPU @ 3.40 GHZ. The codes were written in FORTRAN90 and compiled

with intel fortran 14.0.1. The evaluation of the Struve function is based on the

algorithm of Newman [38]. For the Bessel functions, the functions available in

the FORTRAN compiler were used.

The accuracy and computational time for the four methods were compared.435

To facilitate the comparisons, only results for G− and its derivative ∂G−/∂X

are shown. For the methods that provide G+ and G0, the image source contri-

bution were added to obtain G− by using the relations G−(X,Y ) = G0(X,Y )+

1/
√
X2 + Y 2, G−(X,Y ) = G+(X,Y )+2/

√
X2 + Y 2. For the comparisons, the

non-dimensionalized variables (X,Y ) are uniformly discretized over the domain440

X ∈ [0.001, 22], Y ∈ [0.001, 15]. This domain is expected to cover most of the

practical cases. The case of the source and field points located at the same

position is not considered since it corresponds to the singularities. Analytical

expressions are available for Y = 0 (equation (16))and for X = 0 (equation

(13)).445

Reference values for the real part of the non-dimensionalized free-surface

term of the Green function (G−) and its derivative (G−X = ∂G−/∂X) are

shown in Fig. 4. They were obtained by direct numerical integration using

an adaptive Gaussian 3-point quadrature. The absolute error for the reference

values is less than 10−8.450
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(a) G (b) G−X

Figure 4: The free-surface term of the Green function G− and its derivative G−X using the

direct integral method

The absolute error for the Green function between the values computed from

the direct integration and four methods are plotted in Fig. 5. As expected, a

6 decimals accuracy is obtained with the Newman’s method over the whole

computational domain, see Fig.5(a) . The error is greater in the sub-domain 1,

which corresponds to the far-field, than in the other sub-domains. The absolute455

errors computed with the algorithm of Delhommeau are shown in Fig.5(b). The

absolute error is greater than the other methods especially in the near field.

The error for the Telste-Noblesse’s method is shown in Fig.5(c). The error is

the greatest in the middle of the domain. Nevertheless, the method achieves

a 5 decimals accuracy. The error for the algorithm of Wu et al. is shown in460

Fig.5(d). The accuracy is 3 decimals.

The absolute error for ∂G−/∂X for the four methods are shown in Fig.

6. The results are similar to that for G−: the accuracy is 6D, 5D, 3D for

the algorithms of Newman, Telste-Noblesse’s and Wu et al., respectively. For

Delhommeau’s method, the accuracy is 3D almost everywhere in the considered465

domain except when (X,Y ) is close to (0, 0). However, the value of the Green

function is large in that situation which makes the relative error small, in the

order of 1 to 2%.

Note that for some cases of (X,Y ), the accuracy of the derivative can be
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(a) Newman’s method (b) Delhommeau’s method

(c) Telste and Noblesse’s method (d) Wu et al.’s method

Figure 5: The errors of the free-surface term of the Green function G− of Newman’s, Del-

hommeau’s, Telste and Noblesse’s, Wu et al.’s methods compared to direct integral method

less than the function as can be seen by close inspection of Fig. 5 and Fig.6,470

depending on the method.

The computational time for calculating the Green functions and its derivative

over the set of discretized (X,Y ) values for the different algorithms is shown

in Table 5. As one can expect, the computational time is the greatest for the

methods that are the most accurate (direct numerical integration and Newman’s475

method). The direct numerical integration with tolerance of 10−8 needs 20 times

more computational time than the Newman’s method. The Delhommeau and

Telste-Noblesse’s methods are an order of magnitude faster than the Newman’s

method. However, the accuracy is respectively about three orders of magnitude
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(a) Newman’s method (b) Delhommeau’s method

(c) Telste and Noblesse’s method (d) Wu et al.’s method

Figure 6: The errors of the derivative of free-surface term of the Green function G−X of

Newman’s, Delhommeau’s, Telste and Noblesse’s, Wu et al. methods compared to direct

integral method

and slightly less than the Newman’s method. With respect to computational480

time, the Wu et al.’s method is the fastest one.

Overall, it appears that the best method is the Newman’s method and Telste-

Noblesse’s method with respect to accuracy. With respect to computational

time, the Wu et al.’s method is best.

As in Newman’s and Telste-Noblesse’s method, the evaluations algorithms485

are different in each sub-domains. The computational time for each (X,Y )

computational points as function of the method is shown in Fig. 7. It can be

seen that the computational time depends not only on the method but also

34



Table 5: Computational time for calculating the Green function and its derivatives a function

of the different algorithms

Algorithm
Total computation time (s) Averaged

(NX = 220, NY = 150) computation time (s)

Direct numerical integration 3.840× 10−1 1.164× 10−5

Newman 1.896× 10−2 5.745× 10−7

Delhommeau 1.908× 10−3 5.782× 10−8

Telste-Noblesse 1.532× 10−3 4.642× 10−8

Wu et al. 4.920× 10−5 1.491× 10−9

on the sub-domains. The local computational time for the Newman’s method

is shown in Fig.7(a). The average computational time for each sub-domain is490

shown in Table 6. In the sub-domain 2, the computational time increases with

increasing Y .

The computational time for the Delhommeau’s method is shown in Fig.7(b).

Since it is based on the fourth order Lagrange polynomial interpolation, the

computational time does not vary much over the interpolation domain. For large495

X and Y , the asymptotic formulation is used to calculate the Green function

which explains why the computational time for Y ≥ 16 is much shorter than for

the rest of the domain.

The compuational time for the Telste-Noblesse’s method in shown in Fig.

7(c). The computational time varies between O(10−7) and O(10−8). The aver-500

age computational time for each sub-domain is shown in table 7. For any given

X and Y , the computational time appears to be less than that of the Newman’s

method.

The computational time for the Wu et al.’s method is shown in Fig. 7(d).

It is shown that the computational time suddenly increases for X ≥ 3. It is505

because despite the fact that the flow term is approximated with a simple poly-

nomials with the elementary functions, the Wu et al.’s method still requires a
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subroutine to calculate the Struve function (H0(k0r)). This subroutine is based

on the algorithm by Newman [39], which uses different approaches depending

on whether X is greater or smaller than 3. Nevertheless, a key feature of the510

Wu et al.’s method is that it is not based on subdivisions of the flow domain.

Thus, it may be more suited for parallel computations compared to the other

methods.

(a) Newman’s method (b) Delhommeau’s method

(c) Telste and Noblesse’s method (d) Wu et al.’s method

Figure 7: Local computation time to calculate the Green function and its derivatives based

on Newman’s, Delhommeau’s, Telste-Noblesse’s, Wu et al’s and direct integral method
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Table 6: Averaged computation time of Newman’s algorithm

# of sub-domain Corresponding (X,Y ) Averaged computation time (s)

1 (X > 8,−Y > 20) 1.805× 10−7

2 (−X/Y < 0.5) 8.439× 10−7

3 (X > 3.7,−X/Y > 4) 2.573× 10−7

4 (0 < X < 3.7, 0 < −Y < 2) 5.265× 10−7

5 (−X/Y ≤ 4,−Y ≤ 2) 4.925× 10−7

6 (The rest part with− Y > 2) 4.149× 10−7

Table 7: Averaged computation time of Telste-Noblesse’s algorithm

# of sub-domain Corresponding (X,Y ) Averaged computation time (s)

1 (X2/122 + Y 2/152 ≥ 1) 3.607× 10−8

2 (0 ≤ X ≤ 1.2− 0.15Y,−2 ≤ Y ≤ 0) 4.110× 10−8

3 (X ≤ min(0.7Y, 9.1)) 7.454× 10−8

4 (X ≥ −0.4X) 4.094× 10−8

5 (The rest part) 6.699× 10−8

5. Conclusions

In this paper, we reviewed the available mathematical expressions for the515

deep water free-surface Green function in frequency domain and four different

numerical methods which were developed for its numerical evaluation. The four

methods are the Newman’s method, the Delhommeau’s method, the Telste-

Noblesse’s method and the Wu et al.’s method. The computational time and

accuracy with each method are compared. The Newman’s method is the most520

accurate providing a 6 decimal accuracy. However, it is also the slowest. The

Telste and Noblesse’s method is an order of magnitude faster than the New-
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man’s method, but it is slightly less accurate. The method by Delhommeau lie

in-between the Newman and Teslte-Noblesse’s method with respect to compu-

tational time but it is less accurate than the Telste-Noblesse’s method. This525

makes this latter method preferrable to the Delhommeau’s method. The Wu

et al’s method is also less accurate than the Newman and Teslte-Noblesse’s

method, but it is also the fastest method and the simplest with respect to nu-

merical implementation (as they do not use different expressions depending on

the position in the computational domain).530

Finally, a limitation of this work is that only the case of deep water was

considered despite the case of finite depth is also very important for practical

applications. This is left for future work.
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