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Let b (n) denote the number of -regular partitions of n and B (n) denote the number of -regular bipartitions of n.

In this paper, we establish several infinite families of congruences satisfied by B (n) for ∈ {2, 4, 7}. We also establish a relation between b 9 (2n) and B 3 (n).

Introduction and Notations

A partition of a positive integer n is any non-increasing sequence of positive integers whose sum is n.

The number of such partitions is denoted by p(n), and the number of partitions where the summands are distinct is denoted by q(n). Let b (n) denote the number of -regular partitions of n, where an -regular partition of n is a partition of n such that none of its parts is divisible by . It is known that b 2 (n) = q(n). The generating function for the number of -regular partitions of n is given by

∞ n=0 b (n)q n = f f 1 ,
where f k is defined by

f k := ∞ m=1
(1 -q km ), k, a positive integer.

In 1997 Gordon and Ono [GoOn97] obtained some divisibility properties of b (n) by powers of certain special primes. In fact they have proved the following results: 

1. Let = p α 1 1 p α 2 2 • • • p αm m be
p j i ) N = 1,
where S (N ; M ) is the number of positive integers n ≤ N for which b (n) ≡ 0 (mod M ). In other words the set of those positive integers n for which b (n) ≡ 0(mod p j i ) has arithmetic density one. In fact there exists a positive constant α depending on p i , j and such that there are at most O( N log a N ) many integers n ≤ N for which b (n) is not divisible by p j i .

2. Let = p α 1 1 p α 2 2 • • • p αm m be the prime factorization of a positive integer and let b (n) denote the number of -regular partitions of n. If p α i i ≥ √ , then there are infinitely many integers n for which b (n) ≡ 0 (mod p i ).
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These results have strongly influenced many authors to study the arithmetic properties of b (n), its divisibility and the distribution. In fact Andrews, Hirschhorn and Sellers [START_REF] Andrews | Arithmetic properties of partitions with even parts distinct[END_REF] derived some infinite families of congruences for b 4 (n) modulo 2. Hirschhorn and Sellers [START_REF] Hirschhorn | Elementary proofs of parity results for 5-regular partitions[END_REF] obtained many Ramanujan-type congruences for b 5 (n) modulo 2. Webb [START_REF] Webb | Arithmetic of the 13-regular partition function modulo 3[END_REF] established an infinite family of congruences for b 13 (n) modulo 3. Xia and Yao [START_REF] Xia | Parity results for 9-regular partitons[END_REF] established several infinite families of congruences for b 9 (n) modulo 2. Cui and Gu [START_REF] Cui | Arithmetic properties of l-regular partitions[END_REF] derived congruences for b (n) modulo 2 for certain values of by employing the p-dissection formulas of Ramanujan's theta functions. In [START_REF] Xia | New infinite families of congruences modulo 8 for partitions with even parts distinct[END_REF], Xia found congruences for b 4 (n) modulo 8. Keith [START_REF] Keith | Congruences for 9-regular partitions modulo 3[END_REF] obtained the following conjecture which was proved by Xia and Yao in [START_REF] Xia | A proof of Keith's conjecture for 9-regular partitions modulo 3[END_REF]:

Theorem 1.1. For k = 0, 2, 3, 4, α ≥ 1 and n ≥ 0, b 9 5 2α n + (3k + 2)5 2α-1 -1 3 ≡ 0 (mod 3).
Dandurand and Penniston [START_REF] Dandurand | Divisibility of -regular partition functions[END_REF] gave the exact criteria for the divisibility of b (n) for ∈ {5, 7, 11}. Xia [START_REF] Xia | Congruences for some -regular partitions modulo[END_REF] showed that b (A(k An -regular bipartition of n is an ordered pair of -regular partitions (λ 1 , λ 2 ) such that the sum of all the parts equals n. Denote the number of -regular bipartitions of n by B (n). Then, the generating function of B (n) is given by

)n + B(k)) ≡ C(k)b (n) (mod ),
∞ n=0 B (n)q n = f 2 f 2 1 .
(1.1) Using Ramanujan's two modular equations of degree 7, Lin [START_REF] Lin | Arithmetic of the 7-regular bipartition function modulo 3[END_REF] established an infinite family of congruences for B 7 (n) modulo 3 and in [START_REF] Lin | An infinite family of congruences modulo 3 for 13 regular bipartitions[END_REF], he established infinite families of congruences for B 13 (n) modulo 3. In [START_REF] Kathiravan | On -regular bipartitions modulo[END_REF], Kathiravan and Fathima proved several infinite families of congruences satisfied by B (n) for ∈ {5, 7, 13}. They showed that for all α > 0,

B 5 4 α n + 5 × 4 α -2 6 ≡ 0 (mod 5), B 7 5 8α n + 5 8α -1 2 ≡ 3 α B 7 (n) (mod 7) and
B 13 5 12α n + 5 12α -1 ≡ B 13 (n) (mod 13).
A (k, )-regular bipartition of n is a bipartition (λ, µ) of n such that λ is a k-regular partition and µ is an -regular partition. Let B k, (n) denote the number of (k, )-regular bipartitions of n. Then the generating function of B k, (n) is given by

∞ n=0 B k, (n)q n = f k f f 2 1 .
Dou [START_REF] Dou | Congruences for (3, 11)-regular bipartitions modulo 11[END_REF] proved an infinite family of congruences modulo 11: for α ≥ 2 and n ≥ 0 In this sequel, we establish an infinite family of congruences modulo m for -regular bipartitions, where ∈ {2, 4, 7}. Also, we establish a relation between b 9 (2n) and B 3 (n).

B 3,11 3 α n + 5 • 3 α-1 -1 2 ≡ 0 (mod 11).

Preliminary Lemmas

Ramanujan's [Ber91][Ra57] general theta function f (a, b) is given by f (a, b) := 1 + ∞ n=1 (ab) n(n-1)/2 (a n + b n ) = ∞ -∞ (ab) n(n+1)/2 (b) n(n-1)/2 , |ab| < 1.
The special cases of f (a, b) are given by ϕ(q) := f (q, q) = 1 + 2 ∞ k=1 q k 2 = (-q; q 2 ) ∞ (q 2 ; q 2 ) ∞ (q; q 2 ) ∞ (-q 2 ; q 2 ) ∞ , (2.2)

ψ(q) := f (q, q 3 ) = ∞ k=0 q k(k+1)/2 = (q 2 ; q 2 ) ∞ (q; q 2 ) ∞ , (2.3) f (-q) := f (-q, -q 2 ) = ∞ k=-∞
(-1) k q k(3k-1)/2 = (q; q) ∞ , (2.4) χ(q) := (-q; q 2 ) ∞ .

(2.5)

Cui and Gu [START_REF] Cui | Arithmetic properties of l-regular partitions[END_REF] found the following p-dissections of ψ(q) and f (-q).

Lemma 2.1. (Cui and Gu[CuGu13, Theorem(2.1)])For any odd prime p,

ψ(q) = p-3 2 k=0 q k 2 +k 2 f (q p 2 +(2k+1)p 2 , q p 2 -(2k+1)p 2 ) + q p 2 -1 8 ψ(q p 2 ), (2.6)
where k 2 +k 2 and p 2 -1 8 are not in the same residue class modulo p for 0 ≤ k ≤ (p -3)/2.

Lemma 2.2. (Cui and Gu[CuGu13, Theorem(2.2)])For any prime p ≥ 5,

f (-q) = p-1 2 k=- p-1 2 k =± p-1 6 (-1) k q 3k 2 +k 2 f (-q 3p 2 -(6k+1)p 2 , -q 3p 2 +(6k+1)p 2 ) + (-1) ± p-1 6 q p 2 -1 24 f (-q p 2 ), (2.7) 
where ± depends on the conditions that (±p -1)/6 should be an integer. Moreover, note that (3k 2 + k)/2 ≡ (p 2 -1)/24 (mod p) as k runs through the range of the summation.

Main Results

Theorem 3.1. We have b 9 (2n) ≡ B 3 (n)(mod 3).

(3.8)

Proof. By the binomial theorem, it is easy to see that for any prime ,

f ≡ f 1 (mod ). (3.9) 
Putting l = 3 in (3.9) and then changing q to q 3 in the resulting identity, we obtain

f 9 ≡ f 3 3 (mod 3). (3.10)
Changing q to q 2 in (3.10) we obtain f 18 ≡ f 3 6 (mod 3).

(3.11)

Xia and Yao [START_REF] Xia | Some modular relations for the Gölnitz-Gordon functions by an even-odd method[END_REF] proved that

∞ n=0 b 9 (n)q n = f 3 12 f 18 f 2 2 f 6 f 36 + q f 2 4 f 6 f 36 f 3 2 f 12 .
Extracting those terms in which the power of q is congruent to 0 modulo 2 in the above equation and then changing q 2 to q, we obtain

∞ n=0 b 9 (2n)q n = f 3 6 f 9 f 2 1 f 3 f 18 ≡ f 2 3 f 2 1 (mod 3) ≡ ∞ n=0
B 3 (n)q n (mod 3), on using (3.10) and (3.11). This gives (3.8) on comparing coefficients of q n . Theorem 3.2. For any prime p ≥ 5 and non negative integers α and n, we have

∞ n=0
B 2 p 2α n + p 2α -1 12 q n ≡ f 2 (-q) (mod 2).

(3.12)

  the prime factorization of a positive integer and let b (n) denote the number of -regular partitions of n. If p α i i ≥ √ , then for every positive integer j lim N →∞ S (N ;

  where A(k), B(k) and C(k) are functions in k and ∈ {13, 17, 19} and derived several strange congruences for b (n) modulo . Wang [Wa17a][Wa17b] established several infinite families of congruences modulo powers of 5 for b 5 (n). Recently, in [AdRa18], Adiga and Ranganatha proved Ramanujan-type congruences modulo powers of 7 for b 7 (n) and b 49 (n).

Conjecture 1 :

 1 For any n ≥ 0, B 5,7 (7n + 6) ≡ 0 (mod 7). Conjecture 2: For any n ≥ 0, B 3,7 (An + B) ≡ 0 (mod 2), B 3,7 (Cn + D) ≡ 0 (mod 3), B 3,7 (En + F ) ≡ 0 (mod 9), where (A, B) ∈ {(14, 4), (14, 10), (16, 1), (28, 6), (32, 21)}, (C, D) = (4, 3), and (E, F ) ∈ {(7, 3), (7, 4), (14, 13), (21, 6), (21, 20), (25, 3), (25, 13), (25, 18), (25, 23)}. In[START_REF] Wang | Arithmetic properties of (k, )-regular bipartitions[END_REF], Wang studied the arithmetic properties of B 3, (n) and B 5, (n) and confirmed the conjectures proposed by Dou. Xia and Yao[START_REF] Xia | Arithmetic properties for (s, t)-regular bipartition functions[END_REF] also confirmed the conjectures of Dou and proved several infinite families of congruences for B s,t (n) modulo 3, 5 and 7. Adiga and Ranganatha[START_REF] Adiga | A Simple Proof of a Conjecture of Dou on (3, 7)-Regular Bipartitions Modulo 3[END_REF] provided a simple proof for Ramanujan type congruence for the (3, 7)-regular bipartitions modulo 3 which was conjectured by Dou and also found some new infinite families of congruences for (3, 7)-regular bipartitions modulo 3.

Proof. We prove the Theorem by induction on α. When α = 0, we have by definition, ∞ n=0 B 2 (n)q n = (q 2 ; q 2 ) 2 ∞ (q; q) 2 ∞ = (-q; q) 2 ∞ ≡ f 2 (-q) (mod 2).

(3.13) Suppose that the result is true for α > 0. Then we have

B 2 p 2α n + p 2α -1 12 q n ≡ f 2 (-q) (mod 2).

(3.14)

Now we prove the case for α + 1. Squaring both the sides of (2.7), substituting the resulting identity to the right of (3.14), extracting those terms in which the power of q is congruent to p 2 -1 12 modulo p in the resulting identity and then changing q p to q, we obtain

Changing n to pn and then changing q p to q in the above identity, we obtain

Therefore, the result is true for α + 1 and hence for all α ≥ 0.

Corollary 3.3. For any prime p ≥ 5, non negative integers α and n and for i = 1, 2, • • •, p -1, we have

Proof. From (3.15), we have

Since there are no terms on the right of the above equation in which the powers of q are congruent to 1, 2, • • •, p -1 modulo p, (3.16) follows.

Theorem 3.4. For any odd prime p and for non negative integers α and n, we have

(3.17)

Proof. When α = 0, we have by definition,

From [Ja1881] we recall Jacobi's identity

Hence we have

q n(n+1)/2 ≡ ψ(q) (mod 2).

Therefore from (3.18) we have

which is the case α = 0 of (3.17). Suppose the result holds for α > 0. Then we have

Now we prove the case for α + 1. Squaring both the sides of (2.6), substituting the resulting identity to the right of (3.21), extracting those terms in which the power of q is congruent to p 2 -1 4 modulo p in the resulting identity and then changing q p to q, we obtain

On changing n to pn and then changing q p to q, we obtain

which is same as

Therefore, the result is true for α + 1 and hence for all α ≥ 0.

Corollary 3.5. For any odd prime p, non negative integers α and n, and for i = 1, 2, • • •, p -1, we have

Since there are no terms on the right of the above equation in which the powers of q are congruent to 1, 2, • • •, p -1 modulo p, (3.23) follows.

Theorem 3.6. For α ≥ 1, we have

Proof. We have by (3.19)

(-1) n (6n + 2k + 1)q 3n. 3n+2k+1 2 -3q(q 9 ; q 9 ) 3 .

Therefore, we have

(-1) n (6n + 2k + 1)q 3n. 3n+2k+1 2 -3q(q 9 ; q 9 ) 3 B 7 (n)q n = (q 7 ; q 7 ) 2 ∞ (q; q) 2 ∞ ≡ (q; q) 12 ∞ (mod 7).

(3.26) From (3.25), we have ∞ n=0 B 7 3n + 3 2 -1 2 q n ≡ 3 4 (q 3 ; q 3 ) 12 ∞ (mod 7), (3.27) which is the case α = 1 of (3.24). Changing n to 3n in (3.27) and then changing q 3 to q in the resulting identity, we obtain ∞ n=0 B 7 3 2 n + 3 2 -1 2 q n ≡ 3 4 (q; q) 12 ∞ (mod 7).

(3.28) From (3.26) and (3.28), we deduce that

The theorem then follows from (3.27), (3.29) and induction on α.

Corollary 3.7. For α ≥ 1 and i = 1, 2 , we have

(3.30)

Proof. The result follows directly from the fact that the right-hand side of (3.24) is a power series in q 3 . Acknowledgements: The authors are thankful to the refree for his/her valuable suggestions which has considerably improved the quality of the paper. The second author is thankful to UGC for awarding the Basic Science Research Fellowship, No.F.25-1/2014-15(BSR)/No.F.7-349/2012(BSR).