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We study the harmonic magnetodynamic behavior (without wave propagation) of a resonant surface metamaterial, made up of 

many identical and regularly arranged LC cells. The circuit model gives the exact solution, but is not numerically efficient for the 

simulation of very large structures (e.g. 1000×1000 cells). For the first time, we highlight the modal character of the solutions, which 

makes it possible to explain their frequency and spatial related properties. From these results, we show under what assumptions it is 

possible to homogenize the metamaterial, which opens the way for using this approach together with efficient numerical methods.  

 

Index Terms— LC metamaterials, resonance, circuit analysis, modal analysis, homogenization, matrix reduction, integral equations 

 

I. INTRODUCTION: TYPICAL DEVICE 

HE typical device that we consider was first proposed in 

[1], with 8×8 resonant LC cells arranged on a plane 

surface (Fig. 1). The goal of the present work is to explain the 

frequency behavior of these devices and to propose efficient 

numerical methods to simulate them even for arrangements 

with a far greater number N of cells (e.g. 1000×1000, N=10
6
). 

 
Fig. 1. Experimental setup applied to wireless power coupling studies [1] 

Natural frequency of the isolated cell: �� � 1/�2�	
���. 

II. CIRCUIT ANALYSIS TECHNIQUE (REFERENCE SOLUTION) 

For quite small systems, the reference solution is easy to 

obtain using the circuit analysis technique. We get a complex 

full N×N matrix with main terms around the diagonal:  
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We suppose that the excitation current Is is known and that 

there is no current in the receiver (Ir=0); the method may be 

applied for other choices by considering the corresponding 

equations. The mutual inductors (matrix 
��  and vectors 
�� 
and 
��) may be analytically [2, 3] or numerically computed; 

it is then possible to obtain the cell currents ���� and the flux 

in the receiver as a function of the angular frequency.  

Two global values are particularly significant for the CAD 

approach; first, the square norm of the cell currents: 
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which expresses the intrinsic reaction of the metamaterial; 

second, the ratio #�$� , �  between the flux through the 

receiver in the $�  position, respectively with and without 

presence of the metamaterial, or its norm #ℓ �� on a length 

ℓ, which express the frequency effect of the metamaterial for 

an energy transmission between the source and the receiver:  

#�$� , � � 1 �� 
������
�
���


����'  (3) 

#ℓ �� � 1
ℓ( )#) �$, �*$

+,-.ℓ

+,-
 (4) 

For small structures, the circuit analysis gives the exact 

reference solutions, but it is not practicable for large ones and 

it does not give the key to understand how the device works.  

III. MODAL APPROACH 

To simplify the explanations, we establish here the modal 

character of the solutions only for 2D field problems with 1D 

metamaterials (Fig. 2); the extension to the real 3D situation 

with 2D metamaterial, will be presented in the extended paper.  

 
Fig. 2. 2D problem with a linear metamaterial 

Let's develop in spatial Fourier series, over a length L=N’D 

(typically /′ 1 /), the source flux 2�� � 
���� and the current 

solution Ii. For the cell i located at the abscissa xi we get: 
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Assuming that the length of the metamaterial is infinite, i.e. 

the excited area is small compared to this length, we can 

rewrite the circuit equations as independent modal equations: 

T 
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where the mutual inductance A4 of the mode k corresponding 

to the spatial frequency �� � 9/�/′E, is defined by: 
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(the result does not depend on i because of the infinite limits). 

Even if the number of equations (1+N’/2) is of the same order 

of magnitude as for the circuit method, the modal method is 

much more efficient because these equations are independent. 

Moreover, we can evaluate and use only the predominant 

modes (e.g. 10%), without perceptible loss of accuracy. 

 

Data (see Fig. 2) for the 

numerical results of Fig. 3 

and Fig. 4: 

Metamaterial : 

D = 0.010 

d = 0.009 

wire φ = 0.001 

N = 361 

R=1mΩ  C=1.95µF 

Source and receiver : 

h = h’ = 0.10 

H	 � 0.15 

H′ � 0.10 

Fig. 3 Typical behavior of the modal mutual inductance A4 (8) in function of 

spatial frequency  

The modal equation (8) highlights an electric resonance 

frequency 1/�2�	A4�  for each spatial mode k, fastest 

spatial variations corresponding to lowest electric resonance 

frequencies. The two characteristic quantities (2) and (4) 

typically have the aspects given in Fig. 4: 

 
Fig. 4 :  Typical intrinsic (left) and transfer (right) behaviors (2) and (4). 

Detail window (§IV): reference solution in blue; the reduced modal solution 

(yellow) is roughly correct; the reduced circuit solution (red) is more accurate.  

Note that in the real situation of §I, we would obtain a modal 

mutual A with two indices, and bidirectional modes (Fig. 5).  

IV. HOMOGENIZATION 

If the elementary cells are small with respect to the excitation 

and reception coils dimensions, the amplitude of the higher 

modes is small and their effect will be negligible on the 

solution Ii and on the flux in the receiver (|� |	 (2), # (3) or #ℓ  

(4)). It is then possible to reduce the number of degrees of 

freedom of the solution without substantially reducing its 

accuracy. By way of example, the solution presented in Fig. 4 

(left) was calculated in the following 3 ways: 

- complete reference circuit solution, using N=361 cell 

currents (361×361 full matrix); 

- reduced modal solution, using only the 10% main modes (= 

low-pass spatial filtering, 37 unconnected equations); the 

global behavior is correctly described, but the resonances are 

not precisely obtained (peak values and frequencies), because 

the metamaterial is considered as infinite (the source field is 

also repeated at infinity); 

- reduced circuit solution, obtained by projection of the 

unknowns Ii and of the circuit equations on a mesh 10 times 

rougher than the cell dimension (37×37 full matrix). Like the 

reduced modal method, this method results in low-pass 

filtering of the reference solution, but this time it is possible to 

take into account the finite dimension of the metamaterial. 

Accuracy is excellent for the frequency band of interest (see 

“detail” on Fig. 4, left). 

This result implies that a way to achieve an homogenization 

should be found. We will show in the extended paper that for 

surface metamaterials, the reduced matrix can be efficiently 

constructed directly using a 2D surface mesh much rougher 

than the size of the elementary cells. The currents in the cells 

are represented by a surface density of normal dipoles whose 

effect, calculated by an integral method, replaces the 

calculation of mutual inductances. It is thus possible to take 

into account metamaterial of complex, non-planar shapes.  

The homogenization step consists in modifying the classical 

integral method to introduce (i) the close interactions (known 

analytically) that the integral method with coarse mesh cannot 

describe precisely, and (ii) the �� � 1 ���⁄  terms of (1).  
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Fig. 5. 2D resonant solutions (12×12 cells, f0=10MHz) obtained with the 

complete circuit equations [4]. Colors represents the cell current modulus Ii.. 


