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Contribution on the Source Field Calculation
through the Biot-Savart Equation Using Curvilinear Elements

and an Adaptive Process

Anderson Nunes1, 2, *, Olivier Chadebec3, Patrick Kuo-Peng1,
Patrick Dular4, and Bruno Cucco5

Abstract—The analytical solution of the Biot-Savart equation can be complex in some cases, and its
numerical integration is commonly more appropriate. In this paper, it is integrated using the Gauss-
Legendre method through 1, 2 and 3-D domains, using first and second-order (curvilinear) isoparametric
mapping. In order to verify the gain of accuracy with second-order elements, the results obtained are
compared with analytical cases and with the Finite Element Method. Then this paper presents an
adaptive method which profits from the accuracy along those elements with higher energy values, by
reducing the number of Gauss points along the elements with lower energy. This approach reduces the
total number of Gauss points evaluated during the integration process and provides a possibility to
choose an interesting trade-off between simulation time and accuracy.

1. INTRODUCTION

The calculation of magnetic fields is one important part of the magnetic device modeling using both
analytical and numerical approaches, the Biot-Savart equation [13] being largely applied in these two
cases.

Extensive literature is available about calculating magnetic fields with the Biot-Savart equation,
from more theoretical discussions as presented in [17] to specific applications [15, 24–28, 31]. Some
developments based on a sort of geometric discretization are published in [1, 4, 10, 16, 21, 29, 30].

Regarding the numerical methods, there are many packages available to solve electromagnetic
problems, in both high and low frequencies. Considering the packages applied to low frequency or even
magnetostatic cases, it is possible to identify several applications of Biot-Savart, once some formulations
require an “a priori” source field solution, for instance, in Finite Element Method (FEM) [20], in Facet
Finite Element Method (FFEM) [22] as well as in some integral methods [9, 18, 19]. In [5] the BS field
is used as an unperturbed solution in the subproblem technique. In the Computational Fluid Dynamics
(CFD), the BS is applied to model the velocity field generated by distributed vorticity fields [3, 23, 32].

Even in numerical methods, the source field solution can be obtained using the analytical
expressions given in the above references, respecting their specific topologies. However, for more complex
geometries, end windings [16] for example, it can be difficult to obtain one analytical solution. So, the
common sense is to performed the BS integration using the Gaussian quadrature [11] which is a more
general approach, but whose accuracy depends on the discretization level and on the elements order.
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Hence, in order to study the effectiveness of higher order elements, in this paper, the Biot-Savart
equation is integrated through the Gaussian quadrature method using first and second-order elements
with isoparametric mapping in 1-D (in a 3-D Lagrangian space), 2-D and 3-D. For each case, i.e., 1,
2 and 3-D domains, one coarse and one refined meshes are generated. Then, each of these meshes is
used to solve the problems through first and second-order elements. The results are compared with
exact analytical solutions or with the FEM, allowing to analyze the accuracy obtained with first and
second-order elements.

Furthermore, obtaining the magnetic field using Biot-Savart along large domains can be a time-
consuming task. With the aim of mitigating this issue, one simple adaptive algorithm is presented
that selects those elements with high energy levels considering the magnetic field obtained at only one
Gauss point. Along these elements, the integration is reevaluated taking into account all the Gauss
points. However, along those low energy elements, the magnetic field is assumed to be constant, and
consequently, only one Gauss point can be considered, reducing the total number of Gauss points
evaluated during the integration process. The CPU time is compared with the classical solution, which
considers all the Gauss points of all elements. Then, in order to make sure that this is a coherent
approach in terms of physical precision, the magnetic field obtained using this algorithm is used in the
FFEM [22] as a source field, and the results, i.e., magnetic induction and energy, are solved in a 3-D
device and compared.

2. THE BIOT-SAVART EQUATION

Given a non-magnetic domain Ω with the conductive and stranded region Ωs fed by the current density
J, Fig. 1, the magnetic field at the point Q ∈ Ω can be obtained using

H(Q) =
1
4π

∫
Ωsv

J(P ) × rPQ

|rPQ|3
dΩsv (1)

where P ∈ Ωs is the Gauss integration point, and rPQ is the position vector between Q and P .

H (Q)

r PQ

Q

J dv
I dl

J ds

P

Figure 1. Integration domain for the Biot-Savart equation.

In some cases, Ωs can be simplified by its average line, consequently not requiring a 3-D but 1-D
mesh [27] which could represent some computational advantages. In this case, the magnetic field is
calculated by:

H(Q) =
I

4π

∫
Ωsl

dl(P ) × rPQ

|rPQ|3
dΩsl (2)

For 2-D symmetries, Eq. (1) can be rewritten as

H(Q) =
J

2π

∫
Ωss

ds(P ) × rPQ

|rPQ|2
dΩss (3)

If the mesh in Ω is composed by first-order elements, the integration process along Ωs can be done
based on a non-conform mesh in Ω, allowing the use of higher order isoparametric elements, for instance,
increasing the accuracy mainly when Ωs is composed by curved bodies. Perhaps it is important to notice
that this gain of accuracy does not solve the well-known singularity problem that happens when the



Progress In Electromagnetics Research C, Vol. 88, 2018 147

|rPQ| tends to zero. In the case of time-varying formulations, it is possible to speed up the CPU time
by normalizing the current in the conductors as 1 A, for instance, and multiplying the field by the real
currents afterward. Also, as the conductors are immersed in a region with μr = 1, it is possible to
explore symmetries, which can be lost in the complete problem [7].

Regarding the CFD cases, the Biot-Savart equation is used to obtain the velocity field, V, due to
the vorticity W, i.e.,

V(Q) = − 1
4π

∫ π

0

∫ π

0

∫ ∞

−∞
S× W(P ) sin φdφdθ dr (4)

once curlV = W. rPQ = −RS and S = (sin φ cos φ, sin φ sin θ, cos φ) is the radius unit vector. In this
case, it is common to apply the equation in spherical coordinates, eliminating the singularity in the
integrand and making the integration easier in the numerical standpoint [3].

Besides that, it is possible to apply the Biot-Savart equation using other coordinate systems,
spherical or cylindrical one [10] for example, Eqs. (1), (2) and (3) are implemented using the cartesian
system.

The integration process is performed using the well-known Gauss quadrature [2], and the mapping
of the points P and Q is obtained with the shape functions corresponding to each element type. The
element order and the number of integration points are specified for each analyzed domain type. As
these topics are already well established, and for the sake of brevity, they are not presented here.

3. CURVED ELEMENTS MAPPING

It is known that curved elements can provide higher accuracy when modeling geometries with curved
topologies [14]. This mapping can be accomplished by transforming one curved element in the Euclidean
Ω(xyz) space into a reference element with straight sides and flat faces Ω̂(u, v,w) space.

u

v

y

x

w

Ω

f (Ω)

z

ˆ

Ω̂

Figure 2. Coordinates mapping.

Given the reference element Ω̂, Fig. 2, it is possible to map any coordinate into the real element, Ω

x =
ne∑
i=1

Ni
e (u, v,w) xi

y =
ne∑
i=1

Ni
e (u, v,w) yi

z =
ne∑
i=1

Ni
e (u, v,w) zi

(5)

where Ni
e is the nodal shape functions; i is the element node index; and ne is the number of element

nodes. The Ni
e functions applied in this work are given in [12], and its specific table of each of the Ni

e

functions is summarized in Table 1.
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Table 1. Tables with the Ni
e functions in [12]

Element type First-order Second-order
1-D (line) Table 8.2 Table 8.3

2-D (triangle) Table 8.4 Table 8.5
3-D (tetrahedral) Table 8.9 Table 8.10

Regarding the integration process, it could be done analytically along straight elements with linear
shape functions. However, this is not the case for the curvilinear elements, where the non-polynomial
variations may happen in the integrands. In these cases, the numerical integration methods are more
indicated [20], and taking into account its application on the FEM, the Gaussian quadrature is applied,
i.e., ∫

K (u) du =
r∑

i=1

Wi K (ui) (6)

where r is the number of Gauss points, and W is the weight associated to each point.
The number of Gauss points used for each type of element are indicated in Table 2 and can be

found in details in [2, 12, 20].

Table 2. Number of Gauss points used in this work.

Element type First-order Second-order
1-D (line) 1 2

2-D (triangle) 3 4
3-D (tetrahedral) 4 5

4. RESULTS

Considering the aim of this work, all the results presented are obtained considering the integration of
Equations (1), (2) and (3), through first and second-order elements of a coarse and a fine meshes. Then
the results are compared between them, with analytical equations or with the FEM.

All the meshes presented in this work were generated using the Gmsh [8] program.

4.1. 1-D: A Current Loop

In some large-scale models, it is possible to neglect the cross-section of the conductors considering
filament approximations [27]. So, the first test case is one circular loop fed by a current of I = 100 A,
Fig. 3, where R = 150 mm. The coarse meshes generated, both with 8 elements, are presented in Fig. 4.
It is noticeable that the discretization improvement is obtained with the second-order elements.

Line X

Line Z

I

X
Y

Z

R

Figure 3. 1-D current loop.
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(b)(a)

Figure 4. 1-D coarse mesh. (a) First-order. (b) Second-order.

The results obtained by integrating Eq. (2) along these meshes are compared with the analytical
solution,

Hz =
IR2

2 (R2 + z2)3/2
(7)

along the line Z. For the particular case of Z = 0, i.e., in the center of the current loop, the magnetic
field Hz = 333.333 A/m.

The results obtained using the coarse meshes are presented in Fig. 5, which shows a difference of
proximately 15% in the results calculated with first-order elements and 0.1% in the results obtained
with second-order elements.

(b)(a)

Figure 5. Line Z — Coarse mesh. (a) Magnetic field. (b) Comparison.

Then, this 1-D mesh is regenerated with 32 elements, and the new results are shown in Fig. 6. In
this case, the differences are 0.8% and 5 10−4%.

For the analysis along the X axis (line X in Fig. 3), the results obtained with the coarse mesh are
given in Fig. 7, where the blue lines represent the conductors positions.

As expected in a BS solution, the field intensity increases drastically when the distance between
the analysis point and the conductor is small. This behavior is clear when the second-order elements
are used, but the lack of precision of the first-order solution does not show this behavior properly. On
the other hand, when this distance increases, the differences between the results decrease.

The results obtained with the refined mesh, Fig. 8, are more coherent, but the magnetic field closer
to the conductor is considerably higher when calculated with second-order elements. However, the
results are more similar for far regions, with a difference of 0.7% at the center of the loop, i.e., x = 0.
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(b)(a)

Figure 6. Line Z — Fine mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 7. Line X — Coarse mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 8. Line X — Fine mesh. (a) Magnetic field. (b) Comparison.

Regarding the computational time, as presented in Table 2, the first-order integration was
implemented with one Gauss point and the second-order with two. So, one can expect the simulation
time with second-order twice longer. For the coarse and refined meshes, this factor was 2.33 and
2.09, respectively. Hence comparing the results presented in Figs. 6(b) and 5(b), one realizes that the
difference obtained with the second-order coarse mesh is about ten times lower than the difference
verified with the first-order refined mesh. This fact suggests that a coarse mesh with second-order
elements would be more appropriate.
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4.2. 2-D: A Symmetry along the XY Plane

Regardless of the numerical method or formulation used, the 2-D symmetries are largely applied and
worth this analysis. For this sake, a simple geometry is composed by two circular conductors and
placed in the XY plane, as presented in Fig. 9, where Ri = 25 mm, Re = 50 mm, ly = 10 mm and
J = 13333.33333 A/m2 in Z direction.

Line X

L
ine

Y

X

Y

Z

J

J

R e

R ily

Figure 9. 2-D geometry.

The reference solution is obtained with the FEM method, with a magnetic vector potential
A formulation and an adequately refined second-order mesh, through the programs Gmsh [8] and
GetDP [6]. The flux lines and the magnetic field distribution are shown in Fig. 10.

(b)(a)

Figure 10. FEM solution. (a) Flux lines. (b) Magnetic field.

Then, the magnetic field distribution is calculated using the Biot-Savart equation given in Eq. (3)
along the axes X and Y , lines X and Y of Fig. 9. The Gauss integration is performed using one and
three points for the first and second-order elements, respectively. The two meshes, coarse and fine,
count with 34 and 1210 elements, and the first of them is shown in Fig. 11.

The results obtained along the line X with the coarse mesh and the comparison with FEM are
given in Fig. 12. The results present a maximum difference of 10% and 2.5% for elements of first and
second-order. Notwithstanding, these differences are less significant at the center of the model (x = 0),
i.e., 2% and 0.6%.

The fields calculated with the refined mesh, Fig. 13, are close and present a maximum difference
of about 1.2%. At the center of the geometry, the difference is about 0.3%.
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(b)(a)

Figure 11. 2-D coarse mesh. (a) First-order. (b) Second-order.

(b)(a)

Figure 12. Line X — Coarse mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 13. Line X — Fine mesh. (a) Magnetic field. (b) Comparison.

For the line Y , the results calculated with the coarse mesh are presented in Fig. 14. In this
case, there are points of interest inside the conductive domain, delimited by each pair of blue lines in
Fig. 14(a), which makes the application of the Biot-Savart equation more complex due to its singularity.
This problem happens in both first and second-order cases and can generate important differences.
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(b)(a)

Figure 14. Line Y — Coarse mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 15. Line Y — Fine mesh. (a) Magnetic field. (b) Comparison.

One relevant aspect in Fig. 14(b) is that, beyond the singularity, the higher differences are due to
the low value of the reference field, which crosses the zero in one point inside the conductive domain.
These differences decrease significantly outside the conductive regions, Fig. 14(b) and Fig. 15(b).

As shown in Table 2, the expected computational time ratio between first and second-order would
be about 1.33, once three and four Gauss points were used for the first and second-order elements,
respectively. The real factor obtained was 1.67 and 1.98. The difference, if considering the ideal factor
of 1.33, is due to the additional calculation need in the second-order coordinates mapping. Thus,
comparing the results presented in Figs. 12(b) and 13(b) (or Figs. 14(b) and 15(b)), one can verify
that the second-order coarse mesh has already presented an acceptable precision, if compared with the
refined meshes (Figs. 13(b) and 15(b)), leading to conclusion that, as in the 1-D case, this would be a
proper approach.

4.3. 3-D: A Cylindrical Conductor

For those problems where it is not possible to neglect the cross-section of the conductors neither to
use 2-D symmetries, it is necessary to discretize the 3-D conductive domain and to define the current
density field along it.

The test case is the long cylindrical conductor presented in Fig. 16, where Ri = 45 mm, Ro = 60 mm,
lz = 500 mm and J = 13333.33333 A/m2.

The magnetic field is obtained along the lines X and Z, through the integral in Eq. (1) with first
and second-order meshes, using four and five Gauss points in the integral evaluation, respectively. The
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X
Y

Z

Line X

Line
Z

J

R o
R i

lz

Figure 16. Cylindrical conductor geometry.

(b)(a)

Figure 17. 3-D coarse mesh. (a) First-order. (b) Second-order.

(b)(a)

Figure 18. Line Z — Coarse mesh. (a) Magnetic field. (b) Comparison.

comparison is performed based on one analytical equation,

Hz =
NI

2lz

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

lz
2
− z√(

z − lz
2

)2

+ R2

+

lz
2

+ z√(
z +

lz
2

)2

+ R2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦ (8)
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Evaluating Eq. (8) at the center of the conductor, x = 0, y = 0, z = 0, with N = 1 and I = 100,
the result is Hz = 196.11 A/m.

In the same way as that in the previous cases, a coarse (688 elements), Fig. 17, and a refined (6844
elements) meshes are used.

The results obtained along the Line Z and its comparison with Eq. (8) are given in Fig. 18 for
the coarse mesh. The maximum differences obtained with first and second-order elements are 14% and
0.4%, respectively.

The magnetic fields obtained with the refined mesh are shown in Fig. 19, with differences of 1%
and 0.3%, for first and second-order elements.

For the line X, the results calculated with the coarse mesh are presented in Fig. 20 and in Fig. 21

(b)(a)

Figure 19. Line Z — Fine mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 20. Line X — Coarse mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 21. Line X — Fine mesh. (a) Magnetic field. (b) Comparison.
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with the refined one. The blue lines in these figures present the limits of the conductive domains.
The results are very similar, but as the previous cases, it was found that the differences are more

important inside the conductive domains. Outside, the absence of the singularity allows to obtain
coherent results. For instance, it is possible to compare the field at the center of the conductor, where
Hz = 196.11 A/m, in Eq. (8). At this point, the differences are 5% and 0.19%.

Comparing the computational time ratio between the solutions obtained with first and second-
order elements, one could expect 1.25 times (see Table 2). In this case, it was 1.48 and 2.58. As already
mentioned in the 2-D case, it is expected to have higher ratios if compared with the ideal, i.e., 1.25,
once some additional calculations are needed when running the second-order elements. Considering this
lower ratio for coarse meshes and comparing the results presented in the above figures, one can conclude
that, mainly in 3-D, a coarse second-order mesh would be preferred instead of a refined first-order one.

4.4. Gauss Points

As the integrals in Eqs. (1), (2) and (3) are solved using the Gauss-Legendre integration method, the
impact on the accuracy when using different numbers of integration points is analyzed. Considering
that this method can integrate a polynomial order of m ≥ 2r − 1 exactly [12], it would not be possible
to obtain an appropriate accuracy with one integration point at this case. On the other hand, four
points would be enough to solve the problem accurately.

For this sake, Eq. (1) is evaluated considering one, four and five Gauss points for the integration
along the conductive domain given in Fig. 16 and considering the second-order coarse mesh. The Gauss
points coordinates used here are presented in Table 8.11 of [12].

The magnetic field results along the Z line are presented in Fig. 22(a), while the comparison with
the analytical solution is shown in Fig. 22(b). There is a considerable precision difference from one to
four points which does not happen between four and five points.

(b)(a)

Figure 22. Line Z — Coarse mesh. (a) Magnetic field. (b) Comparison.

(b)(a)

Figure 23. Line X — Coarse mesh. (a) Magnetic field. (b) Comparison.
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As there is no analytical solution for the field along the line X, the results are compared between
themselves in Fig. 23(a). The relative difference in relation to the results obtained with five points is
presented in Fig. 23(b).

The differences are important between one and four points, which does not happen between four
and five points. The results emphasize the importance of properly choosing the number of integration
points based on the order of the function, as mentioned before and presented in Table 2.

Start

H 0 at one Gauss
point per element

H 0 is considered
constant inside
each element

Calculates the energy
at each element and

total energy (W t )

Sort elemen ts
by energy

Select elemen ts un ti l
the accum ulated

energy W s > = W t F w

Obtains H 0 at the
others Gauss poin ts of
the selected elements

Calculates the
new energy value

W s > = W t F w

Selects more elements

End

No

Yes

Figure 24. Flow chart of the adaptive process.
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5. ADAPTIVE PROCESS

Even the isoparametric elements allow a gain of accuracy, the source field calculation with the Biot-
Savart equation can be a time-consuming task, since it is necessary to integrate this equation for the
Gauss points of all the elements in Ω. So, the following algorithm is proposed to mitigate its impact on
the simulation time.

It is based on the assumption that the source magnetic field is constant inside each element of Ω with
low magnetic energy level, and consequently, the negative impact of such an assumption is minimized
because the method preserves the classical integration method (i.e., with all the Gauss points) along
those regions of the domain with high energy levels.

Thus, based on this hypothesis, the magnetic field is calculated only at one Gauss point for all
the elements of the domain. Then the magnetic energy of each element is calculated considering a
constant magnetic field (one integration point), and the total energy along Ω, Wt, is obtained. Then,
the elements are ordered based on their energy values, and those with higher energy are selected until
the total energy of these elements, Ws in Fig. 24, is higher than a fraction Fw of the energy calculated
in the first step. Finally, the magnetic field is calculated for the other Gauss points of those selected
elements, as presented in the main chain of the flowchart given in Fig. 24.

Consequently, there is no loss of accuracy at those elements that store more energy, and the number
of evaluations of the Biot-Savart equation can be drastically reduced.

Furthermore, after the selection of the elements, it is possible to recalculate the energy Ws and
check if Ws >= Wt Fw. If it is not true, it is possible to select more elements with high energy level.

(b)(a)

(d)(c)

Figure 25. Geometry and selected elements. (c) Fw = 0.8. (d) Fw = 0.95.
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This loop can be used to ensure a convergence based on the total energy along the domain.
The test case of this methodology consists of one winding with Ri = 45 mm, Ro = 60 mm,

lz = 100 mm and J = 13333.33333 A/m2 placed inside one air region, as presented in Fig. 25(a).
One mesh is generated, and the algorithm is run. The selected elements are depicted in Figs. 25(b),
25(c) and 25(d) for Fw = 0.5, Fw = 0.8 and Fw = 0.95, respectively. This means that along those
elements, the magnetic field is calculated at all the Gauss points, but at only one point in the elements
not shown.

The computational time comparison based on the conventional method that takes into account all
the Gauss points of all the elements (Fw = 1 in this case) is presented in Table 3.

Table 3. Comparison with Fw = 1.0.

Fw Simulation time [pu] Magnetic energy [J]
0.5 0.52 59.14
0.8 0.70 57.23
0.95 0.86 56.86
1.0 1.0 58.4

Then, the magnetic field obtained for these cases are used as source fields in a magnetostatic Facet
Finite Element Method formulation [22], and the magnetic flux density is obtained for a line placed in
the center of the winding. The results are shown in Fig. 26.
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B
   

[T
]

z

Fw = 0.5

Fw = 0.8

Fw = 0.95

Fw = 1.0

Figure 26. Bz along center line of the winding.

These results mean that the user can choose an Fw factor which best fits the accuracy needed,
but based on the tests implemented in this work, about 0.8 would be an interesting trade-off between
computational time and accuracy.

6. CONCLUSION

The Biot-Savart equation is largely applied to solve problems related to electromagnetics and fluid
dynamics. Considering the numerical methods applied to model magnetic fields, this equation is
important due to the formulations which require a source field solution.

However, this analysis has shown what its use implies in a previous investigation of the application
and discretization, in order to avoid possible singular solutions, which can generate high local errors.
On the other hand, the results are precise when the solution point is not so close to the integration
points.

Analyzing the comparisons between the results obtained with first and second-order elements in the
coarse meshes, one can verify how the results obtained with second-order elements are more accurate.
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The computational time comparison between the first and second-order solutions shows that the
ratio is not the same depending on the number of elements (coarse and fine meshes), but analyzing the
gain of accuracy obtained with second-order elements, one can conclude that meshes with fewer second-
order elements may represent a better option over more refined meshes with first-order elements.

Regarding the adaptive process presented, it was possible to reduce the simulation time, and it
can represent an option to choose the best trade-off between simulation time and accuracy level. The
solution used as a source field in the FFEM can suggest this methodology as a possible solution to
mitigate the Biot-Savart impact on this kind of application.
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