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Lattice simulation method to model diffusion and NMR spectra in porous
materials
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A coarse-grained simulation method to predict nuclear magnetic resonance (NMR) spectra of ions
diffusing in porous carbons is proposed. The coarse-grained model uses input from molecular
dynamics simulations such as the free-energy profile for ionic adsorption, and density-functional
theory calculations are used to predict the NMR chemical shift of the diffusing ions. The approach
is used to compute NMR spectra of ions in slit pores with pore widths ranging from 2 to 10 nm.
As diffusion inside pores is fast, the NMR spectrum of an ion trapped in a single mesopore will be
a sharp peak with a pore size dependent chemical shift. To account for the experimentally observed
NMR line shapes, our simulations must model the relatively slow exchange between different pores.
We show that the computed NMR line shapes depend on both the pore size distribution and the
spatial arrangement of the pores. The technique presented in this work provides a tool to extract
information about the spatial distribution of pore sizes from NMR spectra. Such information is
difficult to obtain from other characterisation techniques. C 2015 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4913368]

I. INTRODUCTION

Transport in porous materials is relevant for phenomena as
diverse as energy conversion and storage, gas storage, hetero-
geneous catalysis, cell growth and drug delivery.1 In all these
cases, the performance of the porous material depends on its
structural properties, the latter determining the geometry and
dynamical properties of the confined fluid. The characterisa-
tion of porosity and the understanding of its effect on perfor-
mance are therefore essential to optimise the porous materials
for their respective applications. Nuclear Magnetic Resonance
(NMR) is an experimental method that is uniquely suited to
probe both microscopic structure and the dynamical properties
of fluids confined in porous media.

NMR has been widely used to investigate the adsorption of
various fluids in porous carbons.2–6 Most of these studies report
the observation of distinct resonances in the NMR spectra
corresponding to adsorbed and freely diffusing probe species.
Irrespective of the nature of the fluid or nucleus studied, the
resonances of the species adsorbed on carbon appear at lower
frequencies than those of the free species, the difference in the
adsorbed and free resonant frequencies depending only weakly
on the nature of the fluid. The dominant shift mechanism
arises from the magnetic fields caused by the microscopic ring
currents of π electrons in the graphitic carbon.7 Consistent with
this, variations of the structure of the porous carbon have a
pronounced effect on the observed NMR resonances.2,4,8–10

Although NMR is a powerful technique to investigate
both the structure of the carbon and the microscopic structure
of the fluid at the carbon surface, the interpretation of the

a)Electronic mail: celine.merlet.fr@gmail.com

NMR spectra is by no means straightforward as the measured
spectra depend in a non-trivial way on the pore structure and
on the structure and dynamics of the confined fluid. As a
consequence, simplifying assumptions are commonly made to
interpret the experimental NMR spectra.

A necessary (but not sufficient) prerequisite for quantita-
tive interpretation of the NMR spectra is an accurate descrip-
tion of the effect of aromatic ring currents on the local mag-
netic fields in the porous medium. It is possible to calculate
Nucleus Independent Chemical Shifts (NICS) for aromatic
molecules using Density Functional Theory (DFT) calcula-
tions.8,11–13 These studies provide important insights, account-
ing, for example, for the shift to lower frequencies of NMR
resonances of ions confined in a porous graphitic matrix. How-
ever, in order to arrive at a model that can describe all features
of the experimental NMR spectra, the effects of local fluid
structure and the ionic dynamics must be taken into account. A
fully atomistic approach to compute such spectra, let alone an
ab-initio calculation, would be prohibitively expensive in view
of the wide range of relevant time scales.

Here, we propose a coarse-grained method that allows us
to bridge the gap between molecular simulations and exper-
iment. It is particularly attractive to use lattice models as
these allow us to account for the relevant microscopic effects
while being computationally much more efficient than off-
lattice models. The key computational advantage of the lattice
approach used here is that it allows us to sample, in a single
simulation, all possible diffusive trajectories,14 rather than a
single one, as would be obtained from an off-lattice simulation
or from a conventional lattice simulation of the diffusion of
tracers in porous media.15–17 The (exponential) computational
advantage of this approach turns out to be crucial for exploring
the effect of multiple factors on the NMR spectra.

0021-9606/2015/142(9)/094701/13 142, 094701-1 © Author(s) 2015
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In Sec. II, we describe the implementation of the lattice
gas model and show how it can be used to calculate diffusion
coefficients and NMR spectra. We then focus on a two-site
exchange model to validate our approach. In particular, we
show that we can reproduce the coalescence of NMR reso-
nances observed experimentally. Next, we apply the model
to single mesoporous slit pores with different pore widths.
Slit pore models have been used extensively in the literature
to interpret adsorption isotherms in some classes of porous
materials, such as disordered activated carbons for energy
storage,18,19 and to simulate ion adsorption and charge storage
mechanisms in supercapacitors.20–23 Their simplicity and wide
utilisation make them a good starting point for the application
of our model. We describe how the model is parametrised from
molecular simulations and explain how diffusion and chemical
exchange can lead to the observation of a single chemical
shift corresponding to multiple environments. In the last part
of this article, we calculate NMR spectra corresponding to
ions diffusing in a carbon particle with a realistic pore size
distribution and show that the resulting spectra are affected by
the spatial distribution of pore sizes. While some experimental
techniques, such as adsorption isotherms analysis, can provide
the overall pore size distribution, they are not able to probe
the spatial distribution of these various pore sizes. As such, the
development of appropriate models to predict NMR spectra of
species adsorbed in a realistic porous material will open the
door to an appropriate interpretation of the NMR experimental
data and give insights into both the carbon and liquid structures
of the explored systems. This will have implications in various
scientific fields where porous materials are used, such as super-
capacitors, which will benefit from a detailed characterisation
of the electrode/electrolyte interface and the interconnectivity
of the pore structure.

II. DIFFUSION COEFFICIENTS AND NMR SPECTRA
FROM A LATTICE GAS MODEL

A. Description of the model

The simplest lattice-gas models to simulate diffusion
describe the diffusing species as non-interacting particles per-
forming kinetic Monte Carlo moves on a lattice that contains
both accessible sites (the fluid) and excluded sites (the porous
matrix). A schematic representation of such a model is shown
in Figure 1. The lattice model is characterised by a lattice
parameter a, which is the distance between two lattice nodes,
and a timestep∆t, which corresponds to the typical time it takes
the probe particle to diffuse over a distance a. The geometry
of the matrix is accounted for by the spatial distribution of
excluded lattice sites.

At every timestep, the particles attempt with equal prob-
ability to perform a step to any of their nearest neighbours (6
for a three-dimensional simple cubic lattice): if the neighbour
site is accessible, the probe particle is moved to the new posi-
tion, otherwise the particle remains at its original position. We
consider three-dimensional cubic lattices with periodic bound-
ary conditions. When modelling diffusion in a porous carbon
matrix, we must account for the fact that different accessible
sites have different energies (strictly speaking: free energies)

FIG. 1. Illustration of the lattice gas model. The lattice, characterised by a
lattice parameter a, is divided between two types of sites: accessible (fluid)
and not accessible (porous matrix). If at a given timestep, a particle’s velocity
points towards an obstacle, then at the next timestep, that particle remains at
its original position. The timestep ∆t relates to the lattice parameter a via
the bulk diffusion coefficient D = a2/6∆t following Eq. (6). Note that for the
sake of simplicity, the system is represented in two dimensions here but the
model is actually three-dimensional.

and are, therefore, not equally populated. A site energy (Ei

for site i) is required to account for ionic adsorption at the
carbon surface. In addition, when computing NMR lineshapes,
we have to account for the fact that the local magnetic field
and thus resonant frequency at site i, νi, will depend on its
position.

To describe diffusion in a spatially varying potential, we
vary our Monte Carlo acceptance rules, such that the correct
Boltzmann distribution over lattice sites is obtained in equi-
librium. Specifically, the conditional probability to accept a
Monte Carlo move from site i to site j, pacc(i → j), which is
not necessarily equal to the probability of accepting the reverse
move, pacc( j → i), is

pacc(i → j) = exp
(−(E j − Ei)

kBT

)
if E j > Ei

= 1 if E j ≤ Ei, (1)

where kB is the Boltzmann constant and T is the temperature
of the system. As a consequence, the larger E j − Ei the less
likely a particle is to jump from i to j. With these rules, the
probability of a particle to visit site i will be given by the
Boltzmann distribution

ρi = ⟨ρ⟩ ×
exp

( −Ei
kBT

)


j exp
( −E j

kBT

) , (2)

where ρi is the average density at site i and ⟨ρ⟩ is the density
averaged over all lattice sites.

B. Diffusion coefficients

In molecular dynamics (MD) simulations studies, diffu-
sion coefficients are typically calculated using a Green-Kubo
relation that relates the velocity autocorrelation function to the
self-diffusion coefficient

D =
 ∞

0

1
d
⟨v(0).v(t)⟩.dt, (3)

where D is the diffusion coefficient, d is the dimensionality of
the system, v(0) is the velocity at time t = 0, v(t) is the velocity
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at time t, and ⟨· · · ⟩ denotes an average over all particles and all
trajectories. Here, we use the discrete equivalent of Eq. (3) (see
Subsection 1 of the Appendix)

D =
1

2∆t

(∆x)2� + 1

∆t

∞
j=2



∆x1∆x j

�
, (4)

where ⟨· · · ⟩ denotes an average over all considered sites and
∆xi denotes the displacement of a particle in the x direction
at timestep i. If we were to exploit the analogy with off-lattice
systems, we would estimate



∆x1∆x j

�
by generating random

trajectories for a number of particles starting from different
sites in the lattice. This approach is highly inefficient as a
very large number of trajectories would have to be generated
to obtain good statistics for a heterogeneous system. Here,
we use a different approach, namely, the so-called “moment
propagation” method, which was proposed by Frenkel and
successfully applied to a number of studies on dynamics of
particles in confined systems.14,24,25

The moment-propagation method is a recursive scheme
that allows us to sample all possible trajectories of the diffusing
particles, rather than a subset. The computational effort scales
as t × M , where t is the simulation time and M the number of
lattice sites. The computational effort to sample all trajectories
in a non-recursive scheme would scale as ztM where z is
the coordination number of the lattice. In the expression for
diffusion coefficients, the first term is easily calculated as it
is equal to 1/2∆t times the mean-square displacement of a
particle in the x direction during one timestep

1
2∆t


(∆x)2� = 1
2z∆t

z
j=1

pacc(i → j)a2
x( j), (5)

where ax is the x-component of the vector joining a lattice site
to its j-th neighbour and the sum runs over all sites j adjacent i
(note that pacc(i → j) = 0 if j is occupied by an obstacle). The
general moment-propagation approach to compute the diffu-
sion coefficient is described in Subsection 2 of the Appendix.

In a homogeneous fluid, successive jumps are uncorre-
lated and we have

D =
1

2∆t

(∆x)2� . (6)

If the probability to jump to a neighbouring site is equal to one,
then D = a2/(2d∆t), where a is the lattice spacing. However,
we can reduce the probability that a particle carries out a jump.
If we denote the probability that a particle stays on the same
site by 1 − α, then

D = α
1

2d∆t
a2. (7)

In systems where the diffusivity varies with position, we can
define a factor α(i j) for every link between neighbouring lat-
tice sites i and j. It is important to note that if the probability
to jump from i to j is reduced, then the probability to jump
from j to i should be reduced by the same factor, otherwise
the equilibrium distribution over lattice sites would be changed
from the Boltzmann distribution.

C. NMR signal and spectrum

NMR spectroscopy probes the nuclear magnetic response
of a sample whose magnetism is perturbed from equilibrium by
a radio frequency pulse. After this pulse, the transverse mag-
netisation of the sample decays. The NMR signal measured
during this decay is commonly referred to as the Free Induction
Decay (FID). The NMR spectrum is obtained by Fourier trans-
forming the FID signal. In a heterogeneous sample, different
nuclei will experience different local magnetic fields and will
therefore have different Larmor frequencies. As the nuclei
diffuse, their environments, and hence their resonant frequen-
cies, change. The FID signal is the superposition of the sig-
nals corresponding to all excited nuclei in the sample. For an
ensemble of probed spins, the NMR signal is given by

G(t) = ⟨ei
 t

0 2πν i0(t′).dt′⟩, (8)

where νi0(t) is the Larmor frequency corresponding to spin i
at time t, and ⟨· · · ⟩ denotes an average over all spins. The
spectrum is then obtained by Fourier transforming this signal
following:

F (k) =
 ∞

−∞
dt G(t)e−2iπkt . (9)

Using the same approach as for the calculation of the diffusion
coefficients (see Subsection 3 of the Appendix), we can dis-
cretise these expressions and estimate them by the moment-
propagation method.

In practice, it is better to define the resonant frequency νi
as the difference between the Larmor frequency at site i, νi0, and
the Larmor frequency of the bulk liquid (the reference). The
resulting frequencies are typically in the kilo-Hertz range. The
timestep ∆t should be chosen such that ∆t × νmax ≪ 1, where
νmax is the largest value of νi. We note here that the spectral
width SW, i.e., the range of frequencies that is studied, is given
by the dwell time, dwt, i.e., the time between two acquisition
sampling points, following:

SW =
1

dwt
. (10)

This spectral width in Hertz can then be converted to a range
of chemical shifts in ppm using the Larmor frequency of the
studied nucleus (ν0)

SW(ppm) = SW(Hz)
ν0

× 106. (11)

Note that, the frequency differences (in Hz) between the
various resonant frequencies experienced by the spins depend
on the applied magnetic field, the frequency increasing linearly
with field strength. This is taken into account in the model as
will be clear from the study of various magnetic fields in Sec.
V of this article.

D. Model parameters

In practical cases, we must map the system that we wish
to simulate on a lattice model with discrete lattice sites and
timesteps. In particular, we must specify
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– the distribution of obstacles on the lattice to represent the
porosity of the material

– the distribution of local energy values that account for the
adsorption of ions and molecules to the carbon surface

– the distribution of local Larmor frequencies that account
for the spatial variation of the chemical shifts.

The allocation of these quantities to the different lattice sites
will typically be based on structural information or use input
data from more microscopic descriptions such as density func-
tional theory or MD simulations.

In addition, we must specify the lattice parameter (a),
i.e., the distance between two lattice nodes in the model, the
temperature (T) and the timestep (∆t). These parameters are
usually determined by the physical properties of the system to
be modelled. The lattice parameter a will usually be defined
so that it allows a sufficiently accurate description of the liquid
structure. The choice of the timestep is then set by its rela-
tion with the diffusion coefficient D and the lattice parameter
a, namely, D = a2/(6∆t) in three dimensional lattices. We
then check that the condition ∆t × νmax ≪ 1 is respected. If
the diffusion coefficient or other quantities (free energies, for
example) correspond to a given temperature, then this temper-
ature should be used in the lattice simulation.

III. APPLICATION OF THE LATTICE METHOD
TO A TWO-SITE EXCHANGE SYSTEM

A. Parametrisation of a two-site exchange model

To validate our numerical approach, we show that the
model reproduces the lineshape for a two-site exchange model
for which analytical solutions exist.26,27 We focus on a sim-
ple model in which a spin can move between two different
chemical environments, S1 and S2, with equal free energies and
equal populations. The process is described by the following
equilibrium:

k
S1
 S2,

k
(12)

where k is the exchange rate between the two sites. The NMR
lineshape depends on the ratio between the exchange rate k
and the difference in resonant frequencies ∆ν = |ν1 − ν2|. Two
different regimes can be observed: (i) a slow-exchange regime
where signals due to the two environments can be distinguished
in the spectrum and (ii) a fast exchange regime where only a
single resonance is observed at a frequency corresponding to
an average of ν1 and ν2. The limit between these two regimes
is known as the coalescence point where the two peaks merge
into one. If we ignore the spin-spin and spin-lattice relaxation
effects, coalescence occurs for an exchange rate equal to

kcoal =
∆ω

2
√

2
, (13)

where ∆ω = 2π∆ν = |2πν1 − 2πν2|.26

To investigate two-site exchange with our model, we build
a lattice of 40 × 40 × 40 sites (64 000 lattice sites in total)
where a specific frequency (ν1 = −1 kHz or ν2 = 1 kHz) is

assigned to each lattice site. For all the systems investigated,
there are no obstacles so all sites are accessible, and the ener-
gies on all sites are equal so that all densities are equal. The
model is characterised by a correlation time τ (equivalent to
the timestep of the simulation) which is the average time that a
diffusing species stays on a site. The inverse of this correlation
time thus defines the exchange rate between two sites of the
lattice. Not all the jumps between sites will lead to a change
of frequency. We thus define an effective exchange rate, kexc,
which represents the exchange rate for hops between sites with
different frequencies, corresponding to the entire system. This
is the rate that is measured in the NMR experiments.

In our model, kexc will depend on two key factors: (i) the
spatial distribution of the sites with different Larmor frequen-
cies on the lattice, i.e., for a given exchange rate, the more
contacts there are between sites with different frequencies, the
larger kexc will be, (ii) the correlation time, i.e., decreasing the
correlation time leads to a global increase of the dynamics
of the diffusing species and thus an increase of kexc. We first
explore the effect of the spatial distribution of frequencies
by keeping the correlation time τ constant (equal to 0.1 ms)
and arranging chemical environments in different ways. Four
different configurations were built (see Figure 2):

- blocks with 2 planar interfaces: the frequencies of the
different sites are distributed in two blocks with equal
number of sites, and thus there are only two planar inter-
faces (one in the middle of the system and one at the edge
where periodic boundary conditions are applied) where
diffusion will lead to a frequency change;

- blocks with 4 planar interfaces;
- planes: the frequencies are distributed such that alternat-

ing planes are characterised by ν1 and ν2;
- lines: the frequencies are distributed such that one line in

two is characterised by ν1 and the other by ν2.

We then investigate the effect of a reduction of the correlation
time by a factor two (τ = 0.05 ms) in the lines configurations.
We calculate the NMR signals on a time period of 500 ms
which corresponds, respectively, to 5000 and 10 000 timesteps
when τ equals 0.1 ms and 0.05 ms. This time is longer than
the decay time so that there is no truncation of the NMR
signal.

B. From slow exchange to fast exchange

The NMR spectra predicted for the different setups are
given in Figure 2. To relate these results to the outcomes of the
analytical models described above, we calculate the effective
exchange rate corresponding to the different systems. In all
cases, the system is three-dimensional so that a particle will
jump in one of the six available directions at each timestep.
In the case of the blocks configuration with two interfaces, the
number of sites where exchange is possible is equal to the num-
ber of sites in one plane (40 × 40) multiplied by two (because
exchange can be in both directions) and by the number of
interfaces. The average exchange rate will then be given by
the probability of being in one of these sites multiplied by the
probability of actually jumping in the direction corresponding
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FIG. 2. Lattice gas model and two site-exchange between sites with frequencies ν1 (−1 kHz) and ν2 (1 kHz). Here, we illustrate the ability of the model to
reproduce coalescence for a simple system. The NMR lineshape typically depends on the ratio between the effective exchange rate kexc between sites with
different frequencies and the frequency difference ∆ν = |ν1−ν2|. We explore the effect of the spatial distribution of sites with different Larmor frequencies for
a given correlation time of 0.1 ms ((a), (b), and (c)). Here, each sphere represents a lattice site and the color distinguishes sites having a frequency ν1 or ν2.
The spectra in panel (d) illustrate the effect of doubling the number of interfaces, between blocks of distinct frequencies, from two to four: in both cases, two
resonances are distinguishable but the resonances are broader when the effective exchange rate increases. (e) In the planes case, we are close to the coalescence
point and we observe a very broad spectrum where we cannot distinguish anymore the two different resonances. (f) In the lines cases, we note a narrowing of
the spectrum which is accentuated in (g) by decreasing the correlation time τ.

to a frequency change (1/6)

kblocks =
1
6
× 4 × 40 × 40

64,000
× 1

τ
= 0.167 kHz, (14)

where τ is equal to 0.1 ms. For the blocks configuration with
four interfaces, the effective exchange rate doubles to 0.33 kHz.
These two frequencies are lower than kcoal, equal to 4.44 kHz
in our case, leading to a slow exchange regime where both
peaks are distinguishable. For the case of planes and lines
with a correlation time of 0.1 ms, the number of directions
which leads to frequency changes is, respectively, 2 (out of 6)
and 4 (out of 6), giving effective exchange rates of 3.33 kHz
and 6.67 kHz, respectively. The first value is very close to
the coalescence point and the corresponding spectrum is very
broad. The second value falls in the fast exchange regime
where peak narrowing is observed. The effective exchange rate
is then increased by a factor two using a smaller correlation
time of 0.05 ms leading to a further motional narrowing.

This illustration of a simple two-site exchange model
shows that the numerical approach that we propose here can
reproduce an albeit simple example of the collapse of the
NMR spectrum. But while analytical models can only deal
with simple cases such as two-site exchange, the numerical
moment-propagation approach can be used to model more
complex systems with realistic spatial distributions of resonant
frequencies.

IV. CALCULATION OF NMR SPECTRA
FOR AN ORGANIC ELECTROLYTE IN A SLIT PORE

A. Parametrisation of the lattice model from molecular
simulations

We now focus on the case of slit pores in an attempt
to represent what would happen in one class of mesoporous
materials. As stated in the description of the lattice gas model
proposed here, each simulation goes through a parametrisation
step where the obstacles’ positions, free energies (Ei), and
frequencies (νi) have to be assigned to discrete lattice sites.
In the case of a slit pore, the positions of the obstacles are
defined by two planes corresponding to the two pore walls. We
assume that the slit is perpendicular to the z-axis and that there
is no variation of free energies or Larmor frequencies with x or
y . As a consequence of this and the use of periodic boundary
conditions, we only need 1 site in the x and y directions. The
lattice parameter a is set to 0.5 Å and the number of lattice
sites in the z direction, Nz, is adapted to the pore width such
that Nz = (R/a) + 1 with R being the pore width. We first focus
on a slit pore with a pore width equal to 4 nm, and the number
of lattice sites for this system is thus 1 × 1 × 81.

The values of the site free energies Ei were fixed us-
ing existing results obtained from MD simulations. Specif-
ically, we use the simulation results for butylmethylimida-
zolium tetrafluoroborate dissolved in acetonitrile ([BMI][BF4]
in ACN, 1.5M) at the interface with a graphite surface. As
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described in Ref. 28, it is possible to calculate densities and
consequently free energy profiles from MD simulations. Here,
we use the free energy profiles for the BF−4 anion. At the inter-
face with a planar surface, ions tend to organise themselves in
a layered structure which can extend up to several molecular
diameters away from the surface. The free energy profiles
are thus characterised by peaks at various distances from the
interface as can be seen in Figure 3. We limit ourselves to
11B NMR but note that we would expect qualitatively similar
results for 19F and 1H NMR.

To assign free energies to the lattice sites, we simply
map the MD values on the different sites, i.e., for each lattice
site, we calculate its distance to the pore wall and give it
the corresponding energy value from the realistic free energy
profile obtained through MD simulations28 (Figure 3). There
are three comments we can make at this point: (i) the accuracy

FIG. 3. Parametrisation of the lattice model from molecular simulations for
a 4 nm slit pore. (a) For planar surfaces, two planes of obstacles are set at the
extremities of the lattice in the z direction, particles moving freely in x and
y directions. (b) The free energies on the accessible sites are mapped onto
the free energy profiles obtained for the BF−4 anions from MD simulations
performed on [BMI][BF4] dissolved in acetonitrile (1.5M).28 The vertical
lines on the figure indicate the positions of the different adsorbed layers
corresponding to free energy minima. (c) The NICS are parameterised with
DFT calculations following the same mapping procedure as for free energies.
Here, the NICS correspond to the case of nuclei located on a line joining the
center of masses of two parallel circumcoronene molecules.8

of the results obtained through the lattice method will depend
on the accuracy of the initial MD simulations, (ii) the accuracy
of the final results will also depend on the lattice parameter
chosen, i.e., the finer the grid, the better the representation, and
(iii) while we do not explicitly include correlated motions of
the ions in the model, the correlation effects that result in the
layered structure of the liquid at the interface are accounted for
by our model. To investigate the first point, we also calculate
the NMR spectra for a flat profile, where the free energy
is constant across the pore. In this case, we chose a closest
distance of approach of 0.32 nm, in agreement with the MD
results.28

The frequencies, which correspond to the Larmor frequen-
cies of the nuclei in different local environments for a real sys-
tem, follow from the DFT calculations of Ref. 8. The frequen-
cies on the lattice sites are simply mapped using the DFT
results as was done for the free energies (see Figure 3). By
doing this, we make a number of assumptions. First, we use the
chemical shifts calculated with the Gaussian software29 with
the NICS approach, i.e., we assume that the chemical shifts
originate from ring current effects and that the nature of the
ion and its charge do not influence this quantity. The chemical
shift tensor resulting from the ring current effects is in general
anisotropic and, as a consequence, the NICS will depend on the
orientation of the graphitic plane with respect to the magnetic
field. For a carbon particle where different orientations of
graphene sheets are present, the anisotropy of the chemical
shift tensor should, in principle, result in a characteristic distri-
bution of NICS for adsorbed ions.10 However, the lineshapes
observed under typical experimental conditions are symmet-
rical and relatively narrow, suggesting that the motion of the
ions between different local orientations of the graphene sheets
is fast enough to average the effect of anisotropy. In this work,
we use the isotropic shifts that would follow from the complete
averaging of the nucleus independent chemical shifts. Second,
the calculations reported were not performed on graphene,8

which is difficult to treat from an ab-initio point of view,
but rather on different aromatic molecules such as coronene,
circumcoronene, and dicircumcoronene. The molecular size
has an impact on the NICS values calculated and here, we will
show results for these three aromatic molecules. We note here
that the chemical shift also depends on the lateral position of
the ions over the surface.2,8 While this is not investigated here,
this spatial dependence is also expected to impact the NMR
results.

Finally, we need to determine the timestep ∆t corre-
sponding to the lattice parameter a chosen (0.5 Å). Molecular
dynamics simulations of the bulk solution of [BMI][BF4]
in acetonitrile have reported a diffusion coefficient of 84.7
× 10−11 m2 s−1 for the BF−4 anion.30 The timestep would thus
be equal to 4.92 × 10−13 s following D = a2/(2d∆t). We would
like to stress here that if we were to simulate a complete NMR
spectrum with the parameters used experimentally, it would be
very computationally costly. Indeed, the experimental dwell
time (the time between two FID points) is chosen depending
on the desired spectral width and is typically of the order of
5 µs so we would have to perform a simulation where each data
point from the experimental NMR signal corresponds to more
than one million timesteps in our model. Nevertheless, we will
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show that this is not a problem here as the lattice model allows
us to investigate slower dynamics, which provides enough
information to understand experimental spectra. In our model,
the diffusion coefficient is increased by changing the timestep
while keeping all other parameters constant. We note that the
simulation time is kept constant for all the simulations, so when
the timestep is decreased by a factor K , the total number of
steps is also increased by a factor K and the points are sampled
to perform the Fourier transformation on the same number
of values. All the simulations are long enough to observe the
entire decay of the NMR signal.

B. NMR spectra for ultra-slow diffusion and effect
of increasing the ion dynamics

We first calculate NMR spectra for 11B in a 4 nm slit
pore for the hypothetical case of ultra-slow diffusion (Dinit
= 84.7 × 10−19 m2 s−1, which corresponds to a timestep of ∆t
= 4.92 × 10−5 s; a = 0.5 Å). The NMR spectra obtained with
the lattice model using the realistic free energy profile from
MD simulations28 and the flat free energy profile are shown in
Figure 4. It is clear that assuming a flat energy profile leads
to large differences in the resulting NMR spectrum and the
disappearance of many features. In the case of the realistic free
energy profile, we can identify different peaks corresponding
to the different environments experienced by the anions which
tend to organise themselves in layers, as can be seen from the

free energy profile (see Figure 3). The first adsorbed layer gives
rise to the peak at most negative chemical shift while ions in
the second and third are observed at smaller shifts. The sharp
peak close to 0 ppm corresponds to the central region of the
slit pore, which is only weakly affected by the graphitic carbon
surfaces. In the case of a flat energy profile, we observe a single
resonance, with a shoulder on the negative frequency side.

We now investigate the impact of the NICS profiles on
the calculated spectra. We focus on three different molecules,
namely, coronene, circumcoronene, and dicircumcoronene
which have molecular areas, respectively, close to 0.362 nm2,
0.981 nm2, and 1.911 nm2. The DFT calculations on these
molecules show that the larger the molecular size, the larger
the chemical shifts, due to the increased number of rings
contributing to ring current effects.8 The NMR spectra ob-
tained with the lattice model using the different NICS profiles
(Figure 4) are qualitatively similar but mirror the effect of the
DFT calculations in the sense that larger molecules lead to
NMR spectra shifted to lower frequencies.

The effect of increasing the diffusion coefficient of the
anions on the resulting NMR spectra is explored by work-
ing with a realistic free energy profile for the anions and the
NICS profile corresponding to circumcoronene. We start with
a diffusion coefficient Dinit = 84.7 × 10−19 m2 s−1 and increase
it by several orders of magnitude to reach D = 10 000 × Dinit

= 84.7 × 10−15 m2 s−1 (Figure 4). When the diffusion is in-
creased by a factor 10 or 100, the peaks corresponding to

FIG. 4. NMR spectra for the case of a slit mesopore (4 nm) with an organic electrolyte ([BMI][BF4] in acetonitrile) and variation of the average chemical
shift with pore width. (a) NMR spectra for ultra-slow anion diffusion. Two very different spectra are obtained if we assume either a realistic free energy profile
extracted from molecular simulations28 (solid black line) or a flat energy profile in which the anionic density is constant across the pore (dashed red line).
(b) NMR spectra calculated with different NICS profiles. The size of the aromatic molecule used in the DFT calculation has a large impact on the calculated
spectrum: the larger the molecule, i.e., the graphitic carbon domain, the more shifted the peaks are. (c) The effect of slow/fast exchange is investigated through
a variation of the diffusion coefficient from Dinit= 84.7×10−19 m2 s−1 to D = 84.7×10−15 m2 s−1. A faster exchange leads to the broadening and merging of
the peaks. (d) Variation of the average chemical shift as a function of pore width for various parametrisations with different NICS and free energy profiles. The
lattice model associated with the circumcoronene DFT calculations is in good agreement with a single experimental point corresponding to a CMK-3 carbon
material with an average pore size of 4.5 nm.9
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the different environments broaden and start to merge. With
an increase of a factor 1000, only one peak appears in the
spectrum and it becomes sharper as the diffusion is increased
further. As the real diffusion coefficient is much larger than the
ones studied here (by a factor of 104), we should expect that a
single very sharp peak would be observed experimentally for
a porous carbon consisting of slit pores with a monodisperse
pore size distribution: on the timescale probed by the NMR
experiment, for the organic electrolyte investigated here, the
anions would explore the entire slit pore and only an average
chemical shift would be observed.

A much broader lineshape is observed experimentally
than the one predicted by the simple slit-pore model,4,8,9

and the experimental lineshape depends significantly on the
temperature.31 The current results demonstrate that the exper-
imentally observed lineshape is not related to diffusion in a
pore but to the fact that ions explore a distribution of pore
sizes. Indeed, the experimental carbons usually show some
disorder with a distribution of pore sizes and pore geometries.
A realistic model would thus have to combine information
about the average shift within pores of different sizes and
the distribution of exchange rates between pores. With this
information, an even more coarse-grained lattice model can
be constructed in which each accessible lattice site is a pore.
The average chemical shifts corresponding to the various pore
sizes can be determined using the current approach and used
as an input in this new system.

C. Variation of the average chemical shift
as a function of pore width

In this part, we investigate the variation of the average
chemical shift as a function of pore width with the following
aims: to (i) obtain insight into the global trend of the variation
and the impact of the input parameters (free energy and NICS
profiles) on the resulting data and (ii) produce the information
necessary for the parametrisation of a new model representing
a carbon particle with a realistic pore size distribution. We will
thus calculate the average chemical shift for a range of pore
widths ranging from 2 to 10 nm for different setups.

We note here that, for the determination of the average
chemical shift, we do not need a lattice model calculation. The
average chemical shift is simply given by the integrated NICS
profile weighted by the free energy profile

δavg =

 R

0

exp
( −E(r )

kBT

)
 R

0 exp
( −E(r ′)

kBT

)
dr ′
× ν(r)dr. (15)

This approach was suggested in a previous study by Xing et al.2

where the authors apply this methodology to obtain insights
into 1H NMR spectra of water in porous carbon materials.
While they consider only a flat energy profile for the hydrogen
atoms, we show here that the inclusion of a realistic free
energy profile leads to some variations in the obtained average
chemical shifts.

The plots showing the variation of the average chemical
shift as a function of pore width for the various conditions
investigated are given in Figure 4. All the curves are qualita-
tively similar showing that the absolute value of the chemical

shift increases exponentially with decreasing pore width. As a
general result, the graphitic domain size has a larger influence
on the results than the use of a realistic or a flat free energy
profile. Nevertheless, the influence of the free energy profile
should not be neglected as it can lead to relative errors of up
to 25% for the flat profile compared to the realistic profile. We
note that the use of a flat energy profile, corresponding to a
constant density across the pore, leads to an overestimation of
the average chemical shifts, i.e., the values are shifted to larger
frequencies compared to the realistic free energy profile values.
This is a consequence of the neglect of high anionic density
close to the surface that exists in the layered structure.

Figure 4 also shows an experimental result obtained by
Borchardt et al.9 for a solution of tetraethylammonium tetraflu-
oroborate ([TEA][BF4]) adsorbed in an ordered mesoporous
carbon (CMK-3) with an average pore size of 4.5 nm: the 11B
NMR spectrum for adsorbed anions shows a shift of −1.7 ppm
compared to the free electrolyte. This (albeit single) experi-
mental measurement provides a good point of comparison with
our model for several reasons. First, the liquid investigated
experimentally is a 1M solution of [TEA][BF4] in ACN which
is close to the present system consisting of a 1.5M solution
of [BMI][BF4] in ACN.28 Second, for mesopores, the pore
walls should appear microscopically as being close to planar
surfaces so that the approximation of pores by slit pores might
be acceptable. We see on Figure 4 that this experimental result
seems to be in good agreement with the trend obtained with
the lattice model and the circumcoronene molecule. While this
agreement is partly fortuitous as there is no obvious reason at
this point suggesting that the circumcoronene molecule should
be a better model than the other aromatic molecules, this is very
promising for further applications of the lattice model. While
Borchardt et al.9 and other authors4,5 report NMR results for
other carbon materials with average pore sizes in the range of
1 nm, these were not investigated here as the current model for
slit pores is parameterised through MD simulations of liquid
inside a mesopore.28 Moreover, nanoporous carbons are known
to be highly disordered: they present a range of pore sizes
and geometries, as well as features such as five-membered
rings, sheet edges, and curved sheets.32,33 DFT calculations
have shown that curvature8 and the presence of sheet edges34

have a large effect on the local magnetic field and thus on the
chemical shifts. The variety of local structures will thus lead
to a large range of chemical shifts for adsorbates and may
affect the observed lineshapes. A full treatment of the effects
of carbon disorder will be considered in future work.

V. NMR SPECTRA CALCULATION FOR A POROUS
CARBON PARTICLE

A. Parametrisation of the lattice model for a carbon
particle

In the final part of this article, we use an even more coarse-
grained lattice model to represent a carbon particle with a real-
istic pore size distribution and the exchange of ions between
pores of different sizes. In this new setup, each lattice site
represents an entire pore, with a given pore size. We apply
this model to study how the spatial distribution of pore sizes
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in a carbon particle affects the resulting NMR spectra. In what
follows, we will consider a model that resembles the experi-
mental system of Borchardt et al.9 As before, we have to assign
a number of quantities to each lattice site before performing
the simulations, namely, in this model, (i) the pore size, (ii) the
free energy, (iii) the chemical shift, and (iv) the energy barriers
associated with the exchange between each lattice site and its
neighbours.

To parametrise the model, we first need to choose a pore
size distribution. In their work, Borchardt et al.9 report an
experimental pore size distribution obtained through nitro-
gen adsorption. The reported experimental pore size distribu-
tion presents two maxima: one close to 1 nm and the other
close to 4.5 nm. As most of the pore volume in this material
corresponds to pores larger than 2 nm (93% of the total pore
volume), we only consider this part of the curve in our model.
We fit a log normal pore size distribution to the experimental
curve. The mean of this log normal distribution is 1.558 while
the standard deviation is 0.193. As shown in Figure 5, the fit is
quite good and the log normal distribution seems to be a good
choice to represent the experimental pore size distribution.

The free energy associated to each site depends on the
amount of liquid adsorbed at this site and hence on the pore
width (R), the pore surface (S), and the free energy profile
inside the pore. As before, we will assume that all the pores
are slit pores. For each lattice site, we choose randomly a
pore width following the log normal distribution described
above. We then need to choose a pore surface to completely
define or encapsulate the pore volume associated with the
lattice site considered. We choose to work with a distribution
of pore surfaces centered around the area of a circumcoronene
molecule, since the experimental result9 was close to the simu-
lation results for this molecule, and intermediate between the
coronene and dicircumcoronene areas for which we also have
chemical shifts values. The distribution is arbitrarily chosen to
be log normal with a mean of −0.1 and a standard deviation
of 0.25. Once the pore width and the pore surface have been
determined, the free energy of the lattice site is defined so
that the density inside the pore, ρi, is proportional to the
integrated density inside the slit pore multiplied by the pore
surface

ρi ∝
 R

0
e−βE(r )dr × S. (16)

In this way, we take into account both the volume of the pore
and the liquid structure inside it to define the free energy of the
lattice sites.

The next step is to assign a chemical shift to each lattice
site. This is again done according to the pore width and pore
surface previously chosen. The value of the chemical shift for
a lattice site is intrapolated from the values calculated for the
three aromatic molecules. For example, for a pore width R,
and a pore surface S, intermediate between the coronene area
and the circumcoronene area, the chemical shift is chosen as a
weighted average of the coronene value at R, δcoron(R) and of
the circumcoronene value at R, δcircum(R)

δi = δcoron(R) + δcircum(R) − δcoron(R)
Scircum − Scoron

× (S − Scoron), (17)

where Scoron, Scircum, and Sdicircum are taken to be, respectively,
0.362 nm2, 0.981 nm2, and 1.911 nm2.

In our lattice model representing a carbon particle, it is
not particularly relevant to set a lattice parameter as we do not
have a clear idea of what would be a realistic distance between
pores of different sizes and we do not know how the diffusion
coefficients are affected by the confinement. In contrast, it is
essential to be able to vary the exchange rate between pores,
as this rate will affect the temperature dependence of the NMR
lineshape. We will assume that the presence of (positive) en-
ergy barriers Ea(i j) reduces the forward and backward jump
rates between sites i and j. Compared to free diffusion, the
probability of jumping from a site i to a site j is then reduced
by a factor α(i j) equal to:

α(i j) = exp
(
−Ea(i j)

kBT

)
. (18)

Note that, as mentioned in Sec. II, the probability of jump-
ing from j to i has to be reduced by the same factor α(i j) in
order to maintain detailed balance. We do not know the inter-
pore jump rates a priori. In what follows, we will assume that
the energy barriers obey a Gaussian distribution with a mean
value Emean and a standard deviation equal to 0.2, irrespective
of their position in the lattice.

Following this parametrisation scheme, we build three
different models of carbon particles with the same pore size
distribution. We use cubic lattices with a dimension of 20
× 20 × 20. To check a possible size dependence of the resulting
NMR spectra, we also performed the calculations at room

FIG. 5. Pore size distribution and spatial distribution of chemical shifts. (a) Pore size distribution used in the model, obtained by fitting experimental data
corresponding to a CMK-3 carbon9 with a log normal distribution. (b) and (c) Color representation of the spatial distribution of shifts in the lattice: each sphere
represents a lattice site. The shifts can be distributed randomly (b) or following a gradient in one of the three dimensions (c).
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temperature with lattices of dimensions 30 × 30 × 30 and 40
× 40 × 40. The obtained spectra are very similar for the different
lattice sizes so that we consider only the smaller lattice in the
rest of this article. All calculations are performed with a time
step equal to 5 µs and the simulations are run for 50 000 time
steps (0.25 s), which is much longer than the decay time of the
NMR signal.

We first build a model where the various pore sizes, and
consequently the chemical shifts associated, are distributed
randomly over the lattice. This situation is represented in
Figure 5(b). For this model, we choose the mean value of the
energy barriers Emean such that the calculated linewidth (full
width at half maximum peak intensity) at room temperature
is equal to the experimental value of 0.45 ppm obtained by
Borchardt et al.9 This results in a value for Emean equal to
11.8 kJ mol−1. Note that the calculation is performed with a
spectrometer frequency of 300 MHz as the experiments were
done with this condition. This first model will be referred
to as Random-11.8. To investigate the effect of the spatial
distribution of shifts, we then create a setup where the pore
sizes are organised in an ordered way such that there is a
gradient of chemical shifts in one direction of the lattice as
illustrated in Figure 5(c). The second model, referred to as
Grad-11.8, is a lattice where the chemical shifts are ordered
following a gradient and the mean energy barrier is Emean

= 11.8 kJ mol−1. This model allows us to probe the effect of
the gradient on the NMR lineshape while keeping all other
parameters constant. Finally, the third model, referred to as
Grad-1.7, is a lattice where the chemical shifts are ordered
following a gradient and Emean is set equal to 1.7 kJ mol−1

to recover a linewidth of 0.45 ppm at room temperature. The
comparison between Random-11.8 and Grad-1.7 allows us
to probe the different behaviours of the random and gradient
spatial distributions for two systems giving the same linewidth
at room temperature.

B. Investigation of various parameters on the NMR
spectra of the model carbon particles

We first calculate the NMR spectra corresponding to the
three models Random-11.8, Grad-11.8, and Grad-1.7 at room
temperature (Fig. 6). Comparing the results for Random-11.8
and Grad-11.8, which differ only by the spatial distribution of

the shifts, we note that they yield very different NMR spectra.
The spectrum is much broader in the case of the gradient than
in the case of the random distribution. This is not surpris-
ing because, in the gradient model, it takes longer to sample
all Larmor frequencies than in the random model, where a
single jump can dramatically change the Larmor frequency.
The NMR spectrum for Grad-11.8 mirrors the asymmetrical
distribution of chemical shifts resulting from the log normal
distribution of pore sizes. By decreasing the energy barrier
from 11.8 to 1.7 kJ mol−1 in the gradient configuration, we
recover the NMR spectrum observed for Random-11.8.

The difference in energy barrier for Random-11.8 and
Grad-1.7 leads to different conclusions concerning the ex-
change rates and diffusion times in the pores. The relatively
long exchange times necessary to observe lineshape varia-
tions on the experimental time scales could originate from
different factors: a slow diffusion in the carbon particle due to
confinement or a slow exchange between pores due to either
small interpore connections or large distances between pores.
From the simulations, we can estimate the exchange rate be-
tween pores needed to reproduce the experimental linewidth
of 0.45 ppm.9 For Random-11.8, the exchange rate is equal to
1.75 kHz and corresponds to a correlation time of 570 µs. For
Grad-1.7, the exchange rate is much higher, equal to 101 kHz,
and corresponds to a correlation time of 9.9 µs. If we assume
that the diffusion coefficient in the porosity is the same as the
bulk diffusion coefficient,30 i.e., equal to 84.7 × 10−11 m2 s−1,
and that the long exchange times are due to large distances
between pores, we can estimate the distance between pores.
In the case of Random-11.8 and Grad-1.7, we obtain distances
between pores of different sizes, respectively, equal to 1702 nm
and 224 nm. These values seem very high considering that the
particle sizes are usually in the micrometer range. If we assume
that the diffusion coefficient is two orders of magnitude smaller
in the particle compared to the bulk, we estimate distances
between pores of around 170 nm for Random-11.8 and 22.4 nm
for Grad-1.7. While the distance still seems quite large for
the random distribution as the average pore size, 4.5 nm, is
much smaller than 170 nm, the estimation for Grad-1.7 seems
realistic. The point here is that, while we cannot draw unam-
biguous conclusions about the origin of the slow exchange, we
can see that the estimations are strongly affected by the spatial
distribution of shifts.

FIG. 6. NMR spectra and linewidths for different setups. (a) NMR spectra obtained at room temperature for random/gradient distributions of shifts and barrier
heights distributions centered around Emean= 11.8 or 1.7 kJ mol−1. The gradient of shifts (dashed red line) leads to a much broader spectrum than the random
distribution (black solid line). In the gradient case, when the barrier heights distribution is changed to reproduce the experimental linewidth at room temperature
(45 ppm9), the spectrum (blue crosses) is superimposed with the one calculated for the random case. (b) Linewidth as a function of temperature for the different
setups. (c) Linewidth as a function of spectrometer frequency.
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We now explore the effects of temperature and applied
magnetic field strength on the NMR lineshapes, to determine
if further information on porosity can be extracted (Figure 6).
Different magnetic fields are usually labelled according to the
Larmor frequency of 1H in that field: we will refer to this quan-
tity as the spectrometer frequency. We first focus on the temper-
ature effect. For all the systems, when the temperature in-
creases, the diffusion of the ions, or equivalently the exchange
between different pores, increases leading to a sharpening of
the spectra and thus a decrease of the linewidth. Nevertheless,
the temperature dependence is not the same for the different
systems. The two gradient cases show a slower decrease of
the linewidth with temperature compared to the random case.
Moreover, the gradient curves appear to be almost linear over
this temperature range while for the random case, the tempera-
ture dependence of the linewidth appears roughly exponential.
Over a wider temperature range, all curves should show an
exponential behaviour as a result of the exponential depen-
dence of the transition probability on temperature. The inter-
esting point here is that, while the Random-11.8 and Grad-1.7
have the same linewidth at room temperature, this linewidth
does not vary in the same way for the two systems.

The last parameter that we explore is the applied magnetic
field by varying the spectrometer frequency from 300 MHz to
1 GHz. The results show that the dependence of the linewidth
on the spectrometer frequency is strikingly different for the
three systems. The linewidth is almost constant for Grad-
11.8, showing that the distribution of shifts in the spectrum
corresponds to the actual distribution of shifts in the system.
In contrast, for Random-11.8 and Grad-1.7, the linewidth de-
pends dramatically on the applied magnetic field.

Although not investigated here, we can expect that very
different ions could lead to shifts in the NMR spectra as the
adsorption profiles will not be the same and larger molecules
would not be able to access all the pores accessible to small
molecules. In conclusion, analysing a range of NMR experi-
ments using the lattice model presented here should provide a
promising tool for characterising porous carbon structures.

VI. CONCLUSION

In this work, we have described a coarse-grained simula-
tion method to predict diffusion coefficients and NMR spectra
of probe particles diffusing in a porous carbon matrix. The
model that we propose allows us to account for relevant micro-
scopic information whilst exploiting the computational effi-
ciency of the “moment-propagation” approach, a method that
allows us to account for all possible trajectories that particles
could follow in a discretised model of a porous network.

Our simulation method is able to reproduce the coales-
cence effect observed experimentally, the results agree with
analytical solutions in the case of a two-site exchange model.
The model allows NMR spectra for much more complex sys-
tems to be predicted as it can deal with any set of frequencies
and spatial distributions of these frequencies. In particular, we
show that the model can be parametrised realistically using
input from molecular simulations such as free energy profiles,
to represent the molecular/ionic adsorption, and nucleus inde-
pendent chemical shifts estimated through DFT calculations,

to account for the spatial dependence of the chemical shifts of
the anions within the carbon pores.

Parametrisation was performed for an organic electrolyte
confined in slit mesopores of various pore sizes and we could
show that, while a number of environments would be observed
if the diffusion of probed species was ultra-slow, the exchange
rates involved in experiments lead to the detection of a single
resonance. This peak is observed for an average chemical shift
which depends both on the pore size and on the adsorption
profile of the studied species. In this work, we also investigate
the effect of the molecular size chosen for the chemical shifts
calculations on the resulting NMR spectra and show that the
graphitic domain size can lead to large variations of the average
chemical shifts. This can be seen as a challenge from the
parametrisation point of view but it can also be seen as an
opportunity to get insights into these domain sizes from NMR
while it is not probed from other characterisation techniques.

The last part of this article focused on the parametrisa-
tion of an even more coarse-grained lattice model that can be
used to represent a carbon particle with a realistic pore size
distribution. In this model, each lattice site represents a pore
with a given pore size. The model allows us to explore various
spatial distributions of the pore sizes and various conditions,
such as applying different temperatures and magnetic fields,
which can be related to experimental conditions. While some
of the parameters in this model are known from microscopic
simulations, others can be estimated by comparing computed
and experimental spectra for a range of temperatures and mag-
netic fields. Such a comparison yields novel insights into the
structure of porous carbon materials and the structure of the
liquid inside the pores. In particular, this new lattice model
is expected to provide new insights into in situ NMR experi-
ments performed on supercapacitors. Moreover, because of its
versatility, the lattice model is a powerful tool to investigate
a full range of materials, for which NMR parameters can be
determined, including battery and fuel cells materials.
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APPENDIX: DISCRETE GREEN-KUBO RELATION
1. Self-diffusion coefficient

We use the Einstein expression relating diffusion and
mean-square displacement



∆x2(t)�



∆x2(t)� = 2Dt, (A1)

where D is the self diffusion coefficient of the particles and t
is the time. If particles move by a sequence of jumps ∆xi of
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magnitude a, then



∆x2(t)� =


*
,

N
i=1

∆xi
+
-

2
, (A2)

where N is the number of jumps such that N∆t = t. We can
rewrite Eq. (A2) as



∆x2(t)� =

 N
i, j=1

∆xi∆x j


. (A3)

It is convenient to separate the terms with i = j and i , j



∆x2(t)� =

 N
i=1

(∆xi)2

+

 N
i, j

∆xi∆x j


. (A4)

In the second term on the right hand side, the terms i, j and j, i
contribute equally and hence



∆x2(t)� =

 N
i=1

(∆xi)2

+ 2

 N
i< j

∆xi∆x j


. (A5)

Hence

Dt = DN∆t =
1
2

N
i=1


(∆xi)2� +
N
i< j



∆xi∆x j

�
. (A6)

If Nδt is much larger than the decay time of


∆xi∆x j

�
, we can

write

D =
1

2∆t

(∆x)2� + 1

∆t

∞
j=2



∆x1∆x j

�
. (A7)

This expression is the discrete analog of the Green-Kubo rela-
tion

D =
 ∞

0
dt ⟨vx(0)vx(t)⟩ . (A8)

To emphasise this analogy, we interpret ∆xi/∆t as the “veloc-
ity” at timestep i. Then we obtain

D =
1
2


v2
x

�
∆t +

∞
j=2

⟨vx(1)vx( j)⟩∆t . (A9)

Note, however, that we do not assume that the above expression
is valid in the diffusive regime. In particular, for diffusion in a
homogeneous medium, we have (for not too short ∆t, so that
⟨vx(1)vx( j)⟩ = 0)

1
2


v2
x

�
∆t =

1
2

a2/∆t = D∆t/∆t = D. (A10)

2. Moment-propagation approach

The expression for the diffusion constant given in Eq. (A7)
suggests that we should average Eq. (A7) over all trajectories
that a particle can follow. As the number of trajectories of
a walk of length N is equal to zN , where z is the lattice
coordination number, it would seem that brute-force averaging
over all trajectories is not feasible, yet that is exactly what
can be achieved using a recursive numerical scheme (“moment

FIG. 7. Consider a particle starting a random walk at site i = 1 (a). The
probability that this particle is located at a site i is given by the normalised
Boltzmann weight pB(i)= ce−βU (i). In one timestep, the particle can move
with a probability 1

z pacc(1→ j) to any of the neighbouring sites j . For
simplicity, we focus our attention on the step to site j = 2, but our arguments
apply to all z neighbours of 1. The displacement vector for the step from site
1 to site j = 2 is ∆x12. To correlate ∆x12 with the subsequent displacement
vector starting at 2, we have to compute the average ⟨∆x2⟩≡z

k=1
1
z pacc(2

→ k)∆x2k (i.e., the weighted sum over the dark arrows shown in (b)). To get
the complete contribution to the correlation function, we have to average the
contributions of all z sites neighbouring site 1. To obtain ⟨∆x1 ·∆x3⟩, we have
to repeat the same procedure for all sites that can be reached in two steps from
site 1, e.g., site 3 (see (c)). Similarly, to obtain ⟨∆x1 ·∆x4⟩, we must consider
all sites that can be reached in three steps from site 1, e.g., site 4.

propagation”). Consider Figure 7. It is convenient to introduce
the notation ⟨∆x( j)⟩1 for

⟨∆x( j)⟩1 ≡
1
z


⟨k j⟩

pB(k)pacc(k → j)∆xk j, (A11)

where ⟨k j⟩ denotes that k is a nearest neighbour of j. Then
the contribution to the correlation function ⟨∆x1 · ∆x2⟩ for site
1 is the weighted average over all neighbours of site 1 of the
product ∆x1 j · ⟨∆x( j)⟩1 (see Fig. 7(b)). Figures 7(c) and 7(d)
show examples of the subsequent steps.

To obtain the contribution to the correlation function due
to site i, we compute

⟨∆x1 · ∆x2⟩ =
M
i=1

1
z


⟨ j i⟩

pacc( j → i)∆x j i · ⟨∆x( j)⟩1. (A12)

Continuing the recursive procedure, we define ⟨∆x( j)⟩2 as
the average of the one-step displacement vector ⟨∆x(k)⟩1 of all
particles that can reach site j in two steps from a site k. The
contribution to the correlation function is then

1
z


jn.ni

pacc( j → i)∆x j i · ⟨∆x( j)⟩2. (A13)
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To obtain the desired correlation function we multiply the
propagated vectors by 1

z
pacc(n − 1 → n)∆xn−1,n, for all z neigh-

bours of site n. In general, then, the expression for ⟨∆x1 · ∆xn⟩
is

⟨∆x1 · ∆xn⟩ =
M
i=1

1
z


⟨ j i⟩

pacc( j → i)

×

k

Prob(k → j; n − 2)∆x j i · ⟨∆x(k)⟩1,

(A14)

where Prob(k → j; n − 2) denotes the probability that a parti-
cle diffuses in n − 2 steps from site k to site j.

3. NMR signal

In this case, we wish to compute

G(t) = ⟨ei
 t

0 ν(t′).dt′⟩. (A15)

Again, time is discretised, i.e., t = n∆t. Then

G(n∆t) = ⟨ei∆t
N
n=1ν(n)⟩. (A16)

As before, we can compute this function recursively. We start
by defining gi(∆t)

gi(∆t) = pB(i)ei∆tνi, (A17)

where pB(i) is the probability of finding a particle in site i. Then

G(∆t) =
M
i=1

gi(∆t), (A18)

where M is the number of lattice sites. To compute G(2∆t), we
use a recursive expression. We define gi(2∆t) as

gi(2∆t) = ei∆tνi

⟨ j i⟩

pacc( j → i)gj(∆t) (A19)

and

G(2∆t) =
M
i=1

gi(2∆t). (A20)

In general

gi(n∆t) = ei∆tνi

⟨ j i⟩

pacc( j → i)gj((n − 1)∆t) (A21)

and

G(n∆t) =
M
i=1

gn(i). (A22)

The advantage of the moment propagation method is that
the computation effort scales as the number of lattice sites× the
number of timesteps N , rather than as zN .
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