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and time-frequency analysis
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The work presented in this paper deals with the response of underwater bottom insonified with
wideband ultrasonic signals. The aim of the study is to investigate the feasibility of the recognition
of the nature of sediment layer using a wideband sonar system and time-frequency representations
of backscattered echoes from the bottoms. The experiments have been performed in a natural
environment, in Lake Geneva. Time-frequency representations of backscattered echoes based on the
pseudo-Wigner distribution are realized. A method of feature extraction using the energy distribution
of the time-frequency images associated with the echoes is presented. Two classification techniques
have been applied to recognize the nature of the lake bottom: a classical discriminant analysis and
a neural network approach using multilayer perceptron architecture. The average recognition rates
for five different types of lake bottom and for both techniques are presented and compared. © /995

Acoustical Society of America.

PACS numbers: 43.30.Ma, 43.30.Vh, 43.30.Gv

INTRODUCTION

In the field of underwater acoustics, a great deal of re-
search has been devoted to the study of the seafloor and
objects lving on it. Indeed, acoustics is nowadays the only
available remote method to explorate underwater bottoms. A
great part of these studies are concerned with detection and
recognition of objects lying on the seafloor.! Earlier studies
have been devoted to the recognition of the type of sea bot-
tom. One of these studies is based on the use of standard
echo-sounders and extraction of the echo time envelopes.*
Another study deals with side-scan sonar and spectral analy-
sis of the received signals.’ Both studies use monochromatic
sonar. Nevertheless, there have been attempts to classify ma-
rine sediment using a wideband chirp sonar® over the fre-
quency range 2-10 kHz; this study is based on measure-
ments of the output magnitude of the matched filter.

In this article, we present a part of a more general study
whose aim is the detection and recognition of objects lying
on the seafloor. The recognition of the nature of sea bottom
can improve the detection of targets lying on it since the
detection processing can then include the statistical proper-
ties of the concerned seabed type. Therefore it has been de-
cided to perform a study on the recognition and characteriza-
tion of lake bottoms using acoustics. and particularly using a
wideband sonar system. The main purpose of this paper is
the first step of the study: to investigate the feasibility of
bottom recognition. Indeed, if it is possible to recognize the
nature of bottoms, it will surely be possible to characterize
them in a more physical way by means of the same acoustic
devices. In the frequency range used (>20 kHz!. it can be
assumed that the main part of the energy received from the
bottoms is due to the water—bottom interface: the frequency
range does not permit deep penetration of the sonar signal in
the sub-bottom. Thus the backscattered echoes will be essen-
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tially characteristic of the upper sediment layer and of the
interface roughness.

Data collection was carried out on Lake Geneva. This
site permits underwater acoustic experiments to be carried
out with many of the specificities due to a natural environ-
ment. Earlier studies have shown the interest of time-
frequency analysis applied to wideband ultrasonic echoes.’
Thus in order to extract relevant information from the bottom
echoes, time-frequency analysis of the backscattered signals
is realized. Then parameters are computed from the time-
frequency pictures to provide feature vectors for classifica-
tion purposes. Finally, recognition results obtained by using
neural network and discriminant analysis are compared.

. EXPERIMENTS
A. Experimental setup

The experiments described in this paper were held on
Lake Geneva. near the ““Lacustrian station of hydrobiology”
of INRA (National Institute of Agronomic Research), at
Thonon-les-bains, France. Data collection was carried out on
five different types of bottom: sand. silt, pebbles, rocks, and
a mixture of fine gravel and siit. The experiments were per-
formed in shallow water. Great care has been taken in the
choice of these lake bottoms. The assistance of a diver and
the use of an underwater camera were necessary. The diver
was in charge of exploring, chosing the lake bottoms, and
measuring their slope, to give a precise idea of their nature.
Video pictures of the bottoms were taken. Samples of the
bottoms were also collected by the diver. The samples and
environmental information collected by the diver together
with the video pictures have made it possible to determine
with confidence the nature and slope of the bottoms (cf.
Table I).
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TABLE L. Bottom characteristics for each class.

_ature of the water—bottom interface Slope of the bottom

gt 1 IQ
silt and fine gravel (J some mmj ()P
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pebbles (& 5-10 em)
rocks (& 20-40 cm)
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The sonar system includes a wideband constant beam-
.dth transducer (CBT) designed by Van Buren et al.® This
_oparatus shows a constant directivity in its passband: 20—
120 kHz. its aperture half-angle at —3 dB being 12°. This
CBT has virtually no near field. The transducer was used for
emission of the signal as well as for reception of the back-
scattered echo from the bottom: a monostatic configuration
was used. The CBT is placed in order to obtain normal inci-
dence of the ultrasonic signal on the bottom. A scheme of the
e\penmemal configuration is given Fig. 1. The transmitted
signal is a “chirp,” a linearly frequency- -modulated signal,
~atween 10 and 150 kHz. A common frequency-modulation
‘2w has been chosen in order to simplify the interpretation of
the time-frequency representation of the backscattered ech-
oes. The band of the emitted signal is wider than the band of
the transducer in order to obtain the flattest spectrum pos-
sible in the transducer frequency range. The duration of the
chirp is 1 ms, which gives a high time-bandwidth (TB) prod-
uct: TB=120.

The electric sonar signal and its power spectrum are
shown in Figs. 2 and 3 (upper view). The sonar signal was
~roduced with an arbitrary function generator Lecroy AFG

100. The echoes were recorded with a digital oscilloscope
Lecroy 9410, the sampling frequency being I MHz and the
resolution 8 bits. Then the signals were stored onto a per-
sonal computer.
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FIG. 1. Experimental configuration.
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FIG. 2. From upper to lower. The transmitted chirp signal and the echoes of
the five different bottom types: silt, silt and fine gravel. sand, pebbles. and
rocks.

B. Experimental results

The data collection was carried out from 23, July 1993
to 26, July 1993. For each kind of lake bottom, 180 echoes
were recorded over 2500 points, i.e., over 2.5 ms. The re-
cording took place with a repetition emission period of 500
ms. Five sequences of 36 echoes per class are now analyzed.
For each kind of bottom the signai-to-noise ratio (SNR) has
been computed by

60
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FIG. 3. From upper to lower. The spectrum of the transmitted chirp signal
and the spectra of the five different bottom types: silt, silt and fine gravel,
sand. pebbles. and rocks.
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TABLE II. Mean SNR and mean standard deviation (variabilityt of the
spectra (&) for each class.

Nature of the water—bottom

interrace SNR (dB) o (dB)
silt 21 32
silt and gravel 21 <4
sand 22 13
nebbles 24 16
rocks 24 52
SNR,= 10
pin= s 20 4,
(1T, “st(r)dr 1
logyo o 1.
(WNT-Ts)]Sf ) s7 “ndr+f] JE (r}dr]j

(h

where s,() represents the ith echo of the sequence. Ts the
duration of the echo. t, the beginning of the echo signal. and
T the duration of the recording. The mean SNR computed on
the whole database is 22 dB. The average SNR for each kind
of bottom is given Table II.

The echo variability from a same type is estimated
through the mean standard deviation ¢ of spectrum on the
band f1=20 kHz to f2=140 kHz:

ij‘“]‘l 1 (il\;"l =1 bR

142
L

a=20 log;g

29

—1X(f )} a’f}, {
|

where N is the number of echoes (36). | X,;(f 1 the spectrum

of the ith echo, and |X(f )| the mean spectrum. In Table II.

7 is given for each kind of bottom.

The echoes show a great variability inside each class.
This variability can be interpreted as the joint etfects of the
sonar directivity and of the movements of the barge. Indeed.
due to the movements of the sonar the insonified surface is
never exactly the same. In addition. the bottom is a highly

scattering medium. Finally, the refraction and reflection of

sound within the sub-bottom sediment layers depend on the
incident angle of the ultrasonic wave. As we have seen. the
insonified surface and consequentiy the incident angle are
never exactly the same. so the ultrasonic signals will never
show exactly the same behavior with the sediment 1;1‘\'ers,~'
Thus it was necessary to collect a considerable database for
cach type of bottom. in order to determine their specitic char-
acteristics. Examples of the recorded echoes and their spectra
are shown in Figs. 2 and 3, respectively.

il. TIME-FREQUENCY ANALYSIS FOR FEATURE
VECTOR COMPUTATION

A basic processing method applied to signals is often
<pectral analysis. This kind of processing does not appear
optimum for the type of signal analyzed in this work. The
iransmitted signal as well as the collected echoes are time-
varying signals; therefore the time-frequency analysis vields
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the information in a more revealing form.® Time-frequency
analysis seems to be well adapted to bottom echoes since this
kind of transformation can display the evolution of fre-
quency contents versus time, i.e., versus propagation dis-
tance. These evolutions do not appear when classical spectral
analysis is applied. Time-frequency analysis is nowadays
commonly used in the field of underwater acoustics. For ex-
ample, the work of Yen et al.” is devoted to the analysis of
acoustic scattering from elastic objects by using time-
frequency analysis and has shown the advantages of such a
representation.

A. Time-frequency representations

Several methods are devoted to time-frequency analysis.
Among them. the Wigner distribution (WD) provides with no
doubt a high resolution and has been successtully applied to
solve a lot of applications. For example, the Wigner distri-
bution shows a better resolution than the spectrogram and
does not imply the hypothesis of local stationarity needed for
the short-time Fourier transform.’’ Moreover, frequency
resolution and time resolution are not linked. On the con-
trary, with the spectrogram. an increase of spectral resolution
risks compromising the local stationary hypothesis in the
shifting window. The Wigner distribution is defined as

WD (r.v)= J s(t+7 2 s¥(r—7/2)

-

Xexp( —jlmrv)dT. (3)

where s(r) is the analytic signal associated with the original
signal.

Though the Wigner distribution provides high time and
frequency resolution, the existence ot Cross components can
lead to difficulties of interpretation.' ! These cross terms are a
direct consequence of the bilinearity of this class of distribu-
tion (Cohen’s class). Among several new improvements de-
voted to cross-term reduction. a modified version of the
Wigner distribution called the pseudo-Wigner distribution
(PWD) has been implemented. This version of the Wigner
distribution has already been used for broadband signal
analysis because of its good mathematical properties. 2

The PWD in the continuous domain is given by

PWD. (r.v) J 4 s(r+7/2)s%(r—1/2Yh(1/2)

XN = 7/ Dexp(— j2oTuidT, {4)

where A{7) is a sliding window.
The PWD in the discrete domain is given by

N
PWD (r.v)=2 Z h(r)s(r+rs*(t—1)
Sy
Xexp( — j+mTU). (5)

where /21(7) is a real symmetrical window centered at 7=0.
This function has been implemented for the discrete time-
frequency analysis of the echo signals of the present work.
The introduction of the window leads to a smoothing of
the cross components in the frequency domain. The most
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relevant property to notice about the Wigner distribution is
that the representation can be interpreted as a function that
indicates the distribution of the signal energy over time and
frequency.”’” A study to determine the best parameters and
window for the PWD has been performed. During the com-
putation process of the PWD the fast Fourier transform
{FFT) is used. Thus the PWD of the present work has been
processed with a Hamming shding window with a length of
61 points (122 us). and FFT is performed over 128 points.

It is necessary to determine with accuracy the beginning
of every echo: therefore the cross correlation between the
rransmitted chirp signal and every echo 1s performed in order
10 determine accurately the beginning of the echoes. This
preprocessing is important for further classification since the
PWD has the property of time shift. At the same time, the
signals are undersampled to 500 kHz vs 1 MHz originally.
This, jointly with the detection of the beginning of every
signal. provides signals over 1024 points versus the 2500
originally recorded. The undersampling processing is justi-
fied by the PWD algorithm: the frequency range of the PWD
is 0—f,/2. where f is the sampling frequency of the signal.
Thus f, has to be reduced in order to avoid unnecessary
computations. Then every echo is normalized: it is divided
by the square root of its energy. so only the time-frequency
characteristics will be taken into account but not the total
amount of energy reflected by the bottom. Therefore the
pseudo-Wigner distribution will provide one time-frequency
digital image of size 128X 1024 pixels associated with every
bottom echo.

PWD images associated with the transmitted chirp sig-
nal and to each bottom-type echo are presented in Fig. 4.
Only the parts containing information have been kept. so the
size of the images is reduced to 90X750 pixels. (On the
color images the values under a chosen threshold of the
PWD have been set at zero value in order to increase the
legibility. These low values of the PWD representations cor-
respond to cross components and may lead to difficulties in
the visualization of the images. The ratio between the infor-
mational values of the PWD and the highest suppressed val-
ues is greater than 34 dB. Negative values of the PWD have
also been discarded for visualization but have been kept for
computation.)

B. Feature vector computation

The next step of the method 1s to compute feature vec-
tors derived from the time-frequency image. Indeed, classi-
fication methods were not able 10 accept data as large as a
whole picture for feature vector. And. furthermore, this
would not be suitable since the value of a single pixel of the
PWD image cannot be interpreted directly. Thus the informa-
rion contained in the time-frequency representation has to be
compressed. but in a way that would keep the time-
frequency characteristics of the backscattered echoes. The
idea applied here is to cut the picture in slices with time
versus frequency in order to obtain cells. Then the function
of the energy corresponding to each cell is calculated with
the double integral of the PWD along the borders of the cell.
by using the properties of the PWD concerning the energy
distribution. The vaiue of the computed energy is then asso-
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FIG. 4. From upper to lower. The time-frequency representations of the
transmitted chirp signal and of the five different bottom types: silt, silt and
tine gravel. sand. pebbles, and rocks.
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Feature Vector

Neural Network

hidden layer : 10 nodes
input layer : 30 nodes

outpout layer : 5 nodes

FIG. 6. Sending the feature vector to the neural network.

cal analysis exist nowadays (nearest neighbor, discriminant
analysis,...). For the past few years new methods based on
neural networks have appeared. These methods tend to be
very attractive in underwater acoustics each time a classifi-
cation or recognition is required. These neural approaches
have been already experimented to recognize biological im-
pulse noises' from five different classes. A neural networks
method has also been used in order to classify shadow of
objects lying on the sea bottom produced by a sonar.' Fi-
nally, a recent study has been performed in order to recog-
nize five different underwater targets using a sonar and a
neural network as a classification tool."”

It was then decided to experiment two different methods
in order to classify the bottom echoes. The first method cho-
sen is a statistical one: the now classical discriminant
analysis.'® The first step of the method leads to the extraction
of the most discriminating parameters among those initially
available. Thus the size of the feature vector is reduced from
its initial value to the number of parameters selected by the
first step of the method. The second step is the computation
of the linear discriminant function with the selected param-
eters. The third step is the classification itself. The linear
discriminant function computed above is then applied to the
echoes to be classified. This is the test phase.

The second method investigated is based on a neural
approach. The network used is a three layer perceptron with
30 input nodes corresponding to the 30 parameters of the
feature vector, 10 nodes in the hidden layer and 5 output
nodes corresponding to the 5 different bottoms. Every output
node correspond to a bottom type. The way the feature vec-
tors are presented to the network is shown Fig. 6. For a given
feature vector the network determines the values (activity) of
its five outputs. These outputs are in the range of 0—1. Thus,
if the output node corresponding to the silt shows an activity
of 1 and the others an activity of 0, the associated bottom
echo will obviously be identified as a silty bottom. The net-
work was trained using the backpropagation technique. In
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the learning phase, feature vectors are presented to the net-
work and the outputs are calculated. Then the quadratic dif-
ference between calculated and expected outputs is calcu-
lated. This error is then backpropagated in the upper layers
of the network. The aim of the backpropagation algorithm is
to decrease the mean output quadratic error on the whole
database. For the recognition phase the following rule is ap-
plied: If the activity of the output node corresponding to the
bottom type of the feature vector tested is higher than 0.5
and the other output activities are lower than 0.5, then the
associated bottom echo is assumed to be recognized. The
number of nodes on the hidden layer has been briefly stud-
ied. Results have shown that the recognition rates are not
better when the number of nodes is increased. In all cases,
we tried to respect a general rule concerning the hidden
layer: too many nodes could lead to a fall in the recognition
rate for the echoes not involved in the training sequence.

IV. RESULTS

Recognition of the five different types of bottom is
achieved by using both classification techniques. For both
methods, the database has been separated in two groups: the
first is used for the training sequence of the technique (learn-
ing base) and the second is used for testing the results of the
method on echoes not involved in the training sequence (test-
ing base). On the whole database, one half was devoted to
the learning phase and the other half to the test phase. It is
important to notice for the interpretation of the results that
every processing applied was exactly the same for each kind
of bottom and of course for both classification techniques.

The training of the neural network for the five class
problem consists of approximately 360 000 iterations; the
three class problem converges after about 30 000 iterations,
whereas the training steps are rather long (1 h to several
tenths of hours), the recognition step is very fast (a few mil-
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FIG. 5. Feature vector computation. Lower view: Choice of the useful parts of the PWD image associated with the echo of rocks. Middle view: 3-D mesh of

the PWD. Upper view: result of the partitioning.

ciated with each cell. Cutting the picture into m frequency
slices and » time slices will provide m - n cells whose values
will be the elements of the feature vector. This processing
obviously leads to an averaging versus time and frequency of
the time-frequency pictures. This solves the problem of the
local interpretation of the PWD representation.

Every echo is associated with its time-frequency repre-
sentation. It can easily be seen on the time-frequency images
that all the information is concentrated on the moduiation
slope of the chirp. More precisely, if one compares the time-
frequency image of the chirp with any of the images associ-
ated with the bottom echoes, one observes that all the infor-
mation is concentrated in a time strip during several
hundredths of ms on the right side (i.e., toward increasing
times) of the modulation slope. This fact can easily be re-
lated to physical properties of the sediment layer of the bot-
tom. The major part of the acoustic energy of the signal is
reflected at the water—bottom interface; a part of the energy
is transmitted in the sediment layer and may be reflected
later by a deeper sediment layer. These reflected parts of the
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signal are then represented on the right side of the modula-
tion slope since they are received later by the CBT. There-
fore, only the parts of the representations in the time strip of
interest will be kept for further processing. Obviously, the
frequency limits of the useful parts of the images will be
20-140 kHz. Determining the width in time led to investi-
gating every type of echo. The maximum time lengthening
was found in silt with 500 us. For a mean value of sound in
the sedimentary bottom, this lengthening corresponds to a
sound penetration of 20-50 cm for most of the echoes. The
selected parts are cut into six slices in frequency (20 kHz
each) and five slices in time (100 us each). This provides a
30 element feature vector per echo. Figure 5 shows the
choice of the useful parts on the lower view, and the result of

the partitioning for a rocky bottom echo on the upper view.
A

lil. CLASSIFICATION METHODS

The following step of the work is to implement an effi-
cient classification method. Many methods based on statisti-
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TABLE V. Results of the neural network method for three classes.

TABLE IV. Results of the neural network method.

Recognition rate: Recognition rate:

Recognition rate: Recognition rate:

Nature of the bottom Learning phase Test phase Nature of the bottom Learning phase Test phase
sand 99% 95% silt 87% 71%
pebbles " 999 87% silt and fine gravel 87% 59%
rocks 84% 77% sand 91% 76%
Average recognition rate 94% 86% pebbles 90% 74%
rocks 91% 61%
Average recognition rate 89% 68%

liseconds). Recognition rates concerning the discriminant
analysis are presented in Table III and results of the neural
network are given in Table IV.

The average recognition rate is higher for the neural
network than for the discriminant analysis: 68% vs 60% in
the test phase. The recognition rate for the learning phase is
quite satisfying for the neural network (89%) but rather less
(62%) for the discriminant analysis. Nevertheless, it can be
assumed that the results of the test phase for the neural net-
works are good considering the difficulty of the problem: it
has to be remembered that the original echo signals show a
great variability inside each class. Furthermore, resuits of
recognition for a three class problem using the neural net-
work are presented in Table V. These results are satisfying
and better than the ones for the five class problem. The geo-
physical properties of the three bottom types are, respec-
tively, more different and the average recognition rate
reaches 94% and 86% for the learning phase and the test
phase, respectively. We obtain 95% of good recognition for
sandy bottoms.

V. SUMMARY AND CONCLUSIONS

This study has shown the feasibility of lake-bottom rec-
ognition using a wideband sonar system and time-frequency
analysis. The feature extraction emphasizes the time-
frequency characteristics of the backscattered echoes. In-
deed. the bottom responses to a broadband ultrasonic wave
have been the basis of this study. The time-frequency repre-
sentation of the echoes provides useful information concern-
ing the localization of echo energy along time for each fre-
quency range. This can be linked to the penetration of
ultrasonic waves in the upper sediment layers. Meanwhile.
identification of geophysical parameters from such a repre-
sentation is under study and the present work is limited to the
classification of bottom echoes without a priori information
concerning the acoustical response of the bottom. The neural
network method has given better classification results than
the discriminant analysis for both learning and test phase.

TABLE I11. Results of the discriminant analysis.

Recognition rate:
Test phase

Recognition rate:

Nature of the bottom Learning phase

silt 68 61%
silt and fine gravel 56 56%
sand 4% 7%
pebbles 39¢% 57T%
rocks T4% 78%
Average recognition rate 62% 60%

558  J. Acoust. Soc. Am., Vol. 98, No. 1, July 1995

Thus the three layer neural network seems to be well adapted
to the recognition problem described in this paper. The re-
sults, although not perfect, are encouraging. The most rel-
evant recognition rate is the test phase rate. The recognition
rate of 68% for five bottom types and 86% for three bottom
types on the whole test database for the neural network can
be seen as a good result facing the great variability of the
original echoes and also the small difference between the
different types of bottom. Furthermore, some improvements
can be made in the data collection step in order to improve
the results. Preprocessing of the echoes could include a se-
lection of the echoes whose signal to noise ratio exceed a
fixed threshold. Indeed, it would be useful to take into ac-
count the transfer function of the transmitter—receiver sonar
since this transfer function leads to a higher sensitivity to
high frequencies than to low frequencies. Thus it would be
useful to perform the deconvolution of every echo signal by
the transfer function of the whole sonar system. This would
lead to investigating the impulse response of the bottoms.
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