

Large Surface LC-resonant Metamaterials:

from Circuit Model to Modal Theory and Efficient Numerical Methods

O. Chadebec^{2,3}, G. Meunier^{2,3}, A. Urdaneta-Calzadilla³, V. C. Silva^{2,4}, C.A.F. Sartori^{2,4}

¹Univ Lyon, ECLyon, Ampère, CNRS, France – ²LIA Maxwell, CNRS (France)/CNPq (Brazil) ³Univ Grenoble Alpes, Grenoble INP, G2Elab, CNRS, France – ⁴EP-USP, LMAG, São Paulo, Brazil

The MaSuRe project objectives

We study the harmonic magnetodynamic behavior (low frequency) of a resonant surface metamaterial, made up of many identical, regularly arranged LC resonant cells.

- How does it work?
- Why is power transfer possible also with large excentricity of the receiver?
- How can we explain the antiresonance Find an efficient numerical method for very large numbers of cells (e.g. 1000×1000)

Perspectives:

- Effective numerical homogenization
- Review of possible manufacturing methods
- Development of a specific SMPS
- Experimental measurements of a very large structure

Equations

Reference solution (circuit equations for N cells, full $N \times N$ matrix):

$$\left(R + \frac{1}{\boldsymbol{j}\omega C}\right)\underline{I}_{i} + \boldsymbol{j}\omega\sum_{j=1}^{N} M_{ij}\underline{I}_{j} = -\boldsymbol{j}\omega\left(M_{is}\underline{I}_{s} + M_{ir}\underline{I}_{r}\right) \ i = 1 \dots N$$

Space modal development of cell currents and fluxes (discrete values i):

$$\underline{X}_{is} = \sum_{l=-n_y}^{n_y} \sum_{k=-n_x}^{n_x} \underline{X}_{kl,s} e^{-j2\pi k \frac{x_i}{L_x}} e^{-j2\pi l \frac{y_i}{L_y}}$$

Exact modal equation:

Note: for a 2D $N_x \times N_v$ metamaterial, $N = N_x \times N_v \Longrightarrow$ matrix dimension = $(N_x \times N_v)^2$ Example: 1000 cells \times 1000 cells \Longrightarrow full $10^6 \times 10^6$ matrix. For a 1D problem $(N \times N \text{ matrix}, N = 2n + 1)$:

$$\sum_{k=-n}^{n} \left(R + \frac{1}{j\omega C} + j\omega \mathcal{M}_{k,i} \right) \underline{I}_{k} e^{-j2\pi k \frac{x_{i}}{L}} = -j\omega \sum_{k=-n}^{n} \underline{\phi}_{ks} e^{-j2\pi k \frac{x_{i}}{L}}$$

Asymptotic solutions for infinite dimensions (N equations with one unknown):

$$\left(R + \frac{1}{j\omega C} + j\omega \mathcal{M}_{k}^{\infty}\right) \underline{I}_{k} = -j\omega \underline{\phi}_{ks} \ k = -n \dots n, n \to \infty$$

Modal approach (very large number of cells)

(modal)

Results

Meta-material global frequency behavior:

$$|I^{2}|(\omega) = \sum_{i} |\underline{I}_{i}(\omega)|^{2}$$

11,80 MHz

Receiver - global frequency behavior:

$$\underline{\eta}(x_r,\omega) = 1 + \sum_{j=1}^{N} M_{rj}\underline{I}_{j}(\omega)/M_{rs}\underline{I}_{s}$$

$$\frac{1}{2}(x_r) - \frac{1}{2} \int_{-\infty}^{x_{r0}+\ell} |z|^{2} (x_r,\omega) dx$$

 $\eta_{\ell}^{2}(\omega) = \frac{1}{\ell} \int_{x_{co}}^{x_{ro}+\ell} \left|\underline{\eta}\right|^{2} (x,\omega) dx$

Reduction methods

- 1) **Modal solutions** use only the most energetic modes. Typically $N \to N/10$ Equivalent to filter (neglect) the higher space frequencies
- 2) Circuit equations typically $(N \times N) \rightarrow (N/_{10} \times N/_{10})$ by using:
- rough mesh representation of cell currents I_i to reduce the number of unknowns
- same linear combination of equations to reduce the number of circuit equations. Equivalent to filter (neglect) the higher space frequencies

3) Mutual inductance matrix M_{ii}

- "Exact" values (analytic values, FEM or PEEC values) only for neighbour cells i, j
- far cells: just distance-dependent values

This work is supported by the French-Brazilian USP/COFECUB program under the grant 173/18 « MaSuRe »

area with frequency changes