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Abstract 

The internal structure of nanometric microgels in water has been studied as a function of temperature, 

crosslinker content, and level of deuteration. Small-angle neutron scattering from 

poly(N-isopropylmethacrylamide) (pNIPMAM, volume phase transition ≈ 44 °C) microgel particles of 

radius well below 100 nm in D2O has been measured. The intensities have been analyzed with a 

combination of polymer chain scattering and form-free radial monomer volume fraction profiles defined 

over spherical shells, taking polydispersity in size of the particles determined by AFM into account. A 

reverse Monte Carlo optimization using a limited number of parameters was developed to obtain smoothly 

decaying profiles in agreement with the experimentally scattered intensities. Result are compared to the 

swelling curve of microgel particles in the temperature range from 15 to 55 °C obtained from photon 

correlation spectroscopy (PCS). In addition to hydrodynamic radii measured by PCS, our analysis 

provides direct information about internal water content and gradients, the strongly varying steepness of 

the density profile at the particle-water interface, the total spatial extension of the particles, and the 

visibility of chains. The model has also been applied to a variation of the crosslinker content, 

N,N′-methylenebisacrylamide (BIS), from 5 to 15 mol%, providing insight in the impact of chain 

architecture and crosslinking on water uptake and on the definition of the polymer-water interface. The 

model can easily be generalized to arbitrary monomer contents and types, in particular mixtures of 

hydrogenated and deuterated species, paving the way to detailed studies of monomer distributions inside 

more complex microgels, in particular core-shell particles. 
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Introduction  

Smart microgels are stimuli-responsive colloids with an internal gel structure. They can be made of cross-

linked poly-acrylamides exhibiting a lower critical solution temperature (LCST)1-7 also called volume 

phase transition temperature, awarding them the capability to react on temperature changes. 

Poly(N-isopropylacrylamide) (pNIPAM) based microgels are certainly the best studied systems at the 

moment, but also poly(N-isopropylmethacrylamide) (pNIPMAM) and poly(N-n-propylacrylamide) 

(pNNPAM) are of growing interest.8-12 A combination of these monomers can be used to produce particles 

with variable LCST or with more complex architectures like e.g. core-shell.9,13 Microgel particles are very 

promising with respect to applications in biomedical devices14,15, as sensors16,17, for drug delivery18-23, as 

functionalized and possibly double responsive microgels for nanoreactors24-27, and in colloidal crystals28-34. 

The possibility of creating complex microgel architectures is accompanied by the need for structural 

characterization. This may be achieved by small-angle neutron scattering (SANS), which is particularly 

useful in suspension, as a function of temperature, allowing the simultaneous determination of both 

average particle sizes and polydispersity, and local chain structure. Microgel structure has soon been 

recognized to be spatially inhomogeneous due to differences in crosslinker and monomer consumption,35 

introducing a gradual radial decrease of density and a fuzziness of the microgel surface, unless special 

care is taken to distribute the crosslinker more evenly36. The first of the fuzzy sphere models for small-

angle scattering was based on a description of spherical block copolymer micelles by Pedersen and 

Svaneborg37,38. It was applied by Stieger et al. to PNIPAM microgel particles.39 Note that in this model 

and all following ones, a Lorentzian term was added to the form factor describing the particle density in 

order to account for the polymer mesh and extract its correlation length . The fuzzy particle density 

profile is obtained by convoluting the profile of a homogeneous sphere with a Gaussian of width σ, which 

in reciprocal space introduced simply a multiplication by a Gaussian, thus weakening the oscillations of 

the form factor. A more versatile alternative model, a piecewise parabolic profile, was proposed by Berndt 

et al.40,41, and is referred to as ‘fuzzy-sphere’ model here unless otherwise mentioned. It represents the 

radial profile as a succession of constant densities, and parabolic decays or increases, and can thus be 

generalized to multi-shell structures (“fuzzy core-shell”), as proposed by Berndt et al. for pNIPMAM-core 

and PNIPAM-shell microgels, both hydrogenated.40,41 The same group later investigated the effect of shell 

thickness and crosslinking, and analyzed the resulting density profiles in terms of expansion or 

compression induced by the shell.9 One may note that non spherically-symmetric microgels have been 

synthesized by copolymerization. The resulting nanophase-separated structures at intermediate 

temperatures made of the collapsed component were described using a ‘dirty snowball’ model10. The 

influence of synthesis conditions, in particular surfactant ratio to tune particle size, on the morphology of 

PNIPAM microgels have also been investigated by using a combination of static light scattering (SLS) 
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and laboratory small-angle X-ray scattering (SAXS) analyzed by a Gaussian fuzzy-sphere model by Deen 

et al.42 Similarly, the effect of pressure jumps has been described recently also with the Gaussian fuzzy-

sphere model.43 For comparison, the final particle size of pNIPMAM microgels has been systematically 

varied via the surfactant and analyzed by direct imaging.44 Coming back to scattering, a fuzzy-sphere 

model has been applied to hollow microgel particles obtained by removing an inorganic (usually silica) 

precursor nanoparticle from the center of the microgel.45 In presence of the silica core, contrast variation 

using H2O/D2O has been employed with SANS to differentiate the inorganic core from the shell. A further 

step was taken by adding another polymer shell, forming core-shell-shell or, after removal of the core, 

hollow-shell-shell particles.46 Resulting density profiles of such hollow multi-shell microgel particles 

obtained by analysis of SANS data have been shown to compare favorably to MD simulations.47 

Moreover, the function of the two shells could be identified, the inner shell setting the permeability 

allowing control of encapsulation and release, whereas the outer one provided colloidal stability in the 

temperature range of interest. Similarly, the model was used to examine shell interpenetration, and in 

particular the effect of shell inversion, by Brugnoni et al.48 The incorporation of guest molecules in an- 

and cat-ionically modified core-shell microgel particles was also followed by SANS (among other 

techniques), using the fuzzy core-shell model.49 Very recently, Keidel et al. have also applied piece-wise 

parabolic profiles to time-resolved SAXS experiments (in parallel with computer simulations showing non 

spherical features), where a change in solvent provoked the transition from a swollen gel to a globule, 

passing through a hollowish shell intermediate structure.50  

A different model based on a Flory-Rehner approach was recently proposed by Boon and Schurtenberger, 

allowing them to investigate non-homogeneous crosslinker distributions in PNIPAM microgels.51 

Together with the Gaussian fuzzy-sphere model, it was used to describe density distributions obtained by 

super resolution microscopy.52 In these experiments, the fluorophore was freely diffusing inside the 

polymer network giving rise to localization densities probing the gel network density. For higher cross-

linker contents the fuzzy-sphere model had to be modified slightly to account for a linear density increase 

observed in the dSTORM experiments, but then performed better than, e.g. the Boon-Schurtenberger 

approach. In a different study, the fluorophore was added to a core-shell microgel either using ester 

chemistry on primary amines, or Michael addition on shell thiols, and spatial distributions could be 

obtained by direct imaging, by Gelissen et al.53 Very recently, the Siemes et al have used a 

photoswitchable crosslinker in a PNIPAM microgel network in order to visualize its density by super-

resolution fluorescence imaging without modifying the network.54 Remarkably, the resulting crosslinker 

density profile has a more smoothly deyaying shape than the monomer profile obtained by the fuzzy-

sphere model.  
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The different versions of fuzzy-sphere models developed in the references mentioned above have in 

common that a fixed shape-function with e.g. a predefined choice of the number of shells is used as a 

starting point, with some latitude given by the thickness and position of the interfaces. In some situations, 

unexpected results may necessitate a modification of the model, by adding an additional layer. For 

instance, in the case of the silica-acrylamide particles discussed above, good fits have been obtained only 

by adding a dense polymer layer near the nanoparticle surface.45 Thus, any a priori unexpected density 

profile is difficult to describe in general by such predefined profiles.  

A form-free analysis of small-angle intensities in general has been proposed in the past, and the indirect 

Fourier transform by Glatter et al. can be looked at as the paradigm of such approaches.55,56 It amounts to 

finding a correlation function the scattering of which coincides with the measured one. There are 

numerous ways to find such solutions, including random search schemes running under the name of 

reverse Monte Carlo (RMC).57,58 These methods are usually applied to liquid state measurements, but have 

been extended to soft condensed matter, namely colloids59, or micelles60. Recently, Hansen has revisited 

the estimation of density distributions from small-angle scattering, analyzing the influence of remaining 

background and different regularizations, and applied it to typical soft aggregates, like micelles and 

proteins.61 In some cases, the density distributions can be defined by a small set of parameters, like cross-

section density profiles in lamellar systems,62 or radial density profiles in globular systems.63 The densities 

are described as a set of Gaussian functions, and the technique is termed Gaussian deconvolution. We 

have applied a similar approach to monodisperse block copolymer micelles in the past,64 but to the best of 

our knowledge this form-free technique has not been generally applied to small-angle scattering of 

polydisperse microgel particles to retrieve the radial density profile, with the exception of the work by 

Keidel mentioned above. Finally, it may be worth mentioning a Matrioschka-like model which was used 

to analyze AFM force measurements.65 This model has some similarities with the approach in the present 

contribution.  

Small-angle scattering is thus well-suited to study microgel morphology. This is particularly true for the 

possibility to highlight selected regions of microgel particles using SANS and deuteration. An example 

has been discussed above,45 where the introduction of different scattering length densities via an inorganic 

core facilitates the identification of contributions, namely of the unexpected dense surface layer. SANS 

with isotopic substitution is also a method of choice for the study of individual microgel particles in a 

dense assembly. Scotti et al. have used this property to study the radial density profile during the 

squeezing of microgels in overcrowded environments, in spite of deviations from sphericity.66 In general, 

SANS and deuteration can be used to unravel the spatial distribution of monomers, as for instance in core-
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shell particles with one component isotopically labelled, which is the ultimate aim of the approach 

proposed in this article, using a form-free approach to retrieve radial density profiles. 

In this article, we investigate the density profiles of a system based on the monomer N-isopropyl 

methacrylamide (NIPMAM) which exhibits an LCST of ca. 44 °C41,67,68, and which will be used as the 

core of a deuterated core-shell particle in the future. The outline of the paper is to first present results from 

PCS and direct imaging providing additional information on shape and polydispersity needed to fix 

parameters for the following SANS analysis. The form-free SANS-model, which is analogous to layer 

models used in reflectometry, is then presented, and the resulting profiles discussed for a temperature- and 

a crosslinker-series, as well as deuteration, and compared to existing models. 

 

Experimental Section 

Synthesis: The synthesis and purification of the microgel systems studied in this article was described in 

detail elsewhere.69,70 In short, we did a precipitation polymerization under nitrogen atmosphere to 

synthesize microgels with different crosslinker contents (CC). All chemicals were purchased from Sigma-

Aldrich. The monomer was N-isopropylmethacrylamide (NIPMAM, purity >97%), the cross-linker N,N′-

methylenebisacrylamide (BIS, 99%), the initiator ammonium peroxodisulfate (APS, >98%), and the ionic 

surfactant sodium dodecyl sulfate (SDS, >99%). The amount of monomer was (12.4 mmol, 1.56251 ± 

0.00054 g). With respect of the amount of monomer the amount of initiator (3.3 mol%, 0.09252 ± 

0.00010 g), and surfactant (6 mol%, 0.21260 ± 0.00027 g) were constant. The amount of crosslinker with 

respect to the amount of monomer was 0.09467 ± 0.00010 g (5 mol%, 0.61 mmol), 0.18943 ± 0.00010 g 

(10 mol%, 1.23 mmol), 0.28435 ± 0.00010 g (15 mol%, 1.84 mmol). Thus we have three samples of 

pNIPMAM microgels with different CC of 5, 10 and 15 mol%. The microgel with a CC of 10 mol% was 

also synthesized partially deuterated with D7-pNIPMAM (Polymer Source. Inc., Quebec, Canada) and 

fully deuterated with D12-pNIPMAM (Polymer Source. Inc., Quebec, Canada). The purification was done 

by centrifugation. The expected volume phase transition temperature of microgel particles made of this 

monomer in water is 44 °C.41,67,68 

Dynamic light scattering: Temperature-dependent photon correlation spectroscopy (PCS) reported in this 

article was performed at a fixed angle of 60°, as microgel motion at low concentrations is diffusive and 

unperturbed by internal network modes (see SI for an exemplary angular scan from 30° to 120°). The light 

source of the partly homemade set-up was a He-Ne laser (HNL210L-EC, 632.8 nm, Thorlabs, Newton, 

USA), a multiple tau digital correlator (ALV-6010, ALV GmbH, Langen, Germany), and a detector (SO-

SIPD, ALV GmbH, Langen, Germany). The sample was placed in a decalin matching bath. For 
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temperature control a refrigerated bath (Haake C25P, Thermo Fisher Scientific, Waltham, USA) with a 

controller (Phoenix II, Thermo Fisher Scientific, Waltham, USA) was used. 

Transmission Electron Microscopy (TEM): TEM images were taken with a JEM-2200 (JEOL, Freising, 

Germany) equipped with a cold field emission electron gun and an omega filter which was used to obtain 

more contrast. The acceleration voltage was 200 kV. The sample preparation was done at room 

temperature. A droplet (3 µL) of highly diluted (ca 0.0001 wt%) sample in water was dropped on a carbon 

coated copper grid (ECF200-Cu, 200 mesh, Science Services, Munich, Germany) and after 1 min. the 

water excess was blotted off with a filter paper, and samples dried in air over a day. 

Atomic force microscopy (AFM): The AFM measurements (Bruker, Billerica, USA) were done in the 

tapping mode using a Controller (NanoScope V, Veeco, Plainview, USA) and a silicon tip (RTESP, 

Bruker, Billerica, USA) at a frequency of 318 kHz. For the sample preparation a droplet (3 µL) of highly 

diluted (ca 0.0001 wt%) microgels in water was dropped on a silicon wafer and dried overnight. The AFM 

measurements allowed the determination of the polydispersity in size of the dried microgels, needed as 

input for the Monte-Carlo simulations. The polydispersity is described with a Gaussian distribution 

function of the number of microgels per unit volume of a radius comprised between r and r+dr.  

𝑃(𝑟, 𝑅, 𝜎)𝑑𝑟 =
1

𝜎√2𝜋
𝑒
(𝑟−𝑅)2

2𝜎2 𝑑𝑟     (1) 

Throughout this article, we will refer to the relative polydispersity σ/R. 

Small-angle neutron measurements: The SANS measurements were done at KWS-1 (JCNS at MLZ, 

Garching, Germany)71 and at PA20 (LLB, Saclay, France)72. Three configurations were used on KWS-1: 

1 m and λ=5 Å, 8 m and 5 Å, and 20 m and 12 Å. The configurations at PA20 were: 1.5m and 4 Å, 8 m 

and 6 Å, and 20 m and 6 Å. The overall q-range was from 0.001 Å-1 to 0.3 Å-1. The data from MLZ were 

normalized (detector electronic noise, water or Plexiglas, empty cell) using QtiKWS (JCNS, Germany), 

and those of LLB by Pasinet software, and data reduction was performed with OriginLab. 

The scattering length densities (SLD) of all ingredients have been estimated assuming a density 1.107 

g/cm3 for D2O and of 1.0 g/cm3 for all other ingredients. For the monomers (repeat units), crosslinker, and 

solvents, the following values were obtained: ρmono(C7H12NO) = 0.80 1010 cm-2, ρCC(C7H8N2O2) = 

1.86 1010 cm-2, ρH20 = -0.56 1010 cm-2, and ρD2O = 6.38 1010 cm-2. Given the low amount of the crosslinker 

and the close ρ-values of the hydrogenated constituents of the microgel, they are difficult to distinguish by 

scattering, and we have combined them in a single fictitious monomer of weighted average mass and 

scattering length density, called ‘monomer’ for simplicity throughout this article. Then a contrast variation 
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experiment has been performed on the microgel containing 10 mol% CC, varying the solvent from H2O to 

D2O. The sign-corrected square-root of the coherent intensities for different q-values is reported in Figure 

1. The match-point is found to be 1.0·1010 cm-2 corresponding to the SLD of the fictitious monomer to be 

used in this simulation. It corresponds to a density of the fictitious monomer of 1.1 g/cm3, close to our 

above estimate, and agrees with other studies of microgel densities.39 Note that the simulation described 

below is designed to accommodate also monomers of very different scattering length density, e.g. 

deuterated ones, describing them independently. A preliminary experiment has been performed with 

deuterated monomers D7-pNIPMAM and D12-pNIPMAM. Their scattering length densities have been 

determined with a contrast variation similar to the one shown in Figure 1.  

 

Figure 1: Contrast variation of pNIPMAM microgels (10 mol% CC, c=1 wt%) in water. The sign-corrected square-

root of the coherent intensity is given as a function of solvent scattering length density varied from H2O to D2O (-

0.561, 0.1326, 1.173, 2.907, 6.375)·1010 cm-2, for eight q-values (see SI). The match-point is indicated by the dotted 

line (ρmicrogel = 1.0·1010 cm-2). 

 

Analysis of SANS data. The comprehensive description of the small-angle scattering intensity of non-

interacting microgels in terms of a general monomer volume fraction profile of the particles Φ(r) as a 

function of their radius is the general goal of this article. There are three contributions to the form-free 

model developed here, and one main assumption. The latter is that it is supposed that the microgels are 

spherically symmetric, allowing to define the density on spherical shells – evidence for symmetry will be 
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shown in the results section. The first contribution to the model is an ad-hoc addition of chain scattering. 

Chain scattering appears in the intermediate- to high-q range, and it will be shown that the details of its 

description do not influence the main conclusions of this article, due to the separation of length scales. 

Moreover, the associated parameters, namely the chain radius of gyration Rg, the high-q exponent ν 

related to the chain statistics, and the general prefactor I0
chain, will be shown to be correlated with the 

experimental conditions, namely good/poor solvent properties. The chain contribution Ichain(q) reads: 

Ichain (q) =I0
chain [(

1

𝜈𝑈
1
2𝜈

) 𝛾 (
1

2𝜈
, 𝑈) − (

1

𝜈𝑈
1
𝜈

) 𝛾 (
1

𝜈
, 𝑈)]   (2a) 

with 

𝑈 = (2𝜈 + 1) ∙ (2𝜈 + 2) ∙
(𝑞𝑅𝑔

𝐶)
2

6
    (2b) 

𝛾(𝑎, 𝑏) = ∫ 𝑡𝑎−1𝑒−𝑡𝑑𝑡
𝑏

0
      (2c) 

where we have used the function describing the generalized coil73. For ν = ½, Eq. (2a) reduces to the 

standard Gaussian coil described by a Debye function, which corresponds to the well-known fractal 

dimension of the chain d = 1/ν = 2.74,75 One may note that the chain scattering corresponds to connecting 

subchains forming the entire microgel. Alternatively, one could have described the chain scattering using 

an Ornstein-Zernike approach, potentially modifying empirically the power law in order to fit the high-q 

decrease, whereas Eqs. (2) is based on the true statistics73, which is why it is preferred. Then the size 

parameter ξ would give the meshsize, in analogy with Rg used in Eqs. (2). 

The next and main ingredient of this model is the monomer density profile Φ(r) of a monodisperse 

microgel, which is adapted automatically to the scattered intensity as described in the results section. As 

SANS is a low resolution method, this profile is defined only in a coarse-grained manner, choosing Np=30 

homogeneous shells of fixed thickness set to ΔR = 2 nm as building units. The profile Φ(r) can be 

transformed into the scattering length density ρ(r), using the monomer scattering length densities given in 

Table 1: 

𝜌(𝑟) = 𝜌𝑀𝑜𝑛𝑜 ∙ 𝛷(𝑟) + 𝜌𝑆𝑜𝑙𝑣 ∙ (1 − 𝛷(𝑟))   (3a) 

This confers contrast to the microgel in the solvent, Δρ(r) = ρ(r) – ρSolv, and gives rise to the scattered 

intensity I: 

𝐼(𝑞, 𝑟) =
𝑁

𝑉
[∫ 4𝜋𝑟2𝛥𝜌(𝑟)

𝑠𝑖𝑛(𝑞𝑟)

𝑞𝑟
𝑑𝑟]

2
     (3b) 

Here N/V is the number of microgels per volume chosen to satisfy the concentration of monomer volume. 

In our reverse Monte-Carlo (RMC) implementation, we translate Eq. (3b) into a discrete sum over the 
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shells, with the radial variable r given by the number of the shell i, thus the outer radius of each shell r(i) = 

iΔR: 

𝐼𝑅𝑀𝐶(𝑞, 𝑟, 𝑛) = ∑
𝑁

𝑉
[
4𝜋

3
𝑟(𝑖)3(𝛥𝜌(𝑖) − 𝛥𝜌(𝑖 + 1))3

𝑠𝑖𝑛(𝑞𝑟)−𝑞𝑟𝑐𝑜𝑠(𝑞𝑟)

(𝑞𝑟)3
]
2𝑁𝑝

𝑖=1
 (3c) 

Here Δρ(i) is the scattering length contrast of shell i, and the contrast of the surrounding solvent shell 

𝛥𝜌(Np+1) is set to zero. 

The last contribution is microgel size polydispersity. Our description accounts for both the wavelength 

smearing of FWHM 10% in SANS (which dominates the resolution function in the q-range of interest) 

and the microgel polydispersity in size measured by AFM (Gaussian σ = 20.0 %) in a single parameter σ, 

in practice σ = 20.4 % (see SI for details). In absence of interactions, the form factor can be averaged over 

the different sizes, using a polydispersity integral over the number distribution function P(r, R, σ) 

following Eq. (1), which in practice is reduced to a finite sum over seven sizes embracing the total size 

distribution (see Figure S1 for illustration). The total intensity then reads: 

𝐼 = ∫ 𝐼𝑅𝑀𝐶(𝑞, 𝑟)𝑃(𝑟, 𝑅, 𝜎)𝑑𝑟 + 𝐼𝑐ℎ𝑎𝑖𝑛(𝑞)    (4)  

Note that the polydispersity is introduced by stretching or compressing the density profile, via a 

modification of the shell thickness ΔR, while keeping the density identical. Bigger microgels have thus 

thicker shells, higher masses, and contribute more to the scattering following the weighting in Eq. (4). 

The total list of parameters of this model reads: (a) the three chain parameters, out of which ν is 

determined directly from the slope of the high-q part of the scattering curve, and I0
chain and Rg which are 

coupled, and the exact values of which do not influence the results of the model (see Figure S6 for 

maximum and minimum Rg values; also Figure S7). (b) the polydispersity which is fixed by AFM. (c) The 

total number of monomers in a microgel, which is fixed from the low-q intensity and concentration. (d) 

The parameters of the profile, namely the thickness of each shell, and the total size. While the latter is 

chosen big enough such that there are always empty shells outside the particles, the exact value of the 

thickness does not influence the result. Shells were chosen to be thick enough to keep information content 

adequate, and thin enough to describe correctly the profile intensity. In practice, the maximum resolution 

of our experiments of typically 2π/qmax gives a useful order of magnitude of the parameter ΔR, set to 2 nm. 

(e) Finally, the profile itself corresponds to some twenty values, which are fixed by minimizing the 

deviation between fit and measured intensity under the constraint of a smoothly decaying profile. Note 

that the intensity contains a comparable amount of information. 
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As a last comment, it should be noted that sometimes interactions between microgels cause a very weak 

structure factor visible in the low-q range, in particular at low temperature where microgel particles are 

swollen. Therefore, samples have been prepared at very low volume fractions (ca. 0.08%). We have 

checked that the structure factor does not affect our analysis due to the possibility of describing the same 

particles at high temperature first, where particles are small and do not interact at such concentrations.  

Results and Discussion 

Sphericity, polydispersity, and swelling curve. Before proceeding with the SANS analysis of the 

internal structure of the microgels described by the monomer profile, as a function of crosslinker content 

and temperature, the assumption of an isotropic profile has to be checked. This assumption makes sense 

only if the microgels are indeed spheres. In Figure 2a, a representative real-space picture of the microgels 

with 10 mol% crosslinker content (CC) obtained by TEM is presented. This is a 2D projection of the 

particles in the dried state, and due to low contrast with the carbon grid, the interfaces are not well 

resolved. In Figure 2b, an AFM result is presented, with sharp enough contrast to determine the 

distribution of particle surfaces, and thus sizes (see SI). The microgels have the typical pancake-like 

structure (diameter 84 nm, height: 5 nm). This suggests that the particles in suspension exhibit spherical 

shape, because anisotropic shapes would result in anisotropic projections. Moreover, we have shown that 

particles at interfaces and in bulk have a similar swelling behavior,69 suggesting that internal 

heterogeneities do not affect measurements on surfaces. In AFM, the particles have a mean radius of 

42 nm, and a polydispersity of σ = 20.0 %. From the pictures in Figure 2 it appears to be necessary to 

perform SANS measurements in order to resolve the internal structure of the microgels. 

 

Figure 2: Real-space images of the microgel particles (CC = 10 mol%) in the dried state. Left: TEM, Right: AFM. 
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The size of the microgel particles as a function of temperature has been studied by PCS. The resulting 

hydrodynamic radius RH is shown in Figure 3. The volume phase transition temperature is found to be 

44 °C, as expected for this monomer 41,67,68. Several temperatures located in the approach of the transition 

temperature from below, as well as far below (at 15 °C) and above (at 55 °C) have been selected for the 

neutron scattering experiments. These temperatures are also indicated in Figure 3. 

 

Figure 3: PCS measurements of the hydrodynamic radius RH of pNIPMAM microgel particles with 10 mol% CC as 

a function of temperature. The volume phase transition temperature is found to be 44 °C. The vertical lines indicate 

the temperatures at which the SANS measurements have been performed. 

 

PCS allows the analysis of the total change in volume. As temperature increases, the hydrodynamic radius 

is found to decrease from RH = 54 nm, first approximately linearly down to 47 nm at 40 °C. Then the 

microgel collapses to RH = 29 nm, corresponding to a total volume decrease by a factor of about 6.5. The 

volume decrease depends on the CC and was studied elsewhere.13 It may be concluded that the hydration 

of the microgel must decrease strongly, and this will be confirmed by our analysis below.  

A reverse Monte Carlo (RMC) algorithm for the determination of the form-free microgel density 

profile. Modelling approaches of the microgel density profile Φ(r) in the literature discussed in the 

introduction suggest that a more general, form-free profile may might reveal additional features, and that 

such an approach might also be applied directly to more complex architectures, including polydisperse 

core-shell microgels currently studied in our laboratories. In this work, the radial monomer volume 

fraction profile of simple (i.e., a priori homogeneous) microgel particles is described by a discrete number 

of densities of monomers (fictitious, including crosslinker, see materials) in successive spherical shells of 

constant thickness. The volume fraction, number of monomers, contrast in D2O, and monomer (repeat 

unit) volume are given for a standard sample (CC = 10%) in Table 1. 
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Microgel volume fraction 0.818 10-3 

Total number of fictitious 

monomers in microgel particle 

of average radius R 

1.1 105 

ρMono / 1010 cm-2 1.0 

VMono / nm3 0.195 

Density / g cm-3 1.10 

 

Table 1: Monomer number and properties for a typical microgel particle (CC = 10 mol%, RH = 55 nm at T = 15 °C). 

The values of ρMono, Vmono, and the density were obtained by the contrast variation shown in Figure 1. The average 

radius R corresponds to the calculation with shell thickness ΔR = 2 nm. 

 

The reverse Monte Carlo algorithm is illustrated in Figure 4a. Several different initial conditions have 

been tried out to check the robustness of our approach. It is shown in Fig. S2 of the SI that (very) different 

initial conditions hardly change the final profile, e.g. by distributing the monomers such that the average 

density is constant everywhere in the particle, or by completely filling the inner shells first. In practice, we 

have used outputs at high temperature as initial guess for the next lower one. Using Eqs. (2-4), the 

scattered intensity is calculated and compared to the measured one, via χi
2: 

χi
2 =

1

𝑁𝑞
∑ [

(𝐼𝑒𝑥𝑝(𝑞𝑖)−𝐼𝑐𝑎𝑙𝑐(𝑞𝑖))

𝐼𝐸𝑟𝑟(𝑞𝑖)
]

2
𝑁𝑞
1      (5) 

where Nq represents the total number of q-values (typically 200), the sum over i extending over all data 

points of the experimental Iexp(qi) and theoretical Icalc(qi) intensities. IErr(qi) is the error of the experimental 

intensity. The decision of acceptance takes into account two contributions, χi
2 and χr

2, where the latter 

describes the roughness of the density profile: 

χr
2=

1

𝑁𝑝−1
∑ [𝛷(𝑗) − 𝛷(𝑗 + 1)]2
𝑁𝑝−1

1     (6) 

The sum extends over Np, the total number of shells (Np = 30), and Φ is the monomer volume fraction in 

shell j. The acceptance is based on the sum of two contributions, with a weighting factor A which may 

favor either very good fits, or very smooth profiles 61: 

𝜒2 =
(𝜒𝑖

2+𝐴𝜒𝑟
2)

(1+𝐴)
       (7) 

A compromise (“stability plot”) was sought by systematically varying A, cf. SI Figures S3 and S4. For our 

purposes, A = 100 gave stable and satisfying results both for the fits and in smoothness, and was used 
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throughout this article. Note that this determination of A compensates for any variability in the definition 

of χi
2, in case of different error bars on the intensity for example. 

Then MC steps are performed, by moving groups of Nmove monomers randomly from one shell to another 

shell, following a set of rules: (a) The volume fraction of monomers in a cell cannot exceed 100 %, nor be 

negative. (b) The simulation starts with a rather coarse description, moving around groups of 100 

monomers to start with, out of a total of typically 105. This number is then progressively reduced to 1 

during the simulation run in order to fine tune the profile, unless a satisfying χi
2 is found. (c) The polymer 

density is only allowed to decrease with increasing radius. This avoids having empty shells in the middle 

of the particle. (d) The deviation between theoretical curve and measured intensity is expressed as χ2. MC 

moves are accepted if they decrease χ2, or if the increase is negligible with respect to χT
2, expressed via a 

Boltzmann criterion exp(-χ2/χT
2). χT

2 plays the role of an effective temperature, which is set to a high value 

(five times the initial χ2, with a minimum of 1000), and which is then progressively decreased with the 

number of steps (“simulated annealing”). (e) The total number of MC steps is typically 105-106. An 

example for a simulation run is shown in Figure 4b. The effective temperature χT
2 is seen to decrease down 

to a lower bound, which is reached when the fit expressed by χi
2 is judged to be acceptable (black 

squares), jointly with the roughness χr
2 (green triangles). Then, the number of monomers per group is also 

frozen (blue circles in Figure 4b) and the profile and fit are averaged over the next 100 000 steps (Figure 

4b). Note that RMC-parameters like the decrease of the number of monomers moved in each step affect 

only the speed of convergence, but not the final result (shown for comparison in Figure S8). 

The outcome of this simulation procedure is a smoothly decaying monomeric volume fraction profile 

having a Fourier transform compatible with the observed scattering. Note that size polydispersity is 

included from the start. Only one profile is generated by the algorithm, corresponding to the nominal 

thickness of the shells. Size averages are then calculated as indicated in the methods section, i.e. stretching 

or compressing the shells, and the (unique) profile is modified until the averaged intensity is satisfyingly 

fitted. 
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Figure 4: (a) Shell model of average microgel particle indicating moves of groups of monomers between shells. (b) 

Simulation parameters as a function of the number of MC steps (χi
2, χT

2, Nmove, the number monomers moved in one 

step, as indicated in the legend. The lowest value is 1). Once χ2 falls below 1 the profiles and fits are averaged over 

the next 100 000 steps. In the inset, the initial guess for the intensity (in red) and the final simulation result (in green) 

are compared to the experimental intensity (black). 

 

Temperature-dependence of internal structure of microgels. We have applied our form-free 

multi-shell model defined by Eq. (4) to pNIPMAM microgels containing CC = 10 mol% in D2O, at 

different temperatures, covering the entire range of the volume phase transition temperature of this 

polymer (44 °C). The final profiles shown in this paper have been obtained by first describing the 

microgels at the highest temperature (55 °C), and using the resulting profile as initial condition for the 

next lower temperature, down to 15 °C. The profile for this last temperature was then recalculated again 

with different initial conditions, see SI, in order to check robustness. 

The chain and profile contributions to a final fit of the experimental intensity are exemplarily shown 

separately in Figure 5a for T = 55 °C. We have chosen the highest temperature for illustration, as the 

particle surface is well-defined in this collapsed state. At intermediate q (≈ 0.02 Å-1), this induces well-

defined oscillations which are smoothed by polydispersity. The chain scattering is seen to be rather weak 

due to the limited particle hydration; it is responsible only for the high-q intensity. One might have 

worried about the oscillation being affected by the Guinier domain of chain scattering, but according to 

Figure 5a, this is clearly not the case. As size polydispersity (and the resolution function, see SI) is 

included, the description of this oscillation is thus entirely related to the shape of the density profile to be 

discussed below, and in particular to the steepness and curvature at the interface. 
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The entire data set as a function of temperature is shown in Figure 5b, and the corresponding fit 

parameters of the chains are given in Table 2. The total number of monomers has been fixed by adjusting 

the well-defined low-q intensity of the 55 °C-sample where the structure factor is negligible, and kept for 

all other T. It is given for microgels of nominal shell thickness (ΔR = 2 nm) corresponding to the average 

radius in Eq. (1), and is higher (resp. lower) for bigger (resp. smaller) particles as described by the 

Gaussian size distribution. From the comparison of I0
chain to the low-q intensity of the microgel, it is 

deduced that approximately 1300 subchains make up the particle. 

 

Temperature / °C Chain properties 

I0
C / cm-1 Rg

C / nm ν 

15 0.08 9.5 0.71 

30 0.07 7.5 0.67 

35 0.07 6.0 0.53 

40 0.07 5.0 0.38 

55 0.04 4.5 0.27 

 

Table 2: Fitted chain parameters following Eqs. (2) for microgel temperature series (CC = 10 mol%). 

 

ν was deduced directly from the slope of the chain contribution at high-q. It decreases from 0.71 at 15 °C 

to 0.27 at 55 °C. Thus the slope of the intensity increases from q-1.4 at 15 °C to q-3.7 at 55 °C, where the 

scattering approaches the one of a sphere with well-defined interfaces, and the corresponding Porod power 

law q-4. The parameter ν evidences the evolution from rather extended chains of low fractal dimension at 

low temperature, to chains close to ideal Gaussian statistics at 35 °C, and a chain collapse at higher 

temperatures. As shown by the continuous decrease in the radius of gyration of chains Rg
C which is our 

measure of the meshsize of the network, the network shrinks continuously with temperature, 

accompanying the changes in chain conformation. In parallel, the prefactor of the chain scattering given in 

Table 2 stays constant from low temperature up to the volume phase transition temperature of ca. 44 °C 

(see Fig. 3), and decreases only after, indicating that the amplitude of the network heterogeneity, or 

alternatively the mass of the subchains making up the network, remains conserved below 44 °C. Above 

this temperature, chains may start to stick together, and their visibility decreases. 
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Figure 5: (a) Fitted chain and profile contributions to scattered intensity of a microgel (CC = 10 mol%) at 55 °C. (b) 

Temperature series from 15 to 55 °C of experimental intensities of the same microgel (symbols), compared to the 

model fits (solid lines). 

 

The profiles Φ(r) corresponding to the parameters given in Table 3 and to the fits shown in Figure 5b have 

been plotted in Figure 6. They are represented as the monomer volume fraction in each of the concentric 

shells defining the geometry of the model. A first obvious validation is that all particles are entirely 

contained in these shells, i.e. the density goes to zero for sufficiently big radii, at all temperatures. In the 

swollen microgels at low temperature, the maximum spatial extension of the microgels is found, up to a 

radius of ca. 42 nm. This value can be compared to the hydrodynamic radius, RH = 54 nm. The latter being 

higher indicates that the diffusion of the microgel particles is hindered by a low-density (i.e., hardly 

visible in SANS) corona of chains extending from the particle into the solution. It may be noted in Table 3 

that the hydrodynamic radii are typically 20 nm above the radius of gyration Rg of the particles as long as 

one stays below the transition temperature of 44 °C. Above, the RH is only 10 nm bigger than Rg, 

presumably due to the bad solvent condition of corona chains. This results in a collapse of the corona 

chains and thus a sharper surface, bringing RH closer to Rg, without however reaching the homogeneous 

sphere ratio of Rg/RH = √3 5⁄ . The evolution of Rg/RH is shown in the inset in Figure 6. The curve has a 

similar shape and in particular a kink in the vicinity of the phase transition, as observed for pNIPAM by 

Deen et al.42 Altogether, the evolution of the particle size with temperature found by SANS is compatible 

with the one found by PCS. 

The size deduced from the profile can be compared to the radius of gyration of the particle. Rg can be 

calculated from an integral over the density profile, or directly be determined from the Guinier region of 
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I(q) as reported in Table 3, giving identical results within an error induced by the finite shell thickness. An 

additional way to quantify the spatial extension of the microgel particles is to take the radius R50% where 

the volume fraction is half of its value in the center: Φ(R50%) = 0.5 * Φ(0). As can be seen in Table 3, this 

R50% is surprisingly close to Rg. 

The higher spatial extension of microgels at low temperature is naturally accompanied by a lower 

monomer volume fraction in the center (i.e. at small r in Figure 6), due to conservation of the total number 

of monomers. The remaining volume being occupied by the solvent, the hydration levels can be directly 

read off from the low-r limits in Figure 6: Hydration = 1 – Φ(r=0). Hydration is also reported in Table 3, 

and it can be seen to decrease from some 85 %v (in good agreement with recent findings by Dulle et al.76 

to about 42 %v with increasing temperature, accompanying microgel collapse. These values may be 

compared to those obtained on core-shell microgel particles69, where the hydration was about 90 %v at 

low temperatures. One may also note that the evolution of the hydration values is compatible with the 

change in Rg, i.e. the model is self-consistent. 

The radius of gyration Rg in Table 3 is a global quantity describing the average mass distribution inside 

the microgel with a single parameter. The profile given by our form-free multishell analysis provides not 

only the water content, but also the shape and in particular steepness of the microgel-water interface. We 

have chosen to characterize the gradient of the interface by its width, which we have defined arbitrarily as 

the difference in radii ϴ = R20% - R80%, following the same definition as for R50%. The relative width, 

ϴ/R50%, is reported in Table 3. It is seen to evolve considerably, from highly extended, floppy microgels at 

low T, to smaller and more compact, well-defined microgel particles at high temperature. In absolute 

values, the width of the interface becomes even sharper, as not only the relative width decreases from 

typically 40 % to 15 %, but also the size decreases by some 30 %. In total, the absolute width decreases 

thus by roughly a factor of three. Moreover, the curvature of the profile at the surface of the particle is 

found to point upwards, and at low temperature, a small density gradient at the center of the particle is 

evidenced. This quantification of the evolution of the interface including thickness and curvature is one of 

the main findings of this article, which would have been difficult to obtain with predefined analytical 

profiles, let alone perfect spheres, as discussed in the last section of this article. The values for the 

monomer volume fraction and the interface thickness may be compared to the original studies by Stieger 

et al.39. These authors found typically above Φ = 40 % in the center of the microgels at high temperature, 

and below 10 % at low T, depending on the crosslinking. These values compare favorably with our 

results. The relative width expressed by their Gaussian fuzziness evolves from very sharp at high 

temperature (some percent, a virtually box-like profile being suitable) to about 25 % at low T, depending 
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again on crosslinking, i.e. the span is much larger than with our microgel particles. This may be due to 

different crosslink concentrations and a different overall size. 

Temperature / °C Rg / nm RH / nm R50% / nm Hydration / % ϴ/R50% 

15 34.5 53.4 29.0 84 0.38 

30 32.0 50.9 29.0 77 0.35 

35 31.2 49.4 27.0 75 0.48 

40 26.9 46.5 24.0 66 0.42 

55 19.9 29.3 21.0 42 0.14 

 

Table 3: Particle parameters as a function of temperature. The particle radius of gyration Rg was determined with a 

Guinier fit of the low-q region. The hydrodynamic radius RH is a result of the PCS measurements und R50% was 

deduced from the density profiles in Figure 6. The hydration was calculated with 1 – Φ(0) where Φ(0) was taken 

from Figure 6. ϴ/R50% describes the steepness of the density profile in Figure 6 and was calculated as described in 

the text. 

 

Figure 6: Density profile of the microgel (CC = 10 mol%) at different temperatures as indicated in the legend. The 

vertical colored bars indicate the hydrodynamic radii of the same samples. Inset: temperature-dependence of Rg/RH. 
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Effect of crosslinking on internal structure of microgels at high T. Following the analysis of one 

system (CC = 10 mol%) at various temperatures, we have studied the influence of the crosslinker content 

in pNIPMAM microgels at 55 °C. The effect on the swelling behavior with T has been studied elsewhere 

by light scattering.69 In Figure 7a the SANS intensities of a CC variation from 5 mol% to 15 mol% CC are 

compared to the reverse Monte Carlo fits, all of good quality. The form factor oscillation at ca. q ≈ 0.02 

Å-1 is well pronounced for CC = 10 mol% and 15 mol%, and is weak for 5 mol% CC. The smearing of the 

oscillation at 5 mol% is due to a higher steepness inside the particle in spite of a better definition of the 

interface as deduced from the density profiles and summarized in Table 4. The density profiles obtained 

from the RMC simulation are shown in the SI. In Figure 7b, the particle sizes have been normalized to the 

one of the 10 mol% CC for comparison, because the microgel sizes vary for each synthesis and do not 

reflect differences in internal structure. The hydration in the center of the particle is found to increase from 

2 % to about 50 % with increasing CC, contrarily to what one might have expected. At this high 

crosslinking values, this may be due to the higher chain flexibility of the less-crosslinked sample, allowing 

the chains to more efficiently occupy the available volume and expel the water molecules from the center 

of the particle. This observation is in agreement with the well-known decrease of the swelling capacity of 

pNIPAM microgels with increasing CC.77 More crosslinks increase the mechanical constraints inside the 

network leading to an incomplete collapse and a structure still having space to accommodate water. As 

one can see in Figure 7b, a smooth gradient in hydration from the center towards the surface of the 

particles is found for 5 mol% CC, whereas at higher crosslinking density, there is no gradient in the center 

of the particles. The higher chain rigidity thus seems to confer a more homogeneous monomer density to 

the particles. The rigidity also seems to cause a difference in the evolution of the steepness of the profiles 

at the surface of the particle as given by Θ/R50% in Table 4. The most flexible, low-CC microgel particles 

have also the steepest gradient at the surface. All their chains are thus collapsed onto the particle, creating 

a well-defined polymer-water interface, whereas the more rigid chains still extend into the liquid, probably 

due to difficulties in folding back. It is noteworthy that the effect observed here is different from the 

independence of crosslinking found by Stieger et al.39 at high temperature, whereas at low T (not studied 

here) microgels are swollen and higher crosslinking leads to denser particles. This difference is probably 

due to the higher crosslinking densities used in the present study, with its consequences on chain 

flexibility. As a final remark on this set of data, one may note that here the high generality of our form-

free multishell approach allows to simultaneously describe a gradient inside the particles, and a different 

one at their surface, something which would have to be anticipated in any model of fixed shape function. 
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Figure 7: (a): SANS data with fits T = 55 °C shifted in intensity for clarity as indicated in the legend for three 

different crosslinker densities. The SLD of the fictitious monomer was adjusted (5 mol%: 0.96 1010 cm-2, 10 mol%: 

1.00 1010 cm-2, 15 mol%: 1.03 1010 cm-2). (b) pNIPMAM monomer volume fraction profiles for the same samples, 

renormalized to the radius of the 10% CC sample for comparison. 

 

CC / mol% Rg / nm RH / nm Hydration / % ϴ/R50% 

5 23.9 34.3 2 0.09 

10 19.9 29.3 43 0.14 

15 21.9 32.2 52 0.17 

 

Table 4: Particle parameters for a CC variation. The particle radius of gyration Rg was determined with a Guinier fit 

of the low-q region. The hydrodynamic radius RH is a result of the PCS measurements und R50% was deduced from 

the density profiles in Figure 6. The hydration was calculated with 1 – Φ(0) where Φ(0) was taken from Figure 7b. 

ϴ/R50% describes the steepness of the density profile in Figure 7b and was calculated as described above. 

 

Form-free analysis of deuterated microgels. As a preparation for upcoming experiments with deuterated 

core-shell microgels analyzed with the form-free multishell model, we have performed an identical 

microgel synthesis using two different deuterated monomers, called D7 and D12 reflecting their degree of 

H-D-substitution, and hydrogenated crosslinker. The SANS experiments have been performed in H2O, and 

scattering length densities determined by contrast variation to 4.45·1010 cm-2 and 7.62·1010 cm-2 for D7 and 

D12, respectively. The scattered intensities are shown in Figure 8a, and the resulting monomer density 

profiles in Figure 8b. The main result is that hydration levels are much higher, even at high temperatures, 

indicating that the polymerization and crosslinking reaction have followed a different kinetics as 

compared to the hydrogenated monomers. It can be expected that the deuterated monomers react slowlier 

compared to their hydrogenated counterparts. This should lead to an even steeper crosslinker gradient 
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compared to the “normal” microgels. At low temperature, the shape of the profiles is found to be more 

extended into the solution, microgel particles are fuzzier. This analysis of pure D-microgels thus gives 

valuable information on how to proceed with microgel particles containing both H- and D-monomers. 

 

 

Figure 8: (a) Intensity I(q) vs. q of D7 (resp. D12) microgels with 10 mol% CC at 15 and 55 °C, compared to RMC 

fits. The volume fraction Φ of the D12 samples was 0.00818 and for the D7 samples 0.000818 (b) Corresponding 

density profiles.  

 

Comparison of the RMC-multishell model to fuzzy-sphere-like models.  

In the following, we compare our results obtained with the general form-free multi-shell algorithm to 

prominent models from literature 39,51,78. As already mentioned in the introduction, a similar form-free 

algorithm has been proposed 62, but not applied to spherically symmetric systems, and in particular not to 

microgels.61,63 For the sake of comparison, all model predictions have been calculated using the same 

relative particle polydispersity (see Eq. (1) and SI) of 20.4 %. The simplest model is the homogeneous 

sphere model78, i.e. the intensity of which corresponds to the form factor of a sphere, which by definition 

does not describe any gradient, in particular at the interface. This simple model has been shown to work 

rather well for microgels in the collapsed state (here 55 °C). At high q, its characteristic Porod law (q-4) 

describes well-defined surfaces. Its corresponding fit shown on the left, Figure 9a, (including a weak 

polymer contribution as described by Eqs. (2), ν = 0.27, indicating poor solvent) is surprisingly good, as 

already recognized by Stieger et al.39. The zoom shown in the inset, however, demonstrates that the sphere 

model with polydispersity still does not perfectly fit the oscillation. The same is true with the Boon-

Schurtenberger model, which underestimates the intensity around the oscillation shown in the inset 51. Its 



22 

 

Flory-Rehner approach is a priori not appropriate for high-T collapsed states, because it focuses on the 

visibility of solvated polymer chains. The model still works correctly, presumably because of the non 

negligible hydration in the core, as shown in Figure 9b. The Gaussian fuzzy-sphere model presents a good 

fit, slightly overestimating the intensity at the oscillation, while the fit of our multi-shell and of the 

piecewise-parabolic models are seen to be even better. In Figure 9b, the corresponding volume fraction 

profiles are shown. All volume fractions in the core of the particles reach a similar value, around 60 %, 

and the decrease of the profile occurs in the same size range. The shapes of the profiles, however, differ 

considerably. The sphere-model is easily recognized by its rectangular shape in the radial representation. 

The density profile of the Boon-Schurtenberger model is also plotted, with its characteristic progressive 

decrease described by a third-degree polynomial. The results of two best fits, the parabolic fuzzy-sphere 

model and the multi-shell model, can be directly compared in Figure 9b. Almost identical core hydration 

values are found. The width of the profile is seen to be non-zero, although it is still rather steep, and inside 

the particle a homogeneous, constant profile is reached by both the multi-shell and the fuzzy-sphere 

models. 
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Figure 9: Comparison of experimental intensities (10 mol% CC) with other models as indicated the legend. Left: 

I(q) vs. q, right: density profiles, top: 55 °C, bottom: 15 °C. 

For the lowest temperature of 15 °C, model intensities are compared in Figure 9c to the measured one. 

The sphere model presents the same oscillation as at 55 °C, as steepness of the profile cannot be adapted. 

Thus the sphere model does describe our data at 55 °C approximatively, but completely fails in the 

swollen state of the microgels, as anticipated and already seen by others.39,51 The Boon-Schurtenberger 

model is again slightly off in the oscillation region, this time overestimating the intensity. The multi-shell 

and the fuzzy-sphere models are again quite successful, but one may note in the zoom that some 

oscillations not found in the experiment persist in the Gaussian fuzzy-sphere fit, while the other two 

models perform equivalently. On the scale of Figure 9d, the monomer volume fraction profiles show some 

differences, although all models predict comparable hydration levels in the center, corresponding to 

monomer volume fractions between 12 % and 16 %, instead of 60 % at 55 °C. The steepness of the profile 

at the surface of the particles on the other hand is much lower than at 55 °C. The profiles of both the 
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fuzzy-sphere models and the multi-shell model in Figure 9d have a similar spatial extension, but the 

higher flexibility of our model results in a non-constant profile inside the particle, which might be 

reminiscent of a radially non homogeneous crosslinking density and was also observed by dSTORM52. 

Moreover, contrarily to the 55 °C data, the curvature of the fuzzy- and multishell-profile at the surface is 

opposite, which again would have had to be anticipated to be described by a fixed-form model. Together 

with the possibility to describe the internal gradient and the particle surface independently and freely, this 

represents the main outcome of this article. This flexibility, precise description, and the above-mentioned 

compatibility to deuteration will be crucial for further studies of core-shell microgels where one part is 

hydrogenated and the other deuterated. 

 

Summary and conclusion 

We have applied a form-free description of the monomer density profile of spherically-symmetric, 

polydisperse microgel particles to SANS intensity curves, together with a polymer scattering term which 

is only of importance at high q, and the exact form of which does not influence our results on the profile. 

The analysis of this term shows that polymer chains are not only visible up to the volume phase transition 

temperature, but also above, accompanied by a decrease in visibility and an increase in fractal dimension, 

due to the poor-solvent conditions. Our description is coarse-grained, and the nominal thickness of the 

shells is 2 nm. We have implemented reverse Monte Carlo steps of monomers moving from one shell to 

the other, progressively optimizing both the agreement with the scattered intensity, and the smoothness of 

the profile. The results have been shown to be robust with respect to various initial conditions. The 

polydispersity and resolution effect have been taken into account based on independent AFM pictures, and 

the characteristics of the SANS beamlines, respectively. Working with known polydispersity increases the 

trustworthyness of the resulting density gradients. One may note that the presence of interactions in 

particular in the swollen state sometimes leads to very weak structure factors in the low-q range. As the 

low-q intensity is fixed by the number of monomers in each particle, as well as the scattering length 

density as determined independently by contrast variation, this does not have any consequences for our 

approach.  

Our method has been applied to a microgel series in temperature, from 15 °C (swollen) to 55 °C 

(collapsed), the transition temperature of pNIPMAM being 44 °C as found by dynamic light scattering. 

All fits are of very high quality, and turn out to be better than most existing models, in particular around 

the first form factor oscillation, with the exception of the piece-wise parabolic fuzzy-sphere model. 

However, our method is more general, which is decisive for the description of gradients inside the 
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particles. The resulting profiles not only provide the internal hydration of the microgels, but also a 

measure of the gradient at the interface (steepness), as well as the curvature of the profile, which was 

found to be positive. Moreover, in the highly swollen state, the density inside the microgel particles was 

found to be non-homogeneous, with an increase in density towards the center of the particles. This may be 

a possible signature of a heterogeneous crosslinking reaction within the particle.35 The effect of the total 

crosslinking density was also studied, between 5 mol% and 15 mol%, and surprisingly the less crosslinked 

samples displayed the lowest hydration values, as well as the steepest gradient at the particle surface, 

presumably due to the possibility of the molecules to backfold more efficiently.  

Our model is highly general in the sense that it can be applied to microgels of arbitrary composition, and 

in particular microgels containing both H- and D-monomers. We are currently working on H-D core-shell 

microgels, the core of which is exactly the one studied in this article. We will thus be able to quantify the 

extent of compression of the core by the shell, using our approach. In order to prepare this, we have 

included in the present article a study of the effect of deuteration, comparing H, D7 and D12 monomers. 

Preliminary experiments with deuterated microgels hint at differences in chemical reactivity, leading to 

more floppy and more hydrated microgels than with H-monomers. It is also promising to use our method 

to look into the monomer profiles as a function of particle size, where non-spherical structures10 have been 

reported by some of us in the past, and which still need to be understood79. Finally, it is hoped that our 

method will also be compared to density measurements obtained by high-resolution microscopy of much 

bigger microgel particles 52. 
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Polydispersity 

AFM measurements have been performed to determine the polydispersity of the microgel particles. The 

raw data were treated using the open source data evaluation program for scanning probe microscopy 

Gwyddion1. After background correction (Figure 1, right, in the main article) the 2D projection surface of 

the particles was determined using ImageJ2 (Figure S1, left). After calculating the corresponding volume 

assuming spherical geometry, the resulting histogram of the radii was normalized to an average radius of 

1, and was fitted with a Gaussian as given in Eq. (1) to obtain the polydispersity in the form of the relative 

polydispersity σ/R (Figure S1, right). Ca. 80 particles have been measured on one picture, and we have 

checked that a second image with also 80 particles gave equivalent results. 
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Figure S1: Left: Treated AFM image with ImageJ to obtain the 2D projection surface of the microgels. Right: 

Histogram of the relative particle volumes (X) with determined occurrence with Gaussian Fit. The calculated σPoly/R 

is 0.20. 

For the contribution of the resolution function of the SANS experiment, the σλ/λ of the distribution 

function was calculated in the following way. 

𝜎𝑆𝐴𝑁𝑆 =
𝜎𝜆

𝜆
=

𝐹𝑊𝐻𝑀𝑆𝐴𝑁𝑆

2√2𝑙𝑛(2)
    (Eqs. S1) 

Now we can combine the relative σSANS of the neutron wavelength with the relative polydispersity of the 

microgels σPoly: 

𝜎 = √(𝜎𝑃𝑜𝑙𝑦)
2
+ (𝜎𝑆𝐴𝑁𝑆)

2   (Eqs. S2) 

This calculated total σ was used as relative polydispersity for our calculations, in Eq. (4). In practice, we 

have calculated seven points in size of a Gaussian function (Figure S2) covering the region from -2σ to 

+2σ. For comparison, we have checked that changing the polydispersity in our fits is feasible only within 

bounds, between 15 and 23%. Outside of this range, the fit quality is deteriorated. Note that PCS-

measurements of polydispersity were not conclusive. 
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Figure S2: Seven relative sizes (X) and probabilities (Y) used as polydispersity for the Monte-Carlo Simulations. 

The seven points cover the region from -2σ to +2σ. The red line is the Gauss Function with σ=0.204. 

 

 

Stability of Fits 

Weighting factor A: 

The weighting factor A in Eq. (7) in the main article regulates the preference of the reverse Monte-Carlo 

algorithm for smooth profiles or good fits. We systematically varied A from 1·10-1 to 1·104 (“stability 

plot”, Figure S3). For our purposes, A = 100 gave satisfying results both for the fits and in smoothness. 

Note that this procedure compensates for any variability in the definition of χi
2, in case of different error 

bars on the intensity for example.  
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Figure S3: 𝜒𝑖
2and 𝜒𝑟

2 as a function of the weighting factor A. At A=100 both values drop below 1. 

 

As can be seen in Figure S3 for A=100 both 𝜒𝑖
2and 𝜒𝑟

2 are below one. Optically, the calculations result in 

a smooth profile with a good fit quality. The corresponding fits and profiles for all values of A are 

presented in Figure S4, and one can see that even for large variations of A the outcome is relatively robust. 

For A≤100 the profile and the fit quality do not change. For A≥1000, the profile gets very smooth but the 

fit quality decreases. For all values of A the calculations were done as described in the main article, but if 

𝜒𝑖
2did not drop below one, the result after 300 000 steps was used. This resulted in a bad fit (Figure S4). 
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Figure S4: I(q) vs. q (left) and profiles (right) for the different values of A as used in the stability plot (Figure S3). 

The shown data were obtained for a CC of 10 mol%. 

 

Initial guess Profile: 

 

Figure S5: Comparison of two different initial profiles (filled symbols) for the calculations at 55 °C and 15 °C for 

pNIPMAM microgels with a CC of 10 mol%. a) One is quite similar to the final profile (Φ =0.5, circles) the other is 

very different (Φ=1.0, squares). Both calculations result in qualitatively very close final profiles (empty symbols). b) 

Here we show the result for 15 °C of the used initial profile (the profile from 30 °C) compared to a very different 

initial profile (the profile from 40 °C), both result qualitatively in the same profile. Note that the profiles of all other 

temperatures can be used as well as initial guess resulting qualitatively in the same profile. 
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Debye Chain contribution 

To study whether the Debye-Chain contribution influences our main result, the density profile, we 

performed the same calculation with and without the Debye contribution. Figure S6 shows the resulting 

Fits and Profiles. In Figure S6a the Fits are of the same quality for low q values. For high q the fit without 

Debye contribution deviates from the experimental data but this does not influence the resulting density 

profile in Figure S6b. 

 

Figure S6: a) I(q) vs. q of MC-Simulation with and without Chains. b) Corresponding Profiles. The shown data 

were obtained for a CC of 10 mol%. 

Although the chain contribution does not influence the main result of this article, the density profiles, it 

affects the quality of the Fit. As the radius of gyration Rg and the general prefactor I0
chain effects each 

other, there is a small range for these values. The range and the effect are shown in Figure S7. If one of the 

values is chosen to be outside this range, the quality of the fit decreases distinctly.  
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Figure S7: RMC simulations with a Rg of the Chains (Debye) of 4 nm and 5 nm. If the Rg is chosen to be higher 

than 5 nm the oscillation is described poorly. If Rg is chosen to be smaller than 4 nm the deviation at large q-values 

increases. The shown data were obtained for a CC of 10 mol%. 

 

Influence of fit parameters on the results 

To make sure that the decrease of the monomers which are moved in each step does not affect the results, 

we varied the reduction factor (Figure S8, left). The reduction factor is the value by which the number of 

monomers which are moved in each next RMC step is divided for each new step. Note that due to 

rounding only integer values of monomers are moved. By changing this reduction factor from 1.00003 to 

1.00005 we obtained the qualitative same results (Figure S8, right). 
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Figure S8: Left: Different decrease of Nmove. Squares: reduction factor = 1.00003 and Triangles: 1.00005. Right: 

Resulting monomer profile of both simulations. The shown data were obtained for a CC of 10 mol%. 

 

Weighting of Intensity deviations 

As described in the main article we used the error bars shown in Figure S9 to calculate the χi
2, the error in 

intensity. The errors in I(q) are based on the errors of the SANS measurements, but were increased 

manually in some cases to discard, e.g., the influence of the weak structure factor at low-q. 

 

Figure S9: I(q) vs. q with Monte Carlo fit and Error bars used for the calculation of χi
2. The shown data were 

obtained for a CC of 10 mol%. 

 

 

 



S9 

 

Density profile for different crosslinker contents 

 

Figure S10: Non-normalized pNIPMAM monomer volume fraction profiles three different CC due to the different 

crosslinker/monomer ratio, the SLD of the fictitious monomer was adjusted (5 mol%: 0.96 1010 cm-2, 10 mol%: 1.00 

1010 cm-2, 15 mol%: 1.03 1010 cm-2).  

 

Contrast Variation 

The intensity curves are shown in the Figure S11.  
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Figure S11: (a) Intensity functions used for contrast variation. Solvent scattering length density varied from H2O to 

D2O (-0.561, 0.1326, 1.173, 2.907, 6.375)·1010 cm-2. (b) Intensity normed to contrast. 
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The q-values chosen were all in the low-q range: 0.0069, 0.00777, 0.00863, 0.00949, 0.01036, 0.01122, 

0.01208, and 0.01295 Å-1. The identical match-point in Figure 1 for different q-values can be seen as an 

extrapolation (of a constant) to q → 0 as done in classical contrast variation. The superposition in Fig. 

S11b indicates that the polymer chains are the only source of contrast in these experiments, and the 

contrast variation gives identical results on all measurable scales. 

Photon Correlation Spectroscopy 

Angle-dependent photon correlation spectroscopy (PCS) measurements have been performed in the range 

of 30° to 120° in 5° steps to study whether our particles do show purely diffusional dynamics or not. As 

all data points can be represented by a linear fit (red line) going through the origin, the observed dynamics 

is purely diffusional indeed. The presented data were obtained at 15°C and correspond to the swollen state 

of the measured microgels. Even in the swollen state no internal network modes perturb the PCS signal. 

Hence, it is straightforward to do the investigation of the swelling behavior only at a fixed angle. 

 

Figure S12: Γ vs. q2 for a pNIPMAM microgel with 15 mol% crosslinker content. The Y-axis intercept is zero 

within the experimental precision. 
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