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Decay of semilinear damped wave equations:

cases without geometric control condition

Romain Joly∗ & Camille Laurent†‡

Abstract

We consider the semilinear damped wave equation

∂2ttu(x, t) + γ(x)∂tu(x, t) = ∆u(x, t)− αu(x, t)− f(x, u(x, t)) .

In this article, we obtain the first results concerning the stabilization of this semilin-
ear equation in cases where γ does not satisfy the geometric control condition. When
some of the geodesic rays are trapped, the stabilization of the linear semigroup is
semi-uniform in the sense that ∥eAtA−1∥ ≤ h(t) for some function h with h(t) → 0
when t → +∞. We provide general tools to deal with the semilinear stabilization
problem in the case where h(t) has a sufficiently fast decay.

Keywords: damped wave equations; stabilization; semi-uniform decay; unique con-
tinuation property; small trapped sets; weak attractors.
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∗Université Grenoble Alpes, CNRS, Institut Fourier, F-38000 Grenoble, France, email:
romain.joly@univ-grenoble-alpes.fr

†CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
‡UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France, email:

laurent@ann.jussieu.fr

1



8 Decay estimate in the disk with holes 23

9 Application 3: the disk with two holes 26

10 Analytic regularization and proof of Theorem 1.1 27
10.1 Analytic regularization of global bounded solutions . . . . . . . . . . . . . . 27
10.2 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11 Application 4: the disk with many holes 33

12 Application 5: Hyperbolic surfaces 34

13 A uniform bound for the H2 ×H1-norm 34

A Estimates of the resolvent and decay of the semigroup 36

B Estimates of the resolvent of abstract damped wave equations 38

C Estimates for the high-frequencies projections 40

1 Introduction

We consider the semilinear damped wave equation
∂2ttu(x, t) + γ(x)∂tu(x, t) = ∆u(x, t)− αu(x, t)− f(x, u(x, t)) (x, t) ∈ Ω× (0,+∞)
u|∂Ω(x, t) = 0 (x, t) ∈ ∂Ω× (0,+∞)

(u(·, t = 0), ∂tu(·, t = 0)) = U0 = (u0, u1) ∈ H1
0 (Ω)× L2(Ω)

(1.1)
in the following general framework:

(i) the domain Ω is a two-dimensional smooth compact and connected manifold with or
without smooth boundary. If Ω is not flat, ∆ has to be taken as Beltrami Laplacian
operator.

(ii) the constant α ≥ 0 is a non-negative constant. We require that α > 0 in the case
without boundary to ensure that ∆−αId is a negative definite self-adjoint operator.

(iii) the damping γ ∈ L∞(Ω,R+) is a bounded function with non-negative values. Since
we want to consider a damped equation, we will assume that γ does not vanish
everywhere.

(iv) the non-linearity f ∈ C1(Ω×R,R) is of polynomial type in the sense that there exists
a constant C and a power p ≥ 1 such that for all (x, u) ∈ Ω× R,

|f(x, u)|+ |∇xf(x, u)| ≤ C(1 + |u|)p and |f ′u(x, u)| ≤ C(1 + |u|)p−1 . (1.2)

Moreover, in most of this paper, we will be interested in the stabilization problem
and we will also assume that

∀(x, u) ∈ Ω× R , f(x, u)u ≥ 0 . (1.3)
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We introduce the space X = H1
0 (Ω)× L2(Ω) and the operator A defined by

D(A) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) A =

(
0 Id

∆− αId −γ(x)

)
.

In this paper, we are interested in the cases where the linear semigroup eAt has no uniform
decay, that is that ∥eAt∥L(X) does no converge to zero. We only assume a semi-uniform
decay, but sufficiently fast in the following sense.

(v) There exist a function h(t) such that

∀U0 ∈ D(A) , ∥eAtU0∥X ≤ h(t) ∥U0∥D(A) (1.4)

and there is σh ∈ (0, 1] such that

lim
t→∞

h(t) = 0 and ∀σ ∈ [0, σh] ,

∫ ∞

0
h(t)1−σ dt < ∞ . (1.5)

Condition (1.5) requires a decay rate fast enough to be integrable. Roughly speaking, this
article shows that this condition, together with a suitable unique continuation property,
are sufficient to obtain a stabilization of the semilinear equation. The relevant unique
continuation property is explained in Proposition 3.5 below. We present two general
results where it can be obtained.

Our first result concerns analytic nonlinearities and smooth dampings.

Theorem 1.1. Consider the damped wave equation (1.1) in the framework of Assumptions
(i)-(v). Assume in addition that:

a) the function (x, u) 7→ f(x, u) is smooth and analytic with respect to u.

b) the damping γ is of class C1 or at least that there exists γ̃ ∈ C1(Ω,R+) such that (v)
holds with γ replaced by γ̃ and such that the support of γ̃ is contained in the support
of γ.

c) the power p of f in (1.2) and the decay rate h(t) of the semigroup in (1.4) satisfy
h(t) = O(t−β) with β > 2p.

Then, any solution u of (1.1) satisfies

∥(u, ∂tu)(t)∥H1
0×L2 −−−−−−−−→

t−→+∞
0 .

Moreover, for any R and σ > 0, there exists hR,σ(t) which goes to zero when t goes to
+∞ such that the following stabilization hold. For any U0 ∈ H1+σ

0 (Ω) × Hσ(Ω), if u is
the solution of (1.1), then

∥(u0, u1)∥H1+σ×Hσ ≤ R =⇒ ∥(u, ∂tu)(t)∥H1
0×L2 ≤ hR,σ(t) −−−−−−−−→

t−→+∞
0 .

Our assumptions (v) and c) on the decay of the linear semigroup may seem strong.
They are satisfied in the cases where the set of trapped geodesics, the ones which do not
meet the support of the damping, is small and hyperbolic in some sense. Several geometries
satisfying (v) and c) have been studied in the literature, see the concrete examples of Figure
1 and the references therein. Notice in particular that the example of domain with holes is
particularly relevant for applications where we want to stabilize a nonlinear material with
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holes by adding a damping or a control in the external part. There is a huge literature
about the damped wave equation and the purpose of the examples presented here is mainly
to illustrate our theorem to non specialists. Moreover, the subject is growing fastly, giving
more and more examples of geometries where we understand the effect of the damping
and where we may be able to apply our results. We do not pretend to exhaustivity and
refer to the bibliography of the more recent [25] for instance.

In some cases, the unique continuation property required in Proposition 3.5 can be
obtained without considering analytic nonlinearities or conditions on the growth of f as
Hypothesis c) of Theorem 1.1. Instead, we require a particular geometry, which will be
introduced more precisely in Section 6.

Theorem 1.2. Consider the damped wave equation (1.1) in the framework of Assumptions
(i)-(v). Assume in addition that:

a) the function (x, u) 7→ f(x, u) is of class C1(Ω× R,R).

b) there exists a pseudo-convex foliation of Ω in the sense of Definitions 6.4 or 6.6.

Then, the conclusions of Theorem 1.1 hold.

This result can be applied in several situations of Figure 1: the “disk with two holes”,
the “peanut of rotation” and the “open book”. In these cases, the stabilization holds for
any natural nonlinearity.

We expect that the decay rate hR,σ(t) is related to the linear decay rate h(t) of As-
sumption (v). We are able to obtain this link for the typical decays of the examples of
Figure 1.

Proposition 1.3. Consider a situation where the stabilization stated in Theorems 1.1 or
1.2 holds. Then,

• if the decay rate of Assumption (v) satisfies h(t) = O(t−α) with α > 1, then the
nonlinear equation admits a decay of the type hR,σ(t) = O(t−σα).

• if the decay rate of Assumption (v) satisfies h(t) = O(e−at1/β ) with a > 0 and β > 0,

then the nonlinear equation admits a decay of the type hR,σ(t) = O(e−bσt1/(β+1)
) for

some b > 0.

Notice that this result is purely local in the sense that the decay rate is obtained when
the solution is close enough to 0. Our proofs do not provide an explicit estimate of the
time needed to enter this small neighborhood of 0. Also notice that the loss in the power of
the second case of Proposition 1.3 is due to an abstract setting: in the concrete examples,
we may avoid this loss, see the remark below Lemma 4.2 and the concrete applications to
the examples of Figure 1.

To our knowledge, Theorems 1.1 and 1.2 are the first stabilization results for the semi-
linear damped wave equation when the geometric control condition fails. This famous
geometric control condition has been introduced in the works of Bardos, Lebeau, Rauch
and Taylor (see [4]) and roughly requires that any geodesic of the manifold Ω meets the
support of the damping γ. This condition implies that the linear semigroup of the damped
wave equation satisfies a uniform decay ∥eAt∥L(H1

0×L2) ≤Me−λt. In this context, the sta-
bilization of the semilinear damped wave equation has been studied since a long time,
see for example [19, 44, 14, 15, 27]. Under this condition and for large data, the proof
often divides into a part dealing with high frequencies with linear arguments and another
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Disk with holes
We set Ω to be a convex flat surface with a damping
γ efficient near the boundary. Typically, we may take
the flat disk B(0, 1) of R2 and assume that there exist
r ∈ (0, 1) and γ > 0 such that γ(x) ≥ γ > 0 for |x| > r.
Inside the interior zone without damping, assume that
at least two holes exist; to simplify, we also assume that
these holes are disks and are small in a sense specified
later. Notice that there exist some periodic geodesics
which do not meet the support of the damping. This
example has been studied in [8, 10].'

&

$

%

The peanut of rotation
We consider a compact two-
dimensional manifold without bound-
ary. We assume that the damping γ
is effective, that is uniformly positive,
everywhere except in the central
part of the manifold. This part is a
manifold of negative curvature and
invariant by rotation along the y−axis. More precisely, let us set this part to be
equivalent to the cylinder endowed with the metric g(y, θ) = dy2 + cosh2(y)dθ2. This
central part admits a unique (up to change of orientation) periodic geodesic which is
unstable; any other geodesic meets the support of the damping. This example has been
studied for example in [11], [38] and the references therein.'

&

$

%
γ(x1, x2) = |x1|β

The open book
We consider the torus T2 with flat geometry. The
damping γ is assumed to depend only on the first
coordinate and to be of the type γ(x) = |x1|β with β > 0
to be chosen small enough. In this case, there is a unique
(up to change of orientation) geodesic which does not
meet the support of the damping. This example has
been studied in [30].

'

&

$

%

Hyperbolic surfaces
We consider a compact connected hyperbolic
surface with constant negative curvature -1
(for example a surface of genus 2 cut out
from Poincaré disk). The damping is any
non zero function γ(x) ≥ 0. This example
has been studied in [25] following the fractal
uncertainty principle of [7]. We also refer to
other results in any dimension with pressure
conditions [39] following ideas of [1].

Figure 1: the main applications of Theorems 1.1 and 1.2 presented in this paper. The gray
parts show the localization of the damping (white=no damping). The more geometrically
constrained Theorem 1.2 apply to the “disk with two holes”, the “peanut of rotation” and
the “open book”.
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one dealing with low frequencies that often requires a unique continuation argument. The
high frequency problem was solved by Dehman [14] with important extension by Dehman-
Lebeau-Zuazua [15] using microlocal defect measure. Yet, the unique continuation was
proved by classical Carleman estimates (see Section 6.2 below) which restricted the gen-
erality of the geometry. Using techniques from dynamical systems applied to PDEs, the
authors of the present article proved in [27] a general stabilization result under Geometric
Control Condition, at the cost of an assumptions of analyticity of the nonlinearity. The-
orem 1.1 is in the same spirit as [27] and intends to prove that related techniques can be
extended to a weaker damping. Theorem 1.2 is more in the spirit of the other references,
taking advantage of particular geometries, but avoiding analyticity.

Notice that the “disk with one hole” satisfies this geometric control condition and thus
it is not considered in this paper.

In the cases where the geometric control condition fails, the decay of the linear semi-
group is not uniform. At least, if γ does not vanish everywhere, it is proved in [12] (see also
[19]) that the trajectories of the linear semigroup goes to zero (see Theorem 2.1 below).
In fact, the decay can be estimated with a loss of derivative as

∥eAtU∥H1×L2 ≤ h(t)∥U∥H2×H1 with h(t) −−−−−→
t→+∞

0 . (1.6)

In the general case, as soon as γ ̸≡ 0, the decay rate can be taken as h(t) = O(ln(ln(t))/ ln t)
as shown in [31, 32]. In some particular situations, γ misses the geometric control condition
but very closely: typically there is only one (up to symmetries) geodesic which does not
meet the support of the damping and this geodesic is unstable. In this case, we may
hope a better decay than the O(ln(ln(t))/ ln t) one, see for example [11, 30] and the other
references of Figure 1.

To our knowledge, until now, there was no result concerning the semilinear damped
wave equation (1.1) when the geometric control condition fails. Thus Theorems 1.1 and
1.2 provides the first examples of semi-uniform stabilization for the semilinear damped
wave equation. Notice that our results deeply rely on the fact that the decay rate of (1.6)
is integrable. Typically, for the situations of Figure 1, it is of the type h(t) = O(e−λtα) or
h(t) = O(1/tβ) with sufficiently large β > 0.

Theorems 1.1 and 1.2 concern the stabilization of the solutions of (1.1) in the sense
that their H1 × L2-norm goes to zero. Notice that, since the energy of the damped wave
equation is non-increasing (see Section 2), we knew that this H1 × L2-norm is at least
bounded. Such a uniform bound is not clear a priori for the H2 × H1-norm. However,
basic arguments provide this bound as a corollary of Theorems 1.1 and 1.2 if the decay is
fast enough, which is the case of the “disk with holes”, the “peanut of rotation” and the
“hyperbolic surfaces” of Figure 1.

Theorem 1.4. Consider the damped wave equation (1.1) in the framework of Theorems
1.1 or 1.2. Assume that for all R > 0, the decay rate hR,1(t) is faster than polynomial,
i.e. hR,1(t) = o(t−k) for any k ∈ N. Also assume that γ is of class C1 and f is of class
C2(Ω×R,R). Then the H2(Ω)×H1(Ω)-norm of the solutions are bounded in the following
sense. For any R > 0, there exists C(R) > 0 such that, for any U0 ∈ (H2(Ω) ∩H1

0 (Ω))×
H1

0 (Ω) such that ∥U0∥H2×H1 ≤ R, the solution u of (1.1) satisfies

sup
t≥0

∥(u, ∂tu)(t)∥H2×H1 ≤ C(R) .

Note that, in the case without damping, this result is sometimes expected to be false.
It is related to the weak turbulence, described as a transport from low frequencies to high
frequencies.
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The main purpose of this paper is to obtain new examples of stabilization for the
semilinear damped wave equation and to introduce the corresponding methods and tools.
We do not pretend to be exhaustive and the method may be easily used to obtain further
or more precise results. For example:

• the boundary condition may be modified, typically in the case of the disk with holes,
Neumann boundary condition may be chosen at the exterior boundary.

• for simplicity, the examples of Figure 1 and the main results of this article concern
two-dimensional manifolds. However, the arguments of this paper can be used to
deal with higher-dimensional manifolds. There are some technical complications,
mainly due to the Sobolev embeddings. For example, in dimension d = 3, the degree
of f in (1.2) should satisfy p < 3 (p < 5 if we use Strichartz estimates as done in [27]
using [15]) and the order β of the vanishing of γ in the example of the open book
should not be too large. To simplify, we choose to state our results in dimension
d = 2. However, several intermediate results in this article are stated for dimensions
d = 2 or d = 3.

• It is also possible to combine the strategy of this paper with other tricks and technical
arguments. For example, we may consider unbounded manifolds or manifolds of
dimension d = 3 with nonlinearity of degree p ∈ [3, 5), which are supercritical in
the Sobolev sense. This would requires to use Strichartz estimates in addition to
Sobolev embeddings as done in [15] or [27].

• assume that we replace the sign condition (1.3) by an asymptotic sign condition

∃R > 0 , ∀(x, u) ∈ Ω× R , |u| ≥ R ⇒ f(x, u)u ≥ 0 .

Then they may exist several equilibrium points and the stabilization to zero cannot
be expected. However, the arguments of this paper show that the energy E intro-
duced in Section 2 is a strict Lyapounov functional and that any solution converges
to the set of equilibrium points. We can also show the existence of a weak compact at-
tractor in the sense that there is an invariant compact set A ⊂ H1

0 (Ω)×L2(Ω), which
consists of all the bounded trajectories and such that any regular set B bounded in
(H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) is attracted by A in the topology of H1

0 (Ω)×L2(Ω). Notice
that this concept of weak attractor is the one of Babin and Vishik in [3]. At this
time, the asymptotic compactness property of the semilinear damped wave equation
was not discovered and people thought that a strong attractor (attracting bounded
sets of H1

0 (Ω) × L2(Ω)) was impossible due to the lack of regularization property
for the damped wave equation. Few years later, Hale [17] and Haraux [19] obtain
this asymptotic compactness property and the existence of a strong attractor. Thus
this notion of weak attractor has been forgotten. It is noteworthy that it appears
again here. Notice that we cannot hope a better attraction property since even in
the linear case, {0} is not an attractor in the strong sense.

The organization of this paper follows the proof of stabilization of the examples of
Figure 1. We add step by step the techniques required to deal with our guiding examples,
from the simplest to the most complicated one.

Sections 2 and 3 contain the basic notations and properties. The asymptotic com-
pactness of the semilinear dynamics is proved and the problem is reduced to a unique
continuation property. In Section 4, we show the estimations of Proposition 1.3. Sec-
tion 5 then proves the nonlinear stabilization in the “open book” case, where the unique
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continuation property is trivial. Section 6 stated several unique continuation results, en-
abling to prove Theorem 1.2. We obtain as a consequence the stabilization in the case
of the “peanut of rotation” in Section 7. Section 8 studies the linear semigroup for the
case of the “disk with holes” before we apply Theorem 1.2 in the case of the “disk with
two holes” in Section 9. Theorem 1.1 is proved in Section 10 by showing an asymptotic
analytic regularization. It is applied to the “disk with three or more holes” and hyperbolic
surfaces, assuming f analytic in u, in Sections 11 and 12. In Section 13, we show how
to obtain Theorem 1.4 as a corollary of Theorems 1.1 or 1.2. This article finishes with
three appendices on the links between the decay of the semigroup eAt and the resolvent
(A− iµId)−1.

Acknowledgements: The authors deeply thank Matthieu Léautaud for his contributions
to the appendices. They are also grateful to Nicolas Burq for several discussions and the
suggestion of Theorem 1.4. Part of this work has been made in the fruitful atmosphere
of the Science Center of Benasque Pedro Pascual and has been supported by the project
ISDEEC ANR-16-CE40-0013.

2 Notations and basic facts

We use the notations of Equation (1.1), of Assumptions (i)-(v) and of the introduction.
In particular, we recall that X = H1

0 (Ω)× L2(Ω) and

D(A) = (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) A =

(
0 Id

∆− αId −γ(x)

)
.

The operator A is the classical linear damped wave operator corresponding to the linear
part of (1.1). Due to Lumer-Phillips theorem, we know that this operator generates a
linear semigroup of contractions eAt on X and on D(A) and that

∀t ≥ 0 , ∥eAt∥L(X) ≤ 1 and ∥eAt∥L(D(A)) ≤ 1 .

Notice that the second estimate is a direct consequence of the commutation of A and eAt

and does not require any regularity on γ.
For any σ ∈ [0, 1], we set

Xσ = (H1+σ(Ω) ∩H1
0 (Ω))×Hσ

0 (Ω) .

Thus X0 = X and X1 = D(A) and Xσ is an interpolation space between X0 and X1. In
particular, by interpolation, eAt is defined in Xσ and we have

∀σ ∈ [0, 1] , ∀t ≥ 0 , ∥eAt∥L(Xσ) ≤ 1 . (2.1)

We set F ∈ C0(X) to be the function

F : U =

(
u
v

)
∈ X 7−→

(
0

−f(·, u)

)
∈ X . (2.2)

Notice that, if Ω is two-dimensional, H1
0 (Ω) ↪→ Lp(Ω) for any p ∈ [1,+∞) and if Ω is three-

dimensional H1
0 (Ω) ↪→ L6(Ω). Thus, f(u) is well defined in L2(Ω) due to Assumption (1.2)
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if dim(Ω) = 2 or if dim(Ω) = 3 and p ≤ 3. Moreover, for any R, u and v with ∥u∥H1 ≤ R
and ∥v∥H1 ≤ R, we have

∥f(·, u)− f(·, v)∥L2 =

∥∥∥∥(u− v)

∫ 1

0
f ′u(·, u+ s(u− v))ds

∥∥∥∥
L2

≤ C(R)∥u− v∥H1

and so F is lipschitzian on the bounded sets of X. As a consequence, the damped wave
equation (1.1) is well posed in X and admits local solutions if dim(Ω) = 2 or if dim(Ω) = 3
and p ≤ 3.

With the above notation, our main equation writes

∂tU = AU + F (U) U(t = 0) = U0 ∈ X . (2.3)

In particular, Duhamel’s formula yields

U(t) = eAtU0 +

∫ t

0
eA(t−s)F (U(s)) ds .

We introduce the potential

V (x, u) =

∫ u

0
f(x, s)ds .

Due to (1.2) and the above arguments, V (·, u) defines a Lipschitz function from the
bounded sets of H1

0 (Ω) into L1(Ω). The classical energy associated to (1.1) is defined
along a trajectory U = (u, ∂tu) as

E(U) =

∫
Ω

1

2
(|∇u|2 + α|u|2 + |∂tu|2) + V (x, u) .

The damping effect appears by the computation

∂tE(U(t)) = −
∫
Ω
γ(x)|∂tu|2 . (2.4)

In particular, the energy E is non-increasing along the trajectories. Moreover, the sign
assumption (1.3) yields that V (x, u) ≥ 0. Thus, we have that E(U) ≥ C∥U∥2X and that
E(t), t ≥ 0, is bounded on the bounded sets of X. All together, the above properties
show that for any U0 ∈ X, the solution U = (u, ∂tu) of (1.1) is defined for all non-negative
times and remains in a bounded set of X, which only depends on ∥U0∥X .

A fundamental question of this paper concerns the solution for which the energy is
constant: are they equilibrium points or may they be moving trajectories? At least, the
answer is known for the linear equation, see [12] and also [19].

Theorem 2.1. Dafermos (1978).
Assume that the damping γ ≥ 0 does not vanish everywhere. Then, for any U0 ∈ X, we
have

eAtU0 −−−−−−−−→
t−→+∞

0 in X .

3 Asymptotic compactness and reduction to a unique con-
tinuation problem

In this section, we assume a fast enough semi-uniform linear decay as described by (1.4)
and (1.5). We first notice that, by linear interpolation, we have the following result.
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Proposition 3.1. For any σ1, σ2 such that 0 ≤ σ2 < σ1 ≤ 1, the linear semigroup is well
defined from Xσ1 in Xσ2 and we have

∀U0 ∈ Xσ1 , ∥eAtU0∥Xσ2 ≤ h(t)σ1−σ2∥U0∥Xσ1 .

Proof: We interpolate the estimates (2.1) for σ = 1 and (1.4) with respective weights
(σ2/σ1, 1− σ2/σ1) and obtain

∀U0 ∈ D(A) , ∥eAtU0∥Xσ2/σ1 ≤ h(t)1−σ2/σ1∥U0∥D(A) .

It remains to interpolated the above estimate and (2.1) for σ = 0 with respective weights
(σ1, 1− σ1). □

We also need some regularity properties for F . The following properties depend on
Sobolev embeddings and so of the dimension d of Ω. For d = 2, which is the case in our
examples, the properties are general. For d = 3, they are more restrictive but they are
shown in the same way. We choose to also consider this case in our paper for possible
later uses.

Proposition 3.2. Assume that dim(Ω) = 2. Then for any σ ∈ [0, 1), the function F
maps any bounded set B of X = H1

0 (Ω) × L2(Ω) in a bounded set F (B) contained in
Xσ = (H1+σ(Ω) ∩H1

0 (Ω))×Hσ
0 (Ω). Moreover, F (B) has compact enclosure in Xσ.

If dim(Ω) = 3 and if (1.2) holds for some p ∈ [0, 3), then the same properties hold for
σ ∈ [0, (3− p)/2).

Proof: Assume that dim(Ω) = 2. First notice that we only have to show that f(·, u)
is compactly bounded in Hσ

0 (Ω) since the first component of F is zero. Also notice that
f(x, 0) = 0 due to the sign assumption (1.3), thus the Dirichlet boundary condition pos-
sibly contained in Hσ

0 (Ω) will be fulfilled by f(x, u) if u ∈ H1
0 (Ω). Due to the Sobolev

embeddings, and since Ω is compact, it is sufficient to show that F (B) is bounded in
W 1,q(Ω) for all q ∈ [1, 2) to obtain compactness in Hσ(Ω) for any σ ∈ [0, 1). Since f is of
polynomial type due to (1.2), we know that f(x, u) is bounded in Lq(Ω) for any q ∈ [1, 2).
On the other hand, using (1.2), we have

∥∇(f(x, u))∥Lq ≤ ∥∇xf(x, u)∥Lq + ∥f ′u(x, u)∇u∥Lq

≤ C∥(1 + |u|)p∥Lq + C∥(1 + |u|)p−1∇u∥Lq

≤ C(1 + ∥u∥pLpq + ∥∇u∥L2∥u∥p−1
Lr )

with r = (p− 1) 2q
2−q defined as soon as q < 2. This shows that f(·, u) belongs to W 1,q(Ω)

for any q ∈ [1, 2) and concludes the proof for dim(Ω) = 2.
The case dim(Ω) = 3 is similar once we use the suitable Sobolev embeddings. □

The main results of this section are the following asymptotic compactness properties.

Proposition 3.3. If dim(Ω) = 2, set σ∗ = σh. If dim(Ω) = 3, assume that p ∈ [0, 3) in
(1.2) and that σh ∈ ((p− 1)/2, 1) in (1.5) and set σ∗ = σh − (p− 1)/2.

Let U(t) = (u, ∂tu) where u solves (1.1) and let (tn) be a sequence of times such that
tn → +∞. Then, there exist a subsequence (tφ(n)) and a solution W (t) = (w, ∂tw)(t) of
(1.1) defined for all t ∈ R, such that

∀t ∈ R , U(tφ(n) + t) −−−−−−−−→
n−→+∞

W (t) in X = H1
0 (Ω)× L2(Ω) .

Moreover, the solution W is globally bounded in Xσ for all σ ∈ [0, σ∗) and the energy
E(W (t)) is constant.

10



Proof: Assume first that dim(Ω) = 2. We have

U(tn) = eAtnU0 +

∫ tn

0
eA(tn−s)F (U(s)) ds . (3.1)

Due to Theorem 2.1, the term eAtnU0 goes to zero in X. Thus, it remains to show
that

∫ tn
0 eA(tn−s)F (U(s)) ds is a compact term in X. First notice that U(s) is uniformly

bounded for s ≥ 0 due to the non-increasing energy E (see Section 2). Due to Proposition
3.2, F (U(s)) thus belongs to a bounded set of Xσ1 for all σ1 ∈ [0, 1). By Assumption (1.5)
and Proposition 3.1, eA(tn−s)F (U(s)) has an integral in [0, tn] bounded in Xσ2 uniformly
with respect to n, for any σ2 ∈ (0, σh). Thus

∫ tn
0 eA(tn−s)F (U(s)) ds is a compact sequence

in Xσ for any σ ∈ [0, σ2). As a consequence, for any σ as close as wanted to σh, we may

extract a subsequence (tφ(n)) such that
∫ tφ(n)

0 eA(tφ(n)−s)F (U(s)) ds converges to some limit
W (0) in Xσ. Since the linear term of (3.1) goes to zero in X for tφ(n) → +∞, U(tφ(n))
converges to W (0) ∈ Xσ for the norm of X.

Let W (t) = (w, ∂tw)(t) be the maximal solution of the damped wave equation (1.1)
corresponding to the initial data W (0). Let t ∈ R, for n large enough tφ(n) + t ≥ 0 and
thus U(tφ(n) + t) is well defined and uniformly bounded in X. Since our equation is well
posed, the solution is continuous with respect to the initial data. Thus, since U(tφ(n))
converges to W (0) in X, we have that U(tφ(n) + t) converges to W (t) for all t such that
W (t) is well defined. But due to the uniform bound on U(tφ(n) + t), W (t) is uniformly
bounded and thus the solution may be extended to a global solution W (t), t ∈ R. In
addition, the Xσ-bound obtained above for W (0) only depends on the X−bound on U(s)
which is uniform due to non-increase of the energy of U(t). Thus, the same arguments
applied to the convergence U(tφ(n) + t) →W (t) give the same Xσ-bound for W (t) for all
t ∈ R. Finally, since the energy of U(t) is non-increasing and non-negative, for any t ∈ R,
we must have E(U(tn + t)) − E(U(tn)) → 0 when n → 0 (since tn goes to +∞). This
shows that E(W (t)) is constant and finishes the proof.

The case dim(Ω) = 3 is similar once we take into account the constraints given by
Proposition 3.2. □

Proposition 3.4. If dim(Ω) = 2, set σ∗ = σh. If dim(Ω) = 3, assume that p ∈ [0, 3) in
(1.2) and that σh ∈ ((p− 1)/2, 1) in (1.5) and set σ∗ = σh − (p− 1)/2.

Let σ > 0 and R > 0. Let Un(t) = (un, ∂tun) a sequence of solutions un of (1.1)
such that (Un(0)) ⊂ Xσ and ∥Un(0)∥Xσ ≤ R. Let (tn) be a sequence of times such that
tn → +∞ and let σ′ ∈ [0,min(σ, σ∗)). Then, there exist subsequences (tφ(n)) and (Uφ(n))
and a solution W (t) = (w, ∂tw)(t) of (1.1) defined for all t ∈ R, such that

∀t ∈ R , Uφ(n)(tφ(n) + t) −−−−−−−−→
n−→+∞

W (t) in Xσ′
.

Moreover, the solution W is globally bounded in Xσ′
and the energy E(W (t)) is constant.

Proof: The arguments are similar as the ones of the above proof of Proposition 3.3. The
term eAtnUn(0) goes to zero in Xσ′

due to Proposition 3.1 because σ′ < σ. We bound
the integral

∫ tn
0 eA(tn−s)F (Un(s)) ds as in the proof of Proposition 3.3: Un(s) is uniformly

bounded in X, so F (Un(s)) is uniformly bounded in Xη with η < 1 in dimension 2 or
η < (3− p)/2 in dimension 3. Proposition 3.1 together with (1.5) implies that the integral
is uniformly bounded in Xσ′

with σ′ < σ∗. The compactness follows by leaving any small
amount of regularity in the process. To obtain the convergence to W (t) for all t, we use
the same argument as the one of the proof of Proposition 3.3 to first show the convergence
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in X. Then, the above arguments also show the compactness of U(tφ(n) + t) in Xσ′
and

thus the convergence to W (t) also holds in Xσ′
. The last property is the same as the ones

of Proposition 3.3. □

The conclusions of Theorem 1.1 then follow from Propositions 3.3 and 3.4 as soon as
we can prove that W ≡ 0 for any subsequences of any sequences (tn) and Un. To this end,
notice that E(W (t)) is constant and its derivative (2.4) implies that

∫
Ω γ(x)|∂tw|

2 = 0 for
all time. To formulate this property as a unique continuation property, we set as usual
z = ∂tw and notice that z solves

∂2ttz(x, t) = ∆z(x, t)− αz(x, t)− f ′u(x,w(x, t))z (x, t) ∈ Ω× R
z|∂Ω(x, t) = 0 (x, t) ∈ ∂Ω× R
z(x, t) ≡ 0 (x, t) ∈ support(γ)× R

(3.2)

If this implies z ≡ 0 everywhere, this means that w(x, t) = w(x) is constant in time and
solves

∆w(x)− αw(x) = f(x,w(x)) .

Multiplying by w and integrating, we obtain

∥∇w∥2 + α∥w∥2 = −
∫
Ω
f(x,w(x))w(x) dx .

By the sign Assumption (1.3), this yields w ≡ 0. Thus, it only remains to study this
unique continuation property.

Proposition 3.5. Assume that z ≡ 0 is the only global solution of (3.2). Then the decay
assumptions (1.4) and (1.5) imply the conclusions of Theorem 1.1.

4 Rate of the nonlinear decay: proof of Proposition 1.3

The purpose of this section is to prove Proposition 1.3. When estimating the decay rate
of the nonlinear system, we will not exactly need the decay of the linear semigroup but
more precisely the decay rate of the linearization at u = 0. This is not difficult since an
estimate as (1.4) is a high-frequency result: the behavior of the high frequencies is the
difficult part and we only need that the low frequencies do not lie on the imaginary axes.

4.1 The polynomial case

The case of polynomial decay is obtained as follows.

Lemma 4.1. Assume the sign hypothesis (1.3) and assume that (1.4) holds with h(t) =
O(t−α), with α > 1. Set

Ã = A+

(
0

−f ′u(x, 0)

)
=

(
0 Id

∆− αId− f ′u(x, 0) −γ(x)

)
.

Then, there exists C > 0 such that

∀t ≥ 0 , ∀U0 ∈ D(A) , ∥eÃtU0∥X ≤ C

(1 + t)α
∥U0∥D(A) .
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Proof: Due to (1.3), we have that f(x, 0) = 0 and that f ′u(x, 0) ≥ 0. Since Ã is a compact
perturbation of A, we do not expect that the behavior for high frequencies should be
modified. For low frequencies, the sign of f ′u(x, 0) is sufficient to avoid eigenvalues on the
imaginary axes.

To prove rigorously these facts as quickly as possible, we use the results stated in
Appendix with H = L2(Ω), L = −∆+ α, B = γ and V = f ′u(x, 0). Due to Theorem A.4,
there exist µ0 and C > 0 such that

∀µ ∈ R with |µ| ≥ µ0 , ∥(A− iµ)−1∥L(L2) ≤ C|µ|1/α .

We now use Proposition B.4 to obtain that the same estimate holds for the resolvents
(Ã − iµ)−1 for large µ. Moreover, for µ in a compact interval, Proposition B.1 ensures
that the resolvent (Ã− iµ)−1 is well defined. Applying Theorem A.4 in the converse sense
concludes the proof. □

Proof of the first case of Proposition 1.3: we assume that the conclusions of Theo-
rem 1.1 hold. In particular, the trajectory of a ball of Xσ of radius R is attracted by {0}
in Xσ′

for a small enough σ′ > 0. Thus, it is sufficient to prove that the decay has the
same rate as the linear one, as soon as we start from a small ball of Xσ′

of radius ρ > 0
and stay in it.

We consider the linearization of our equation near the stable state u = 0. We set Ã
be as in Lemma 4.1 and F̃ (u) = (0, f(x, u) − f ′x(x, u)u). Since H1+σ′

(Ω) is embedded
in L∞(Ω) and is an algebra, we may bound the derivatives of f and by linearization, for
any small δ > 0, we may work with U(t) in a ball of Xσ′

of radius ρ, which is such that
∥F̃ (U)∥X1 ≤ δ∥U∥X .

Let U(t) be a trajectory in the small ball of Xσ′
with ∥U0∥Xσ ≤ ρ. We have

(1 + t)σαU(t) = (1 + t)σαeÃtU0 + (1 + t)σα
∫ t

0
eÃ(t−s)F̃ (U(s)) ds .

The term (1 + t)σαeÃtU0 is bounded by the linear decay (see Lemma 4.1 and Proposition
3.1). By using the above estimate on F̃ (U(s)), we get that

∥(1 + t)σαU(t)∥X ≤ C + (1 + t)σα
∫ t

0

C

(1 + (t− s))α
δ∥U(s)∥X ds .

Thus,

max
t∈[0,T ]

(1 + t)σα∥U(t)∥X ≤ C + δC

(
max
s∈[0,T ]

(1 + s)σα∥U(s)∥X
)

× max
t∈[0,T ]

∫ t

0

(
1 + t

1 + s

)σα ds

(1 + (t− s))α

where C is a constant independent on T when T goes to +∞ and on the radius ρ of
the starting ball when ρ goes to 0. The limit T → +∞ will prove our theorem as soon
as we can show that the integral term is bounded uniformly in t. Indeed, up to work
with ρ small enough, we may assume that δ is such that the whole last term is less than
1/2maxs∈[0,T ](1 + s)σα∥U(s)∥X and may be absorbed by the left hand side.

To estimate the integral, we use the change of variable τ = (1 + s)/(t+ 2), for which
1 + (t− s) = (t+ 2)(1− τ). We obtain that

I(t) =

∫ t

0

(
1 + t

1 + s

)σα ds

(1 + (t− s))α
=

(
1 + t

2 + t

)σα 1

(t+ 2)α−1

∫ 1−1/(t+2)

1/(t+2)

dτ

τσα(1− τ)α
.
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Recall that α > 1 and that σ ≤ 1. The integral
∫ 1
0

dτ
τσα(1−τ)α does not converge at least

close to 1 and if it also diverges close to 0, the blow up is slower or equal to the one

occurring close to 1. Thus,
∫ 1−1/(t+2)
1/(t+2)

dτ
τσα(1−τ)α is of order O(tα−1) when t goes to +∞.

This shows that the whole integral I(t) is bounded uniformly in t. □

4.2 The exponential case

The following lemma is similar to Lemma 4.1, except that we cannot use the result of
Borichev and Tomilov recalled in Theorem A.4. If the decay is not polynomial, then we
must accept a logarithmic loss and use the results of Batty and Duyckaerts, Theorems A.2
and A.3.

Lemma 4.2. Assume the sign hypothesis (1.3) and assume that (1.4) holds with h(t) =

O(e−at1/β ), with a > 0 and β > 0. Set

Ã = A+

(
0

−f ′u(x, 0)

)
=

(
0 Id

∆− αId− f ′u(x, 0) −γ(x)

)
.

Then, there exists C > 0 and b > 0 such that

∀t ≥ 0 , ∀U0 ∈ D(A) , ∥eÃtU0∥X ≤ Ce−bt1/(β+1)∥U0∥D(A) .

Proof: As in the proof of Lemma 4.1, we use the results stated in Appendix with H =
L2(Ω), L = −∆+ α, B = γ and V = f ′u(x, 0). Using Theorem A.2, we obtain that

∀µ ∈ R with |µ| ≥ µ0 , ∥(A− iµ)−1∥L(L2) ≤ C| lnµ|β .

As in Lemma 4.1, we use Proposition B.4 to obtain that the same estimate holds for the
resolvents (Ã−iµ)−1 for large µ and Proposition B.1 to deal with the low frequencies. The
difference is that Theorem A.3 yields a logarithmic loss when going back to the estimate
of the semigroup (see the definition of Mlog), leading to the exponent t1/(β+1). □

Remark: We have seen that there is a logarithmic loss in our estimate. However, in
the applications, we will obtain a better result. Indeed, this loss was already present in
the original estimate for the linear semigroup because of the additional log in Mlog of
Theorem A.3. In some sense, the above abstract result makes an additional use of the
back and forth Theorems A.2 and A.3. We can improve our estimate by a shortcut: we
go back to the estimate of the resolvent in the original proof of the linear decay, before
the authors apply Theorem A.3, and we directly apply the above arguments to estimate
(Ã− iµ)−1 and then apply Theorem A.3. With this trick, we do not add a second logarith-
mic loss to the one of the original proof dealing with the linear semigroup. However, we
can do this only in the concrete situations and not in an abstract result as Proposition 1.3.

Proof of the second case of Proposition 1.3: the method is exactly the same as in

the first case. The only difference is that, instead of bounding
∫ t
0

(
1+t
1+s

)σα
ds

(1+(t−s))α , we

must here bound an integral of the type

I(t) =

∫ t

0
eσc(t

γ−sγ)e−c(t−s)γ ds
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for some c > 0 and γ ∈ (0, 1). We set τ = s/t and obtain

I(t) = t

∫ 1

0
ect

γ(σ−στγ−(1−τ)γ) dτ ≤ t

∫ 1

0
ecσt

γ(1−τγ−(1−τ)γ) dτ

and by symmetry

I(t) ≤ 2t

∫ 1/2

0
eσct

γ(1−τγ−(1−τ)γ) dτ .

We notice that τ 7→ 1 − τγ − (1 − τ)γ is decreasing for τ ∈ [0, 1/2] since its derivative is
γ((1− τ)γ−1− τγ−1) with γ−1 < 0. Moreover, 1− τγ − (1− τ)γ ∼ −τγ for small τ . Thus,
there exists ν > 0 small enough such that 1 − τγ − (1 − τ)γ ≤ −ντγ for τ ∈ [0, 1/2]. We
get

I(t) ≤ 2t

∫ 1/2

0
eσct

γ(−ντγ) dτ = 2

∫ t/2

0
e−σcνsγ ds .

The integrand of these last bound is integrable on R+, thus I(t) is bounded uniformly
with respect to t. Arguing as in the proof of the polynomial case, this proves the second
part of Proposition 1.3. □

5 Application 1: the open book

In this section, we consider the third example of Figure 1. Let Ω = T2 be the two-
dimensional torus and let α > 0 (there is no boundary and so no Dirichlet boundary
condition). Assume that

γ(x1, x2) = |x1|β .

We have the following decay estimate proved in [30, Theorem 1.7].

Theorem 5.1. Léautaud & Lerner, 2015.
In the above setting, the semigroup eAt satisfies

∥eAtU0∥X ≤ C

(1 + t)1+2/β
∥U0∥D(A) .

Of course, this estimate implies the decay assumptions (1.4) and (1.5) for σh < 2/(2+
β). Since the support of γ is T2, the unique continuation property is trivial and Proposition
3.5 implies that the conclusions of Theorem 1.1 holds in this case. Moreover, Proposition
1.3 provides an explicit decay rate, which is optimal (since it is the same as the linear one).
Due to the trivial unique continuation property, this case is far simpler than the general
results Theorem 1.1 and 1.2. Nevertheless, it seems the first non-linear stabilization and
decay estimate in a case where the linear semigroup has only a polynomial decay.

Theorem 5.2. Consider the damped wave equation (1.1) in Ω = T2 and with γ(x1, x2) =
|x1|β (β > 0), α > 0 and f satisfying (1.2) and (1.3). Then, any solution u of (1.1)
satisfies

∥(u, ∂tu)(t)∥H1
0×L2 −−−−−−−−→

t−→+∞
0 .

Moreover, for any R and σ ∈ (0, 1], there exists CR,σ such that, for any solution u with
U0 ∈ Xσ,

∥(u0, u1)∥H1+σ×Hσ ≤ R =⇒ ∥(u, ∂tu)(t)∥H1
0×L2 ≤

CR,σ

(1 + t)σ(1+2/β)
.
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6 Unique continuation theorems

As proved in Section 3, the last step to prove stabilization is the unique continuation
property: if z is a global solution of

∂2ttz(x, t) = ∆z(x, t)− αz(x, t)− f ′u(x,w(x, t))z (x, t) ∈ Ω× R
z|∂Ω(x, t) = 0 (x, t) ∈ ∂Ω× R
z(x, t) ≡ 0 (x, t) ∈ support(γ)× R

(6.1)

then z ≡ 0. Except for the example of Section 5, the property is often difficult to obtain.
The purpose of this section is to gather several results yielding this property.

The first known result has been proved by Ruiz in [37]. It stated the unique contin-
uation property in a bounded domain Ω ⊂ Rd as soon as the support of γ contains a
neighborhood of the boundary ∂Ω. This result has been generalized in [28] (see also [29]
for Neumann boundary conditions). However, this kind of results is not relevant in this
paper. Indeed, their geometric settings implies the uniform decay of the semigroup eAt

and we are interested here in cases where it is not satisfied. We need sharper results.

6.1 Unique continuation with coefficients analytic in time

A very general unique continuation property holds if the coefficients of a linear wave
equation as (6.1) are analytic in time. This is a consequence of local continuation results
proved by by Hörmander in [21] and generalized by Tataru in [43] and also independently
proved by Robbiano and Zuily in [36]. These results concern in fact a very general setting
but we restrict here the statements at the case of the wave equation. The application to
the wave equation and the proof that the local results yield a global one are classical and
straightforward, see for example [27, Corollary 3.2] for the details.

Theorem 6.1. Robbiano-Zuily, Hörmander (1998)
Let T > 0 (or T = +∞) and let b, c and d be smooth coefficients. Assume moreover that
b, c and d are analytic in time and that z is a strong solution of{

∂2ttz = ∆z + b(x, t)∂tz + c(x, t).∇z + d(x, t)z (x, t) ∈ Ω× (−T, T )
z|∂Ω(x, t) = 0 (x, t) ∈ ∂Ω× R .

(6.2)

Let O be a non-empty open subset of Ω and assume that z(x, t) = 0 in O× (−T, T ). Then
z(x, 0) ≡ 0 in OT = {x0 ∈ Ω , d(x0,O) < T}.

As consequences if z ≡ 0 in O × (−T, T ) and OT = Ω, then z ≡ 0 everywhere.

6.2 Unique continuation through pseudo-convex surfaces without bound-
ary

If the coefficients of (6.2) are not analytic in time, the geometry of the problem is more
constrained. However, it could still include cases where the geometric control condition
of [4] does not hold and thus where the semigroup eAt is not uniformly stable, see the
examples below.

We consider here Hörmander framework (see [20] for example). The principal symbol
of the differential operator of (6.1) is of order two and writes locally

p(x, t, ξ, τ) = ξ⊺.A(x).ξ − |τ |2
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where A(x) is a smooth family of positive definite symmetric matrices coding the Beltrami
Laplacian operator in a local chart. Let ϕ(x, t, ξ, τ) be a locally C1−function, we introduce
the Poisson bracket

Hp(ψ) = {p, ψ} = ∇ξp∇xψ + ∂τp∂tψ −∇xp∇ξψ − ∂tp∂τψ .

Let ψ be a smooth function defined in a neighborhood O ⊂ Rd+1 of (x0, t0). Assume that
(∇xψ, ∂tψ)(x0, t0) ̸= 0 so that Σ = {(x, t), ψ(x, t) = 0} defines a smooth hypersurface near
(x0, t0).

Definition 6.2. The local hypersurface Σ is said to be non-characteristic at (x0, t0) if

p(x0, t0,∇ψ(x0, t0), ∂tψ(x0, t0)) ̸= 0 .

Moreover, Σ is said to be strongly pseudo-convex at (x0, t0) if for any (ξ, τ) ̸= 0 such that
p(x0, t0, ξ, τ) = 0 and Hp(ψ)(x0, t0) = 0, we have

H2
p (ψ)(x0, t0) > 0 .

Notice that the above definition of strongly pseudo-convexity is adapted to the case of
a real differential operator of order two. Thus it is perfectly adapted to the situation of
this paper where the wave operator is p = ξ⊺.A(x).ξ − |τ |2. However, we emphasize that,
in the general case, the assumption of pseudo-convexity is more complex, see [20].

The geometrical interpretation of Definition 6.2 is as follows. First, the fact that the
surface is non-characteristic says that |∂tψ|2 ̸= ∇ψ⊺.A(x).∇ψ. This means that the surface
is not moving at the exact same speed as the sound waves.

The pseudo-convexity is slightly more involved. Consider the total Hamiltonian flow
σ 7→ φσ defined by

φ0(x, t, ξ, τ) = (x, t, ξ, τ) ∂σφσ(x, t, ξ, τ) = (∇ξp, ∂τp,−∇xp,−∂tp)(φσ) .

Since p is independent of t, τ is constant and thus t(σ) = t − 2τσ, meaning that σ is a
simple new parametrization of time. Moreover, ∇ξp and ∇xp are independent of t and τ .
Thus, (x, ξ)(σ) follows the geodesic flow

∂σ(x, ξ) = (∇ξg,−∇xg)(x, ξ)

where g(x, ξ) = ξ⊺.A(x).ξ is the symbol of the local metric. Assume that p(x, t, ξ, τ) = 0
at σ = 0. The Hamiltonian being conserved, we always have p(x, t, ξ, τ) = 0 and |τ |2 =
ξ⊺A(x)ξ is constant in σ: the point x(σ) is moving along a geodesic of the metric at a
speed which is of constant norm |τ | with respect to the metric. Let h be a function of
(x, t, ξ, τ), then the Poisson bracket {p, h} is the derivative at σ = 0 of h(φσ(x, t, ξ, τ)).
Thus

{p, h} = {g, h} − 2τ∂th = {g, h}+ ∂σh

where {g, h} is the derivative along the geodesic (x, ξ)(σ) of the metric starting at x with
speed ξ. Thus, the strongly pseudo-convexity condition Hpψ = 0 ⇒ H2

pψ > 0 means
that if a geodesic of the surface is tangent to Σ in the space-time sense, then it must be
contained in a non-degenerated sense in the half-space ψ(x, t) > 0 for t ̸= 0. Finally notice
that if ψ does not depend on time t (as in Definitions 6.4 and 6.6), then the strongly
pseudo-convexity is a classical strong convexity: if a classical geodesic of the metric g is
tangent to the surface ψ(x) = 0, it must be contained in the half-space ψ(x) > 0.

Theorem 28.4.3 of [20] mainly comes from [33] and is stated as follows.
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Theorem 6.3. Lerner and Robbiano (1985), Hörmander.
Let O be a small open neighborhood of a point (x0, t0) in Rd×R and let A(x) be a smooth
family of positive definite symmetric matrices. Let b, c and d be bounded coefficients.
Assume that z is a mild solution of

∂2ttz = divA(x)∇z + b(x, t)∂tz + c(x, t).∇z + d(x, t)z (x, t) ∈ O . (6.3)

Let Σ = {(x, t), ψ(x, t) = 0} be a smooth surface containing (x0, t0) which is non-charac-
teristic and strongly pseudo-convex in the sense of Definition 6.2.

Then, if u(x, t) = 0 for all (x, t) ∈ O such that ψ(x, t) ≥ 0, we have u(x, t) ≡ 0 in a
neighborhood of (x0, t0).

Theorem 6.3 states a local unique continuation property through pseudo-convex sur-
faces. To use it, it is more convenient to have a global version. This kind of global foliation
has already been introduced in [40] by Stefanov and Uhlmann.

Definition 6.4. A family of surfaces (Σλ)λ∈[0,1) is an oriented pseudo-convex foliation
without boundary in a compact manifold Ω if:

(i) the family of surfaces is smooth in the sense that it is locally described as level sets
{x, ψλ(x) = 0} where (x, λ) 7→ ψλ(x) is a local smooth function with ∇xψλ ̸= 0.

(ii) each surface is globally oriented in the sense that there exist disjoint sets Σ±
λ such

that locally {x ∈ Ω,±ψλ(x) > 0} ⊂ Σ±
λ and such that Ω = Σ−

λ ∪ Σλ ∪ Σ+
λ .

(iii) for each λ, (x, t) 7→ ψλ(x) is pseudo-convex in the sense of Definition 6.2 as a func-
tion independent of t. Equivalently, Σ−

λ is locally strictly convex in a neighborhood
of its boundary Σλ for the metric g: for each x ∈ Σλ, a geodesic through x which is
tangent at Σλ is locally included in Σ+

λ , x excepted.

(iv) the surfaces Σλ are compact and have no boundary or equivalently do not meet ∂Ω.

A typical example of such oriented pseudo-convex foliation without boundary is given
in Figure 2.

By a classical argument, we may state a global version of Theorem 6.3 as follows.

Theorem 6.5. Let Ω be a smooth compact manifold (with or without boundaries) and
let ω ⊂ Ω be an open set. Assume that there exists an oriented pseudo-convex foliation
without boundary (Σλ)λ∈[0,1) of Ω in the sense of Definition 6.4. Also assume that Σ+

0 ⊂ ω

and ω ∪
(∪

λ∈[0,1)Σ
+
λ

)
covers Ω up to a set of zero measure.

Let b, c and d be bounded coefficients. Assume that z is a global mild solution of{
∂2ttz = ∆z + b(x, t)∂tz + c(x, t).∇z + d(x, t)z (x, t) ∈ Ω× R
z|ω(x, t) = 0 (x, t) ∈ ω × R

with any suitable boundary conditions on ∂Ω such that the wave equation is well-posed and
where ∆ is the Laplace-Beltrami operator related to Ω.

Then z ≡ 0 everywhere.

Proof: We will show that z(·, t = 0) vanishes in ω∪Σ+
λ , for all λ ∈ [0, 1), which shows that

z(t = 0) ≡ 0 and thus that z ≡ 0 due to the uniqueness properties of the wave equation.
By assumption, z ≡ 0 in Σ+

0 ⊂ ω. Let λ0 ∈ (0, 1) and let hα,T (t) = α(1 − t2/T 2). We
consider the family of surfaces t ∈ [−T, T ] 7→ Σhα,T (t) which is locally parametrized by
functions (x, t) 7→ ψhα,T (t)(x). Notice that it is a smooth family of smooth surfaces since
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Σλ

Σ+
λ Σ−

λ

tangent geodesics
stay inside Σ+

λ

Figure 2: A oriented pseudo-convex foliation without boundary in the sphere S2. The
surfaces Σλ forms a smooth family of vertical circles inside a hemisphere and Σ+

λ and
Σ−
λ are respectively the large and the small spherical caps. The geodesics beings the great

circles, the ones which are tangent to a surface Σλ stay inside Σ+
λ .

due to Assumption (i) of Definition 6.4. Also notice that the larger is T , the smaller
are the derivatives of these functions with respect to t. By assumption, each function
x 7→ ψλ(x) is non-characteristic and strongly pseudo-convex as a function independent of
t. By compactness, there exists T large enough such that (x, t) 7→ ψhα,T (t)(x) defines local
surfaces which are non-characteristic and pseudo-convex for all α ∈ [0, λ0] and t ∈ [−T, T ].
The parameter T is fixed in the remaining part of the proof and we may omit it in the
notations.

Notice that, for any α, the family of set t ∈ [−T, T ] 7→ Σ+
hα(t)

starts inside ω at t = −T
and finishes inside ω at t = T . Moreover, for any small α, these sets always stay inside ω
where z vanishes. Assume that there exist (x, t) and α ∈ [0, λ0] such that x ∈ Σ+

hα(t)
and

z(x, t) ̸= 0. We set

α0 = min{α ∈ (0, λ0] , ∃t ∈ [−T, T ], ∃x ∈ Σ+
hα(t)

such that z(x, t) ̸= 0} . (6.4)

By continuity, we know that z(x, t) = 0 for all x ∈ Σ+
hα0 (t)

. Moreover, there exists

t0 ∈ (−T, T ) and x0 ∈ Σhα0 (t0)
such that z is not identically zero in any neighborhood of

(x0, t0). Indeed, otherwise, by compactness, we may extend the set where z vanishes and
contradict (6.4).

To conclude, it remains to use the local unique continuation property of Theorem 6.3
at (x0, t0) with the time-space surface defined by (x, t) 7→ ψhα0 (t)

(x). The continuation im-
plies that z vanishes near (x0, t0) which contradicts the construction. Thus, z(x, t) = 0 for
all t ∈ [−T, T ] and x ∈

∪
αΣ

+
hα(t)

. In particular z(·, t = 0) ≡ 0 in
∪

αΣ
+
hα(0)

=
∪

λ≤λ0
Σ+
λ .

Since these arguments hold for all λ0 < 1 and since ω ∪λ∈[0,1) Σ
+
λ is Ω up to a set of mea-

sure zero, we have that z(·, t = 0) ≡ 0 in Ω. Well-posedness of the linear wave equation
concludes that z ≡ 0 everywhere. □

Notice that, as it is stated, this unique continuation result needs an infinite time to
be efficient, where Theorem 6.1 only need a finite explicit time. In fact, a careful look to
the proof shows that a finite time is sufficient once we know that the family of surface
is pseudo-convex and non-characteristic in a uniform way. However, such a bound of
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convexity is difficult to obtain in general cases and may be even impossible as for the
example studied in Section 7.

A typical example of application is given in Figure 2: if Ω is a sphere and ω covers
more than an hemisphere, then if z is a global solution of a linear wave equation which
vanishes in ω for all times, then z ≡ 0. Notice that, in this case, the family of surfaces is
uniformly pseudo-convex and the unique continuation holds in fact in finite time even if z
is not a global in time solution.

6.3 Unique continuation through pseudo-convex surfaces with boundary

The case where the pseudo-convex surfaces Σλ meet the boundary ∂Ω is more involved.
Theorem 6.3 has been generalized to this case by Tataru (see [41, 42, 43]). The boundary
conditions are more difficult to describe geometrically, so we will only deal here with the
case of flat geometry, that is g(x, ξ) = |ξ|2, and the case of Dirichlet boundary condition.

Definition 6.6. A family of surfaces (Σλ)λ∈[0,1) is an oriented pseudo-convex foliation
with boundary in a flat manifold Ω if:

(i) the family of surfaces is smooth in the sense that it is locally described as level sets
{x, ψλ(x) = 0} where (x, λ) 7→ ψλ(x) is a local smooth function with ∇xψλ ̸= 0.

(ii) each surface is globally oriented in the sense that there exist disjoint sets Σ±
λ such

that locally {x ∈ Ω,±ψλ(x) > 0} ⊂ Σ±
λ and such that Ω = Σ−

λ ∪ Σλ ∪ Σ+
λ .

(iii) for each λ, (x, t) 7→ ψλ(x) is pseudo-convex in the sense of definition 6.2 as a function
independent of t. Equivalently, Σ−

λ is locally strictly convex in a neighborhood of its
boundary: the tangent space to Σλ at x0 is locally included in Σ+

λ , x0 excepted.

(iv) if a surface Σλ meet ∂Ω at x, then ∂νψλ(x) < 0. Equivalently, the angle formed by
Σλ and ∂Ω in the region Σ−

λ is strictly less than π/2.

A typical example of such oriented pseudo-convex foliation with boundary is given in
Figure 3. Notice that the condition at the boundary is consistent with the one inside the
domain. Indeed, the geodesics are straight lines which bounce at the boundary according to
Newton’s laws. Geometrically, we ask that any geodesic either crosses Σλ in a transversal
way, or stay locally inside Σ+

λ .
By the same arguments as the ones in the proof of Theorem 6.5 and using the result

of Tataru, we obtain a global unique continuation result.

Theorem 6.7. Let Ω ⊂ Rd be a compact domain and let ω ⊂ Ω be an open set. Assume
that there exists an oriented pseudo-convex foliation (Σλ)λ∈[0,1) of Ω in the sense of Defi-

nition 6.6. Also assume that Σ+
0 ⊂ ω and ω ∪

(∪
λ∈[0,1)Σ

+
λ

)
covers Ω up to a set of zero

measure.
Let b, c and d be bounded coefficients. Assume that z is a global mild solution of

∂2ttz = ∆z + b(x, t)∂tz + c(x, t).∇z + d(x, t)z (x, t) ∈ Ω× R
z|∂Ω(x, t) = 0 (x, t) ∈ ∂Ω× R
z|ω(x, t) = 0 (x, t) ∈ ω × R

Then z ≡ 0 everywhere.

A typical example of application is given in Figure 3: if Ω is a disk and ω covers more
than half of the boundary, then if z is a global solution of a linear wave equation which
vanishes in ω for all times, then z ≡ 0.
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Σ+
λ Σ−

λ

Σλ

tangent geodesics
stay inside Σ+

λ

Figure 3: A oriented pseudo-convex foliation with boundary in the disk. The surfaces Σλ

forms a smooth family of curves inside a semidisk. The surfaces Σ−
λ are strictly convex

and the angle formed by Σλ and the boundary of the disk is less than π/2 on Σ−
λ side.

The geodesics are straight lines bouncing at the boundary according to Newton’s laws. The
ones which are tangent to a surface Σλ stay inside Σ+

λ .

6.4 Proof of Theorem 1.2

Theorem 1.2 is then a direct consequence of the unique continuation results stated in this
Section: Proposition 3.5 and Theorems 6.5 and 6.7 imply Theorem 1.2.

7 Application 2: the peanut of rotation

We consider in this section the example of the peanut of rotation: a two-dimensional
manifold where a central part is equivalent to the cylinder {x = (y, θ) ∈ (−1, 1) × S}
endowed with the metric g(y, θ) = dy2 + cosh2(y)dθ2 (see Figure 1). The damping γ is
assumed to be positive, except in a part x ∈ (−ℓ, ℓ) of the central part (ℓ ∈ (0, 1)). The
decay of the linear damped wave semigroup has been established in [11] and [38].

Theorem 7.1. Christianson, Schenck, Vasy & Wunsch, 2014.
In the setting of the peanut of rotation, there exist two positive constants C and λ such
that the semigroup eAt satisfies

∥eAtU0∥X ≤ Ce−λ
√
t∥U0∥D(A) .

The decay rate of Theorem 7.1 obviously satisfies (1.4) and (1.5). Thus, once the unique
continuation property is obtained, Proposition 3.5 yields the conclusion of Theorem 1.1
for the framework of the peanut of rotation. To obtain the unique continuation property,
we will apply Theorem 6.5 with the family of pseudo-convex surfaces shown in Figure 4.
Applying Theorem 1.2 and the ideas of Proposition 1.3, we obtain the following result.

Theorem 7.2. Consider the damped wave equation (1.1) in the framework of the peanut
of rotation introduced above. Let α > 0 and f satisfying (1.2) and (1.3). Then, any
solution u of (1.1) satisfies

∥(u, ∂tu)(t)∥H1
0×L2 −−−−−−−−→

t−→+∞
0 .

21



ΣλΣλ

Σ+
λ Σ+

λΣ−
λ

y = 0

Figure 4: An oriented pseudo-convex foliation without boundary of the central part of the
peanut. Each surface Σλ consists in two vertical circles, the set Σ−

λ being the interior part
surrounded by these circles. Since the central part of the peanut is negatively curved, the
geodesics tangent to the vertical circles stay in the exterior domain Σ+

λ . Notice that the
set Σ0 consists in both exterior disk and the disks Σλ get closer to x = 0 when λ get closer
to 1. Thus, the central circle x = 0 is not included in

∪
λ∈[0,1)Σ

+
λ but this is not important

since this set is of zero measure.

Moreover, for any R and σ ∈ (0, 1], there exists CR,σ such that, for any solution u with
U0 ∈ Xσ,

∥(u0, u1)∥H1+σ×Hσ ≤ R =⇒ ∥(u, ∂tu)(t)∥H1
0×L2 ≤ CR,σe

−σλ̃
√
t

where λ̃ is the linearized rate given in Lemma 4.2.

Proof: Let us first formally check that the family of disks introduced in Figure 4 is
a suitable pseudo-convex foliation without boundary. We use the cylindrical coordinates
x = (y, θ) ∈ (−1, 1)×S with associated tangent variables ξ = (ζ,Θ). By symmetry, we only
consider the right-hand-side circles which are defined by ψλ(x) = 0 with ψλ(x) = y−(1−λ).
The circle Σ0 corresponding to y = 1 is in the interior of the region ω where the damping
is positive. When λ get closer to 1, the circle Σλ get closer to y = 0. We are obviously in
the setting of Definition 6.4 and thus of Theorem 1.2, except maybe for the assumption
of strong pseudo-convexity. We already give a geometrical insight of this assumption, but
let us check it formally.

The local metric is given by g(y, θ) = dy2 + cosh2(y)dθ2. The Laplace-Beltrami oper-
ator is thus given by

∆g = ∂2yy + 2 tanh(y)∂y +
1

cosh2(y)
∂2θθ .

The principal part of the wave operator is then

p(y, θ, t, ζ,Θ, τ) = |ζ|2 + 1

cosh2(y)
|Θ|2 − |τ |2 .

Thus Hp(ψλ) = 2ζ and

H2
p (ψλ) = 4

sinh(y)

cosh(y)3
|Θ|2 .

The pseudo-convexity condition is then checked. Indeed, if Hp(ψλ) = 0 then ζ = 0 and
since ξ = (ζ,Θ) must be non-zero, we must have Θ ̸= 0. As ψλ(y, θ) = 0 with λ ∈ [0, 1),
we have y > 0 and thus H2

p (ψλ) > 0. Looking carefully to the computations, one notes
that, in fact, we only need that the radius cosh(y) of the cylindrical part is increasing for
y > 0 and decreasing for y < 0 to obtain the unique continuation property.
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The above arguments show the stabilization of the semilinear damped wave equation.
Moreover, Proposition 3.4 shows the uniform convergence to 0 in Xσ′

for initial data in a
more regular space Xσ (σ > σ′).

To obtain the decay estimate of Theorem 7.2, we argue as in the proof of the second case
of Proposition 1.3. However, we claim that we can avoid the loss in the power by following
the remark below Lemma 4.2. Indeed, Theorem 5.1 of [11] implies in our framework that,
for large µ,

∥(−∆+ µ2 − iµγ)−1∥L(L2) ≤ C
ln |µ|
|µ|

.

We argue as in the proof of Lemma 4.2. Applying Propositions B.1, B.2 and B.4, we
obtain

∥(Ã− iµ)−1∥L(L2) ≤ C | lnµ| .

and by Theorem A.3, we get the conclusion of Lemma 4.2 in the form

∥eÃtU0∥X ≤ Ce−b
√
t∥U0∥D(A) .

In other words, we avoid an additional logarithmic loss by directly dealing with the es-
timates of [11] instead of using the back and forth implications of Theorems A.2 and
A.3.

It is then sufficient to follow the proof of the exponential case of Proposition 1.3 with
the exponent γ = 1/2. □

8 Decay estimate in the disk with holes

In the previous examples of application, the decay of the semigroups was explicitly written
in previous papers. In the case of a disk with several holes, we are not aware of a paper
where an explicit decay is written. The corresponding scattering problem has been studied
by Ikawa in [23, 24]. Many further studies have been published. In this article, we will
use an estimate and a “black box argument” introduced by Burq and Zworski in [10].
Combining them with the results in Appendix, we obtain the following decay.

Theorem 8.1. Let O ⊂ Rd be a smooth bounded open set. For i = 1 . . . p, let Oi ⊂ O be
smooth strictly convex obstacles satisfying:

(a) the obstacles are disjoint: Oi ∩Oj = ∅ for i ̸= j,

(b) the convex hull convhull(∪iOi) of the obstacles is contained in O,

(c) no obstacle is in the convex hull of two others, that is that convhull(Oi ∪Oj)∩Ok = ∅
for i, j, k different,

(d) if there are three or more obstacles (p > 2), set κ the infimum of the principal curva-
tures of the boundaries ∂Oi of the obstacles and L the minimal distance between two
obstacles, and assume that κL > p.

Let O = ∪iOi, let Ω = O \O be the domain with holes and let γ ≥ 0 be a damping which
is strictly positive in a neighborhood of the exterior boundary ∂O. Then the semigroup eAt

of the linear damped wave equation on Ω satisfies

∥eAtU0∥X ≤ Ce−λt1/3∥U0∥D(A)

with C and λ two positive constants.
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A typical domain consists in a smooth domain with several small holes as in Figure
5. Typically, if Oi are balls of center ci and radius ri and if there is no triplet of aligned
centers, then Assumption (d) holds for ri small enough since κ becomes large whereas L
stay bounded.

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

���
���
���

���
���
���

γ > 0

Figure 5: A domain satisfying Hypotheses (a)-(d) of Theorem 8.1. Notice the presence of
periodic geodesics bouncing on the obstacles and never meeting the support of the damping
γ. The geometric control condition thus fails and we cannot hope a uniform decay of the
semigroup in X.

Remarks:

• We do not claim that the decay rate e−t1/3 is optimal. In fact, our proof uses rough
arguments leading to logarithmic losses. We strongly believe that the right decay
rate is e−t1/2 . A strategy of proof may be to follow the arguments of Datchev and
Vasy [13], adding the presence of a boundary. However, this improvement is not
central and would use techniques too far from the spirit of this paper.

• It is also certainly possible to relax the assumption about γ to the following weaker
assumption. There exists a neighborhood K of O = ∪iOi such that any geodesic ray
starting in Ω \K reach a point where γ ≥ ε > 0 before meeting K, for at least the
backward or the forward flow.

Based on [24], the following estimate appears in [10]

Proposition 8.2. Ikawa’s black box (Section 6.2 of [10])
Let Oi be obstacles in Rd satisfying the Assumptions (a),(c) and (d) of Theorem 8.1. Let
Rbb(µ) be the outgoing resolvent of the Laplacian operator outside the obstacles, that is
the meromorphic continuation of (∆Rd\O + µ2)−1 from Im(µ) > 0, where ∆Rd\O is the

Laplacian operator on the exterior domain Rd \O = Rd \ (∪iOi) with Dirichlet boundary
condition.

Then, for any cut-off function χ ∈ C∞
c (Rd), we have

∥χRbb(µ)χ∥L(L2(Rd\O)) ≤ C
ln(1 + |µ|)
1 + |µ|

.

Using this black box in the same spirit of [10], we obtain the following observation
estimate.

Lemma 8.3. Assume that the assumptions of Theorem 8.1 hold. Then there exists C > 0
such that

∀µ ∈ R , ∀u ∈ D(∆) , ∥u∥L2(Ω) ≤ C
ln |µ|
|µ|

∥(∆ + µ2)u∥L2(Ω) + Cln |µ|∥√γu∥L2(Ω)
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where ∆ is the Laplacian operator on the bounded domain with holes Ω = O \ O with
Dirichlet boundary conditions.

Proof: By compactness, there exists ε > 0 such that γ ≥ ε > 0 in a neighborhood of
the exterior boundary ∂O. Let χ ∈ C∞

0 (Rd) be a smooth cut-off function equal to 1 in a
neighborhood of convhull(∪iOi), equal to 0 outside O and such that 1 − χ is supported
where γ ≥ ε > 0. This is possible by Assumption (b). We have immediately

∀u ∈ L2(Ω) , ∥(1− χ)u∥L2(Ω) ≤
1√
ε
∥√γu∥L2(Ω) . (8.1)

Let χ0 be a smooth cut-off function supported in Ω so that χ0 ≡ 1 in a neighborhood of
the support of χ and let χ1 be another smooth cut-off function supported in Ω so that
χ1 ≡ 1 in a neighborhood of the support of χ0. For all u ∈ H2(Ω) ∩ H1

0 (Ω), we extend
χiu as a function in H2(Rd \O) ∩H1

0 (Ω). Regarding χiu, applying ∆Rd\O or ∆ gives the
same result. We can thus apply the “black box” estimate of Proposition 8.2 as follows.

∥χu∥L2(Ω) = ∥χχ2
0u∥L2(Ω) = ∥χχ0Rbb(µ)(∆ + µ2)χ0u∥L2(Ω)

≤ ∥χχ0Rbb(µ)χ0(∆ + µ2)u∥L2(Ω) + ∥χχ0Rbb(µ)[∆, χ0]u∥L2(Ω)

≤ ∥χ0Rbb(µ)χ0∥L(L2(Rd\O))∥(∆ + µ2)u∥+ ∥χχ0χ1Rbb(µ)χ1[(∆ + µ2), χ0]u∥
≤ ∥χ0Rbb(µ)χ0∥L(L2(Rd\O))∥(∆ + µ2)u∥+ ∥χ1Rbb(µ)χ1∥L(L2(Rd\O))∥[∆, χ0]u∥

≤ C
ln(1 + |µ|)
1 + |µ|

(
∥(∆ + µ2)u∥L2(Ω) + ∥u∥H1(supp(∇χ0))

)
.

By interpolation and elliptic regularity, we have

∥u∥2H1(supp(∇χ0))
≤ C∥u∥L2(supp(∇χ0))∥u∥H2(supp(∇χ0))

≤ C∥u∥L2(supp(∇χ0))

(
∥∆u∥L2(supp(∇χ0)) + ∥u∥L2(supp(∇χ0))

)
≤ C∥u∥L2(supp(∇χ0))

(
∥(∆ + µ2)u∥L2(supp(∇χ0)) + (1 + µ2)∥u∥L2(supp(∇χ0))

)
≤ C

(
1

2(1 + µ2)
∥(∆ + µ2)u∥L2(supp(∇χ0)) +

3

2
(1 + µ2)∥u∥L2(supp(∇χ0))

)
Since the support of ∇χ0 is included in the place where γ ≥ ε > 0, both previous estimates
yield

∥χu∥L2(Ω) ≤ C
ln(1 + |µ|)
1 + |µ|

(
∥(∆ + µ2)u∥L2(Ω) + (1 + |µ|)∥√γu∥L2(Ω)

)
.

With (8.1), this concludes the proof. □

Proof of Theorem 8.1: Applying Propositions B.3 and B.2 in Appendix, the observ-
ability estimate of Lemma 8.3 implies that there exists C > 0 such that

∀µ ∈ R , ∥(A− iµ)∥L(X) ≤ C ln2(2 + |µ|) .

Then, we apply Theorem A.3 of Batty and Duyckaerts stated in Appendix to obtain the
decay with rate e−λt1/3 . Notice that Proposition B.3 and Theorem A.3 contain some losses
transforming the rate ln |µ| of Lemma 8.3 into first ln2 |µ| and then ln3 |µ|. This is respon-
sible of the power 1/3 in the decay rate. □
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9 Application 3: the disk with two holes

In the previous section, we have obtained a sufficiently fast decay rate for the semigroup
of the damped wave equation in a disk with several holes as in Figure 1. If we prove the
unique continuation property of Proposition 3.5 in this situation, then we would obtain
the desired stabilization. To obtain the unique continuation property, we would like to
use Theorem 6.7, that is to exhibit an oriented pseudo-convex foliation (Σλ)λ∈[0,1) with

Σ+
0 included in a neighborhood of the boundary and ∪λΣ

+∞ covering almost all Ω. This
is possible in the case where there is at most two holes in the disk and impossible if there
are more holes, as shown in Figure 6.
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Figure 6: Two examples of disks with holes and associated attempts to draw a suitable
pseudo-convex foliation covering the whole domain. Left, the disk with two holes may be
covered by a pseudo-convex foliation starting in a neighborhood of the exterior boundary,
except for a single line, which is of measure zero. Right, an attempt to cover a disk with
three holes with a pseudo-convex foliation. We easily notice that the central zone cannot
be covered and Theorem 6.7 cannot be applied in this case.

Thus, in the case where there is only two holes, Theorem 6.7 enables to use Proposition
3.5 and to obtain the conclusions of Theorem 1.1. Moreover, notice that in this case, there
is no technical assumptions, neither (c) nor (d), in Theorem 8.1. We thus obtain the
following result, as an application of Theorem 1.2, Proposition 1.3 and mutatis mutandis
the same use of the remark below Lemma 4.2 as in the proof Theorem 7.2. The proof is
left to the reader.

Theorem 9.1. Consider the damped wave equation (1.1) in the framework of a disk with
two convex holes and assume that the damping γ is strictly positive in a neighborhood of
the exterior boundary. Let α > 0 and f satisfying (1.2) and (1.3). Then, any solution u
of (1.1) satisfies

∥(u, ∂tu)(t)∥H1
0×L2 −−−−−−−−→

t−→+∞
0 .

Moreover, there exists λ̃ such that, for any R and σ ∈ (0, 1], there exists CR,σ such
that, for any solution u with U0 ∈ Xσ,

∥(u0, u1)∥H1+σ×Hσ ≤ R =⇒ ∥(u, ∂tu)(t)∥H1
0×L2 ≤ CR,σe

−σλ̃t1/3 .
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10 Analytic regularization and proof of Theorem 1.1

In Figure 6, we have seen that, in some situations, the unique continuation property of
Lerner-Robbiano-Hörmander stated in Theorem 6.7 is not useful. To deal with these
situations, we need another unique continuation property: Theorem 6.1 of Robbiano-
Zuily-Hörmander to (3.2). This is only possible if the coefficients of (3.2) are analytic
with respect to the time t. Thus, we need to choose f ′u analytic with respect to u and to
prove that the global solution w appearing in (3.2) is analytic in time. This is the basic
idea leading to Theorem 1.1.

However, even if f is analytic, the damped wave equation does not regularize its
solutions. To overcome this problem, we use the following fact known since the work of
Hale and Raugel in [18]: the globally bounded solutions of the damped wave equation
are as smooth as the non-linearity f . This asymptotic regularization property is linked to
the asymptotic smoothness or compactness property (see Section 3). The idea that this
asymptotic smoothing of the damped wave equation may be used to apply analytic unique
continuation theorems originates from the work of Hale and Raugel, even if they did not
publish this idea. The first published occurrence appears in [26] (see also [27]).

The article [18] contains several abstract theorems. They apply for linear semigroup
with uniform decay, that is ∥eAt∥L(X) ≤ Me−λt. The purpose of the present article is
to study cases where this uniform decay fails, so [18] does not directly apply: we need
to extend its results in our case where the semigroup has a weaker decay. Extending
these results in the most general framework will lead to heavy notations and assumptions.
That is why, we only consider here damped wave equations in a simple setting and in low
dimension.

10.1 Analytic regularization of global bounded solutions

Let d = 2 or 3 and let Ω be a smooth manifold of dimension d with or without boundary
and such that Ω is compact. Let γ ∈ C1(Ω,R) be a nonnegative damping, let ∆ be the
Laplacian operator with Dirichlet boundary condition and let f ∈ C∞(Ω × R,R) be a
smooth nonlinearity. We assume that f is of polynomial type in the sense that there exist
p > 0 and C > 0 such that (1.2) holds. We consider global solutions of the damped wave
equation{

∂2ttu(x, t) + γ(x)∂tu(x, t) = ∆u(x, t)− αu(x, t)− f(x, u(x, t)) (x, t) ∈ Ω× R
u|∂Ω(x, t) = 0 (x, t) ∈ ∂Ω× R

(10.1)
We use the notations of Section 2. In particular, for σ ∈ [0, 1], we set Xσ = (H1+σ(Ω) ∩
H1

0 (Ω))×Hσ
0 (Ω), X

0 = X = H1
0 (Ω)× L2(Ω) and X1 = D(A). Also notice that H1+σ(Ω)

is a subspace of C0(Ω) for d = 2 and σ > 0 or for d = 3 and σ > 1/2.
The purpose of this section is to prove the following result

Theorem 10.1. Assume that the above setting holds, in particular assume that γ ∈
C1(Ω,R). Let U(t) ∈ C0(R, X) be a mild solution of (10.1) and assume moreover that

(i) There exists σ0 ∈ (0, 1) such that U(t) is defined for all t ∈ R and uniformly bounded
in Xσ0, that is that there exists C > 0 such that

∀t ∈ R , ∥U(t)∥Xσ0 ≤ C .

If d = 3, assume in addition that σ0 > 1/2.
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(ii) The linear semigroup satisfies the decay estimate

∀U0 ∈ D(A) , ∥eAtU0∥X ≤ M

tβ
∥U0∥D(A) (10.2)

with β > max(2p, 2/(1− σ0)), where p is the polynomial growth of f in (1.2).

(iii) The function u ∈ R 7→ f(x, u) ∈ R is analytic with respect to u,

Then the mapping t ∈ R 7→ U(t) ∈ Xσ0 is analytic with respect to t.

We expect that the condition β > 2p in Assumption (ii) is not optimal: at least β > p
should be sufficient if we get rid of the losses in the too general proofs of the auxiliary
results in appendix and β > 2/(1− σ0) could be omitted by assuming more regularity on

γ. Since our concrete applications have a linear decay of the type O(e−tβ ), we let these
probable improvements for later study.

The remaining part of this section is devoted to the proof of Theorem 10.1.

• Step 1: a trick to satisfy the boundary condition

We would like that u 7→ f(·, u) maps H1+σ(Ω) ∩H1
0 (Ω) into H

σ
0 (Ω). For d = 2 or d = 3

and σ > 1/2, the regularity part is trivial since H1+σ(Ω) ⊂ C0(Ω) is a normed algebra.
However, the boundary condition is not necessarily fulfilled since f(x, 0) may be different
from 0. Let us describe here a trick introduced in [18] to deal with this problem. Let e be
the (time-independent) solution of ∆e− αe = f(x, 0) in H2(Ω) ∩H1

0 (Ω). We notice that
ũ = u− e solves

∂2ttũ+ γ(x)∂tũ = ∆ũ− αũ− f(x, ũ+ e(x)) + f(x, 0) .

If we set
f̃(x, ũ) = f(x, ũ+ e(x))− f(x, 0)

we obtain a function f̃ as smooth as f which is also analytic with respect to ũ. Moreover,
f̃(x, 0) = 0 for x ∈ ∂Ω, which shows that ũ 7→ f̃(·, ũ) maps H1+σ(Ω)∩H1

0 (Ω) into H
σ
0 (Ω),

including the boundary condition. If we prove Theorem 10.1 for ũ and f̃ , it clearly yields
Theorem 10.1 for u and f . Thus, we may assume that f(x, 0) = 0 at the boundary and we
will forget the tilde sign to lighten the notations in what follows. In particular, F = (0, f)
maps Xσ into X1+σ.

• Step 2: the decay of the high-frequencies semigroups

From now on, we also use the notations of the appendices, Sections B and C. In particular,
we set L = −∆ + α. Since L is self-adjoint, positive and with compact resolvent, there
exists an orthonormal basis (ϕk)k≥0 of eigenfunctions of L corresponding to the eigenvalues
(λk)k≥0. As in Section C, we introduce the high-frequencies truncations Qn, that are the
projectors on the space span{ϕk, k ≥ n} and we set Qn = (Qn, Qn) on X.

The proof of Theorem 10.1 is based on the following splitting. We introduce Pn =
Id − Qn and Pn = Id − Qn, which are low-frequencies projections with finite rank. We
consider the splitting

U = PnU +QnU := V +W . (10.3)

Then (10.1) writes{
∂tV = (PnAPn)V + (PnAQn)W + PnF (V +W )
∂tW = (QnAQn)W + (QnAPn)V +QnF (V +W )

(10.4)

As a consequence of the results in the appendices, we have the following decay esti-
mates.
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Proposition 10.2. Assume that Hypothesis (ii) of Theorem 10.1 holds. Then, for all
σ ∈ [0, 1), ν ∈ (0, 1− σ] and ε > 0, there exists C > 0 such that, for all n ∈ N,

∀t ≥ 0 , ∀U ∈ QnX
σ+ν

∥∥eQnAQntU
∥∥
Xσ ≤ C

tνβ/2−ε
∥U∥Xσ+ν . (10.5)

Proof: Using the arguments of Proposition 3.1, it is sufficient to obtain the decay for
σ = 0 and ν = 1, that is the decay estimate from D(A) into X.

In the appendices, we recall the result of Borichev and Tomilov in [6] (see Theorem
A.4). In the context of the damped wave equation, we may also consider Proposition 2.4
of [2] by Anantharaman and Léautaud. We obtain that Hypothesis (ii) of Theorem 10.1
implies the estimate

∥u∥L2 ≤ C
(
|µ|1/β−1∥PB(µ)u∥L2 + |µ|1/2β∥

√
Bu∥

)
(10.6)

with B is the multiplication by γ and PB(µ) = −L − iµB + µ2Id. Note that the unique
continuation assumed in [2, Proposition 2.4] is satisfied because Hypothesis (ii) is satisfied.
Thus, we obtain that

∥u∥L2 ≤ C
(
|µ|1/β−1∥P (µ)u∥L2+

(
|µ|1/β∥

√
B∥L(L2) + |µ|1/2β

)
∥
√
Bu∥

)
(10.7)

with P (µ) = −L+ µ2Id. Then, Propositions C.2 and C.1 show that

∀n ∈ N , ∀µ ∈ R ,
∥∥(QnAQn − iµ)−1

∥∥
L(QnX)

≤ K

|µ|b

with b = 2/β. At this point, we may use Theorem A.4 in appendix to obtain the decay
of the linear semigroup. However, this result of [6] (as the one of [2]) is not stated with
explicit constants and we need to be sure that these constants are uniform in n (even
if this is surely the case). Thus, we accept here a small loss (harmless for the proof of
Theorem 10.1) and we use the explicit statement of Theorem A.3 to obtain that, for any
ε > 0, there exists a constant C such that∥∥eQnAQntU

∥∥
X

≤ C

tβ/2−ε
∥U∥D(A)

which concludes the proof. □

• Step 3: the finite determining modes

In this step, we follow the arguments of [18] with the main modifications coming from the
weaker decay of the linear semigroup. We consider the complex setting, that is that the
functions in X are complex valued. We recall that a function Ψ between two complex
Banach spaces Y and Z is said to be holomorphic if its Fréchet derivative exists for any
y ∈ Y . We introduce the notation

BM,δ(Y ) = {U(t) ∈ C0(R, Y ) | ∀t ∈ R, ∥ℜ(U(t))∥Y ≤M and ∥ℑ(U(t)∥Y ≤ δ} .

The space BM,δ(Y ) is naturally endowed with the L∞(Y )-norm. We assumed that σ0 >
0 for d = 2 and σ0 > 1/2 for d = 3 as in Hypothesis (iii) of Theorem 10.1, so that
H1+σ0(Ω) ⊂ C0(Ω).

We will use the holomorphic extension of f in a technical setting stated in the following
lemma. Except this particular setting, the result is a straightforward consequence of the
analyticity of f and we omit the proof.
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Lemma 10.3. Assume u ∈ R 7→ f(x, u) ∈ R is analytic with respect to u. Denote κ the
injection constant ∥ · ∥L∞ ≤ κ∥ · ∥H1+σ0 .

Let M be given and M ′
0 ≥ 0. Then, there exists M ′ ≥M ′

0, as well as two small positive
constants δ and δ′ such that the following holds. The function z ∈ R 7→ f(·, z) ∈ C1(Ω,R)
has a holomorphic extension in {z ∈ C, |ℜ(z)| ≤ κ(M +M ′ + δ) and |ℑ(z)| ≤ κ(δ + δ′)}.

We apply the above lemma to obtain the following result.

Proposition 10.4. Let M and M ′
0 ≥ 0 be given and let n0 ∈ N. Let M ′, δ and δ′ the

constants given by the previous lemma. Then, there exist n ≥ n0 so that for any function
V (t) in the complex set BM+δ,δ(PnX

σ0), there exists a unique bounded solution W in
BM ′,δ′(QnX

σ0) of

∂tW = (QnAQn)W + (QnAPn)V +QnF (V +W ) . (10.8)

In addition, the mapping V 7→W (V ) is lipschitzian and holomorphic.

Proof: Assume that W solution of (10.8) exists and is bounded in C0(R,QnX
σ0). Then,

W (t) =eQnAQn(t−t0)W (t0)

+

∫ t−t0

0
eQnAQns ((QnAPn)V (t− s) +QnF (V +W )(t− s)) ds.

Using Proposition 10.2, when t0 goes to −∞, we get

W (t) =

∫ ∞

0
eQnAQns ((QnAPn)V (t− s) +QnF (V +W )(t− s)) ds .

Conversely, it is easy to see that a solution of the previous integral equation is a solution of
(10.8). To prove Proposition 10.4, we set up a fixed point theorem for contracting maps.
We introduce the map ΦV , defined for W bounded in C0(R,QnX

σ0) by

ΦV (W )(t) =

∫ ∞

0
eQnAQns ((QnAPn)V (t− s) +QnF (V +W )(t− s)) ds .

During the first part of the proof, we consider real valued functions, so that the terms
including the function f are well defined. Let ν ∈ (0, 1 − σ0] to be fixed later. Let
V = (v1, v2), we have QnAPnV = (0, Qnγ(x)Pnv2). Thus, using that γ is of class C1,

∥QnAPnV ∥Xν+σ0 ≤ C∥Pnv2∥Hν+σ0 ≤ C|λn|ν/2∥Pnv2∥Hσ0

where (−λk) denotes the eigenvalues of the Laplacian operator L. Proposition 10.2 and
the bound on V show that∥∥∥∥∫ ∞

0
eQnAQns(QnAPn)V (t− s) ds

∥∥∥∥
L∞(R,Xσ0 )

≤ C1(ν)|λn|ν∥V ∥L∞(R,Xσ0 ) (10.9)

as soon as there is ε > 0 such that 1/t
νβ
2
−ε is integrable in a neighborhood of +∞, that is

for νβ > 2.
For any function Z(t) = (z1, z2) bounded in Xσ0 , we have QnF (Z) = (0, Qnf(z1)).

Since H1+σ0(Ω) is a normed algebra, using the polynomial growth of f stated in (1.2), we
get

∥QnF (Z)∥Xν+σ0 = ∥Qnf(z1)∥Hν+σ0 ≤ C

|λn|1−ν
∥Qnf(z1)∥H1+σ0 ≤

C(1 + ∥Z∥pXσ0 )

|λn|1−ν
.
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Once again, Proposition 10.2 shows that∥∥∥∥∫ ∞

0
eQnAQnsQnF (Z)(t− s) ds

∥∥∥∥
L∞(R,Xσ0 )

≤
C2(ν)(1 + ∥Z∥pL∞(R,Xσ0 ))

|λn|1−ν
(10.10)

as soon as νβ > 2.
In the same way, using the control of f ′u stated in (1.2), we prove that, if νβ > 2,∥∥∥∥∫ ∞

0
eQnAQnsQn

(
F (Z)− F (Z ′)

)
(t− s) ds

∥∥∥∥
L∞(R,Xσ0 )

≤
C3(ν)

(
1 + ∥Z∥p−1

L∞(R,Xσ0 ) + ∥Z ′∥p−1
L∞(R,Xσ0 )

)
|λn|1−ν

∥Z − Z ′∥L∞(R,Xσ0 ) . (10.11)

Gathering (10.9), (10.10) and (10.11), we obtain that, for any real functions V and W
with ∥V ∥L∞(R,Xσ0 ) ≤M and ∥W∥L∞(R,Xσ0) ≤M ′, Φ is well defined, bounded and locally
lipschitzian. To apply the fixed point theorem for contracting maps, we need that the
Lipschitz constant is smaller than 1, which is implied by

C3(ν)
(
1 +Mp−1 +M ′p−1

)
|λn|1−ν

≤ 1

2
(10.12)

and that ΦV maps BM ′,0(QnX
σ0) into itself, which is implied by

C1(ν)|λn|νM +
C2(ν)(1 +Mp +M ′p))

|λn|1−ν
≤ M ′

2
. (10.13)

To this end, we choose ν > 0 such that (p − 1)ν < 1 − ν and we fix M ′ to be equal to
4C1(ν)|λn|νM , so that the first term of (10.13) is smaller but satisfies the same growth
than to the bound M ′/2. Then, since λn goes to +∞ when n→ +∞, one can find n large
enough such that (10.12) and (10.13) hold, since M = o(M ′) and M ′p−1 = o(|λn|1−ν)
when n goes to +∞. Taking n larger if needed, the bounds n ≥ n0 and M ′ ≥ M ′

0 are
easily fulfilled.

It remains to check that we can find ν satisfying all the required conditions. The bound
(p− 1)ν < 1− ν is equivalent to ν < 1/p. It is compatible with νβ > 2 since we assumed
2
β <

1
p . Moreover, we also need that ν ∈ (0, 1− σ0], which is possible since 2

β < 1− σ0.

Now, we extend our functions in a complex strip. By the previous bounds, if it is real,
(v1+w1)(x, t) always stays smaller than κ(M+M ′) where κ is the is the injection constant
∥ · ∥L∞ ≤ κ∥ · ∥H1+σ0 . Since f is analytic, it has a holomorphic extension in a complex
neighborhood of the real interval [−κ(M +M ′);κ(M +M ′)]. Thus, one can also consider
functions V and W with small imaginary parts in Xσ0 . All the above estimates extend
by continuity in this complex strip and, since (10.12) and (10.13) contain some margin,
for δ, δ′ > 0 small enough, ΦV can be extended as a contraction map from BM ′,δ′(QnX

σ0)
into itself for all V ∈ BM+δ,δ(PnX

σ0). Proposition 10.4 then follows from the fact that
ΦV has a unique fixed point W (V ), which corresponds to the unique solution of (10.8).

To conclude, we notice that the above estimates also show that ΦV (W ) is Lipschitz
continuous with respect to V and thus that the fixed point W (V ) is Lipschitz continuous
with respect to V . To obtain that the fixed point W (V ) depends holomorphically of V ,
we have to show that the map Φ is holomorphic with respect to V and W . Then, one can
conclude by using the implicit function theorem. To show that Φ is holomorphic, we have
to show that it has Fréchet derivatives. This can be obtained by using the fact that f is

31



holomorphic and arguments similar to the above ones. □

The proof of Proposition 10.4 also yields the property of finite determining modes.

Proposition 10.5. Assume that Hypothesis (ii) of Theorem 10.1 holds and letM be given.
Let σ0 > 0 for d = 2 or σ0 > 1/2 for d = 3. Then there exists n ∈ N such that the following
holds. Let U1(t) and U2(t) be two global solutions of (10.1) such that ∥Ui(t)∥Xσ0 ≤M for
all t ∈ R. If PnU1(t) = PnU2(t) for all times t ∈ R, then U1(t) ≡ U2(t) for all t.

Proof: We consider the projections Vi = PnUi and Wi = QnUi. For any n, we have
that ∥Vi(t)∥Xσ0 ≤ M and ∥Wi(t)∥Xσ0 ≤ M for all t ∈ R. We argue as in the proof of
Proposition 10.4 with M =M ′

0 and n0 = 0. The fixed point argument of Proposition 10.4
can be applied for n large enough. It shows that, if the low frequencies V1 = V2 are known,
then there is only one possible high frequencies part W (t), solution of (10.8). Since (10.3)
and (10.4) are equivalent, this unique function W must be equal to W1 as well as W2. So
W1 =W2 and thus U1 = U2. □

• Step 4: End of the proof of Theorem 10.1.

Let U(t) be the mild solution of Theorem 10.1 and let U = V +W be the splitting of
(10.3) for some n ∈ N. We have that U(t) is uniformly bounded in Xσ0 by some constant
M , thus, for all n ∈ N, V (t) and W (t) are also bounded by M , independent of n. From
now on, we fix n, δ, M ′ and δ′ as prescribed by Proposition 10.4 for such M , for M ′

0 =M
and n0 = 0. We have the existence of a lipschitzian and holomorphic map Ṽ 7→ W (Ṽ )
defined in a neighborhood of V . We consider the ordinary differential equation{

∂sṼ (s) = (PnAPn)Ṽ (s) + PnAQnW (Ṽ ) + PnF (Ṽ +W (Ṽ ))

Ṽ (0)(t) = V (t) ∈ C0(R,PnX
σ0)

(10.14)

defined in the Banach space C0(R,PnX
σ0) of finite dimension. Notice that (10.14) is really

an ODE since Pn has finite rank and thus (PnA) is a bounded operator. Proposition 10.4
shows that Ṽ 7→ W (Ṽ ) is lipschitzian and holomorphic in a neighborhood of the initial
data V (t). It also ensures that f , and thus F , are holomorphic in the complex set where
Ṽ +W (Ṽ ) takes values. As a consequence, by the classical theory of ODE’s in Banach
spaces, (10.14) admits a unique solution Ṽ (s) for small s ∈ C, |s| ≤ ϵ, and this solution
is holomorphic with respect to s. Notice that the construction is just made such that, for
any t ∈ R and for s ∈ [−ϵ, ϵ] real, s 7→ Ũ(s)(t) = (Ṽ (s) +W (Ṽ (s)))(t) is a solution of
(10.1) with PnŨ(s) = Ṽ (s). By uniqueness of the solution of (10.14), using the translation
invariance, we have Ũ(0)(t + s) = Ũ(s)(t). Thus t 7→ Ũ(0)(t) is a mild solution of (10.1)
with Pn(Ũ(0)(t)) = V (t). Due to Proposition 10.5, Ũ(0)(t) = U(t) for all t ∈ R. Since, for
small s ∈ [−ϵ, ϵ] real, we have U(t+ s) = Ũ(0)(t+ s) = Ũ(s)(t), we get that s 7→ U(t+ s)
is an analytic function and thus t 7→ U(t) ∈ Xσ0 is an analytic function.

10.2 Proof of Theorem 1.1

Due to Proposition 3.5, we only need to obtain a unique continuation property. The
difference with Theorem 1.2 is that the geometric background is quite general and we
cannot use Theorems 6.5 or 6.7. Our goal is thus to use the analytic unique continuation
of [36] stated in Theorem 6.1.

Let W = (w,wt) be a globally bounded solution of (1.1) as in Propositions 3.3 and
3.4. We have that W (t) is globally bounded in Xσ0 for t ∈ R and σ0 > 0. We want to
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apply Theorem 10.1. The assumption β > 2p ≥ 2 is already contained in the assumptions
of Theorem 1.1. Since we work here with Ω of dimension d = 2, we may choose σ0 as small
as wanted and in particular we can fulfill the condition β > 2/(1− σ0). If γ is of class C1,
we may directly apply Theorem 10.1 and obtain that W (t) is analytic in time. If γ is not
smooth, Assumption b) of Theorem 1.1 provides a C1 damping γ̃ with a smaller support
but with the same decay properties for the corresponding damped wave semigroup. Since
the energy ofW (t) is constant,W (t) vanishes in the support of the damping γ and satisfies

∂ttw(x, t) = ∆w(x, t)− αw(x, t)− f(x,w(x, t)) . (10.15)

We may thus replace γ by the regular damping γ̃ and W (t) is still a solution of the
corresponding damped (or free) wave equation. We apply Theorem 10.1 in this setting
and still get that W (t) is analytic in time.

Since w is smooth with respect to t and f is smooth, (10.15) yields that (∆ − α)w is
in L2(Ω) and thus w is in H2(Ω). We differentiate the above equation to obtain

(∆− α)2w = (∆− α)(∂2ttw + f(x,w))

= ∂2tt(∆− α)w + (∆− α)f(x,w)

= ∂4ttttw + f ′u(x,w)∂
2
ttw + f ′′uu(x,w)|∂tw|2 + (∆− α)f(x,w)

showing that w belongs to H4(Ω). The process can be used as many times as wanted,
showing that w(x, t) is also smooth with respect to x. Thus, the coefficients of (3.2) are
smooth in x and analytic in t and the unique continuation property of Theorem 6.1 applies.
Then Theorem 1.1 is a direct consequence of Proposition 3.5.

11 Application 4: the disk with many holes

In Section 9, we have proved the semi-uniform stabilization for the semilinear damped
wave equation in the case of the disk with two holes. In Figure 6, we have seen that if the
disk has three holes or more, Theorem 1.2 does not apply. In this case we assume that
u 7→ f(x, u) is analytic and apply Theorem 1.1. Notice that we may take γ ∈ L∞, since
the second part of Assumption b) of Theorem 1.1 is satisfied (see the geometric conditions
in Theorem 8.1). Once again, we obtain an estimation of the decay which is better than
the one given by Proposition 1.3 because we follow the idea of the remark below Lemma
4.2. The details are left to the reader.

Theorem 11.1. Let O ⊂ R2 be a smooth convex bounded open set. For i = 1 . . . p, let
Oi ⊂ O be smooth strictly convex obstacles satisfying:

(a) the obstacles are disjoint: Oi ∩Oj = ∅ for i ̸= j,

(b) no obstacle is in the convex hull of two others, that is that convhull(Oi ∪Oj)∩Ok = ∅
for i, j, k different,

(c) if κ denotes the infimum of the curvatures of the boundaries ∂Oi of the obstacles and
L the minimal distance between two obstacles, and assume that κL > p.

Let Ω = O\ (∪iOi) be the convex domain with holes and let α > 0. Assume moreover that

(d) the damping γ ∈ L∞(Ω,R+) is strictly positive in a neighborhood of the exterior
boundary ∂O,
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(e) the nonlinearity f is smooth, satisfies (1.2) and (1.3) and u 7→ f(x, u) is analytic.

Then, any solution u of (1.1) satisfies

∥(u, ∂tu)(t)∥H1
0×L2 −−−−−−−−→

t−→+∞
0 .

Moreover, there exists λ̃ such that, for any R and σ ∈ (0, 1], there exists CR,σ such
that, for any solution u with U0 ∈ Xσ,

∥(u0, u1)∥H1+σ×Hσ ≤ R =⇒ ∥(u, ∂tu)(t)∥H1
0×L2 ≤ CR,σe

−σλ̃t1/3 .

12 Application 5: Hyperbolic surfaces

In the case of hyperbolic surfaces, some recent results in Jin [25] following the fractal
uncertainty principle ideas of Bourgain-Dyatlov [7] give a very good decay for any non
trivial damping. In our nonlinear setting, the application of our previous results give the
following result.

Theorem 12.1. Let M be a compact connected hyperbolic surface with constant negative
curvature -1. Assume that

(a) the damping γ ∈ L∞(Ω,R+) is non zero and α > 0,

(b) the nonlinearity f is smooth, satisfies (1.2) and (1.3) and u 7→ f(x, u) is analytic.

Then, any solution u of (1.1) satisfies

∥(u, ∂tu)(t)∥H1
0×L2 −−−−−−−−→

t−→+∞
0 .

Moreover, there exists λ̃ such that, for any R and σ ∈ (0, 1], there exists CR,σ such
that, for any solution u with U0 ∈ Xσ,

∥(u0, u1)∥H1+σ×Hσ ≤ R =⇒ ∥(u, ∂tu)(t)∥H1
0×L2 ≤ CR,σe

−σλ̃
√
t .

The result follows from an application of Theorem 1.1. The decay of the semigroup
can be found in [25]. Again, it is quite sure that we could avoid the loss and obtain a

better decay e−σλ̃t by following the arguments inside of the proof in [25] for a slightly
modified operator.

Note that the results in the references involve the case α = 0, but similar result can
be obtained for α ≥ 0 for the linear semigroup as in Lemma 4.2. We also refer to other
results with pressure conditions Schenck [39] following ideas of Anantharaman [1]. We
also want to stress that the result of [25] follows several deep progress in the subject for
ergodic flow and with various assumptions on the damping, but it would be impossible to
make a complete bibliography. We refer to the bibliography in [25] for instance, or the
survey [34] for a history of resolvent estimates that can lead to such result of damping.

13 A uniform bound for the H2 ×H1-norm

This section is devoted to the proof of Theorem 1.4. We will assume in the whole section
that the conclusions of Theorem 1.1 hold.

The following lemma is very general and does not depend on the geometric setting.
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Lemma 13.1. Let u(t) be a solution of the damped wave equation (1.1) with γ of class C1

and f of class C2 satisfying (1.2) and (1.3). Assume moreover that Ω is of dimension d = 2
or of dimension d = 3 and in this last case assume that p < 3. Then, if U0 = (u0, u1)
belongs to D(A) = (H2(Ω) × H1

0 (Ω)) × H1
0 (Ω), then U(t) = (u, ∂tu)(t) also belongs to

D(A). Moreover, there exists β > 0 such that, for all R > 0, there exists C(R) > 0 such
that,

∥(u0, u1)∥H2×H1 ≤ R =⇒ ∥(u, ∂tu)(t)∥H2×H1 ≤ C(R)(1 + t)β .

For d = 2, the exponent β is as close to 1 as wanted.

Proof: The proof of this result is classical. Assume that U0 = (u0, u1) belongs to D(A) =
(H2(Ω)×H1

0 (Ω))×H1
0 (Ω), we deal with the Cauchy problem by classical arguments since

the linear semigroup eAt is well defined on D(A), H2(Ω) ⊂ L∞(Ω) and f(x, 0) = 0 due
to (1.3), preserving the Dirichlet boundary conditions. Thus, the solution U(t) is locally
well defined in D(A).

We recall that the damped wave equation admits the physical energy as a Lyapounov
function

E(U) =

∫
Ω

1

2
(|∇u|2 + α|u|2 + |∂tu|2) + V (x, u) .

As noticed in Section 2, this energy is non-increasing in time. Using the Sobolev embed-
dings and Assumptions (1.2) and (1.3), we obtain that ∥U(t)∥H1×L2 is uniformly bounded
if U0 belongs to a bounded set of H1

0 (Ω)×L2(Ω) and in particular is bounded by a constant
C1(R) if ∥(u0, u1)∥H2×H1 ≤ R.

We introduce a energy of higher order

F(U) =
1

2

∫
Ω
(|∆u|2 + α|∇u|2 + |∇∂tu|2)−

∫
Ω
f(x, u)∆u .

Notice that this energy is well defined for U(t) ∈ D(A). To be more precise, we have∣∣∣∣∫ f(x, u)∆u

∣∣∣∣ ≤ 1

4

∫
|∆u|2 +

∫
|f(x, u)|2

and since H1(Ω) ⊂ L2p(Ω),
∫
|f(x, u)|2 is controlled by ∥u∥2p

H1 and thus by C1(R)
2p. In

particular, there exists C2(R) such that

1

4
∥U(t)∥2H2×H1 − C2(R) ≤ F(U(t) ≤ 3

4
∥U(t)∥2H2×H1 + C2(R) .

We have

∂tF(U) =

∫
∆u∆∂tu+ α∇u∇∂tu+∇∂tu.∇∂2ttu− f ′u(x, u)∂tu∆u− f(x, u)∆∂tu

=

∫
(∆u− αu− f(x, u)− ∂ttu)∆∂tu− f ′u(x, u)∂tu∆u

=

∫
γ(x)∂tu∆∂tu− f ′u(x, u)∂tu∆u

=

∫
−γ(x)|∇∂tu|2 − ∂tu∇γ∇∂tu− f ′u(x, u)∂tu∆u

≤
∫

|∂tu||∇γ||∇∂tu|+
∫

|f ′u(x, u)||∂tu||∆u| (13.1)
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The first term is bounded by ∥∇γ∥L∞∥U∥H1×L2∥U∥H2×H1 and so by C3(R)∥U∥H2×H1 .
The second term of (13.1) is bounded by C1(R)∥f ′u(·, u)∥L∞∥U∥H2×H1 . We bound ∥f ′u(·, u)∥L∞

as follows for d = 3:

∥f ′u(·, u)∥L∞ ≤ (1 + ∥u∥L∞)p−1 ≤ (1 + ∥u∥H3/2+ε)p−1

≤ (1 + ∥u∥1/2−ε
H1 ∥u∥1/2+ε

H2 )p−1

where ε ∈ (0, 1/2] can be chosen small enough so that θ = (p−1)(1/2+ε) < 1 since p < 3.
Thus the second term of (13.1) is bounded by C4(R)(1 + ∥U∥1+θ

H2×H1). We finally obtain
that

∂tF(U) ≤ C5(R)(C6(R) + F(U))η

with η = (1 + θ)/2 < 1. This show that F(U) ≤ C(R)(1 + t)δ with δ = 1/(1− θ).
In the case d = 2, the bound of the second term of (13.1) is of the type (1 +

∥u∥1−ε
H1 ∥u∥εH2)

p−1 with ε ∈ (0, 1] as small as needed. Thus the growth of F(U) is of

type (1 + t)δ with δ as close to 2 as wanted. Since F(U) is equivalent to ∥U∥2H2×H1 , we
obtain the polynomial growth of Lemma 13.1 with β as close to 1 as wanted. □

Proof of Theorem 1.4: By the previous lemma, we know that the H2 ×H1−norm of
U(t) has a at most polynomial growth. By assumption, we know that the H1 ×L2−norm
of U(t) goes to zero faster than any polynomial decay. By interpolation, this shows that
the norm ∥U(t)∥H1+ε×Hε is bounded for ε ∈ (0, 1). Since H1+ε(Ω) is an algebra, we
have that f(·, u) is uniformly bounded in H1+ε(Ω). Thus, for any initial data satisfying
∥U0∥H2×H1 ≤ R, and for any ε ∈ (0, 1/2), F (U(t)) = (0, f(·, u(t))) is uniformly bounded
in (H2+ε(Ω) ∩H1

0 (Ω) ×H1+ε
0 (Ω) by a constant C(R). We use a last time the formula of

variation of the constant

U(t) = eAtU0 +

∫ t

0
eAtF (U(t− s))ds

and the weak decay estimates ∥eAt∥L(H2+ε(Ω)∩H1
0 (Ω)×H1+ε

0 (Ω),D(A)) ≤ h(t) with h(t) inte-

grable on [0,+∞) to obtain that ∥U(t)∥D(A) is uniformly bounded. □

Remark: in the case of the open book, the decay of the semigroup is polynomial and
Theorem 1.4 does not apply. To adapt the above arguments and still get integrability where
it is needed, we should assume that the vanishing order β is small enough. However, this
constraint seems not compatible with γ of class C1. It could be possible to find sharper
arguments but this is not the purpose of this paper.

A Estimates of the resolvent and decay of the semigroup

The decay rate of a linear semigroup eAt is closely related to the control of the resolvent
(A − iµ) with µ ∈ R, that is the resolvent along the imaginary axis. A famous result of
[16], [35] and [22] is as follows.

Theorem A.1. Gearhart-Prüss-Huang
Let eAt be a C0−semigroup in a Hilbert space X and assume that there exists a positive
constant M > 0 such that ∥eAt∥L(X) ≤M for all t ≥ 0. Then there exist C > 0 and λ > 0
such that

∀U ∈ X , ∥eAtU∥X ≤ Ce−λt∥U∥X
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if and only if iR ⊂ ρ(A) and

sup
µ∈R

∥(A− iµId)−1∥L(X) < +∞ .

In the case of the weak stabilization, the resolvent (A− iµId)−1 is no more uniformly
bounded for µ ∈ R. The rate of blow-up of this resolvent when µ → ±∞ is related
to the decay of eAt in L(D(A), X). A general relation has been obtained by Batty and
Duyckaerts in [5]. The first implication is the following.

Theorem A.2. Batty-Duyckaerts (2008) [5, Proposition 1.3].
Let eAt be a semigroup of operators on a space X and assume that

m(t) = sup
s≥t

∥eAt(A− 1)−1∥L(X)

goes to 0 as t → +∞. Then iR belongs to the resolvent set of A and there exist µ0 and
C > 0 such that

∀µ ∈ R with |µ| ≥ µ0 , ∥(A− iµ)−1∥L(X) ≤ 1 + Cm−1
r

(
1

2(|µ|+ 1)

)
where m−1

r is a right inverse of m, which maps (0,m(0)] onto [0,+∞).

The second implication is more useful but is not optimal in general due to the loga-
rithmic loss in Mlog which is not expected.

Theorem A.3. Batty-Duyckaerts (2008) [5, Theorem 1.5].
Let eAt be a semigroup of operators on a space X such that ∥eAt∥L(X) ≤ C for all t ≥ 0,
and such that iR ∩ σ(A) = ∅. We set

M(µ) = sup
|τ |≤µ

∥(A− iµ)−1∥L(X)

and
Mlog(µ) =M(µ)[ln(1 +M(µ)) + ln(1 + |µ|)] .

Then, for any k ∈ N \ {0}, there exist Ck and Tk, depending only on C, k and M , such
that

∀t ≥ Tk ,
∥∥∥eAt(A− 1)−k

∥∥∥ ≤ Ck(
M−1

log

(
t
Ck

))k

where M−1
log is the inverse of Mlog which maps (Mlog(0),+∞) onto (0,+∞).

If X is a Hilbert space and M polynomial, we can get rid of the logarithmic term in
Mlog as proved in [6] (see also [2] in the framework of a damped wave system).

Theorem A.4. Borichev-Tomilov (2010) [6, Theorem 2.4].
Let eAt be a bounded C0−semigroup on a Hilbert space X with generator A such that
iR ∩ σ(A) = ∅. Then, for a fixed α > 0, the following conditions are equivalent:

(i) for large µ ∈ R, ∥(A− iµ)−1∥L(X) = O(|µ|1/α),

(ii) for large t ≥ 0, ∥eAtA−1∥L(X) = O(1/tα),

(iii) for all x ∈ H and for large t ≥ 0, ∥eAtA−1x∥X = o(1/tα).
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B Estimates of the resolvent of abstract damped wave equa-
tions

In this section, we consider an abstract damped wave equation. Let H be Hilbert spaces
and let L : D(L) → H be a positive self-adjoint operator with compact resolvent. Let
B ∈ L(H) be a damping operator which is bounded, self-adjoint and non-negative. We
set X = D(L1/2)×H and

A =

(
0 Id
−L −B

)
D(A) = D(L)×D(L1/2) .

For µ ∈ R, we also introduce the operator PB(µ) : D(L) → H defined by

PB(µ) = −L− iµB + µ2Id .

In Theorems A.3 and A.4, we have seen the importance of estimating the resolvent (A−
iµ)−1. In this section, we recall the equivalence with estimating PB(µ)

−1, which is often
more convenient. This type of arguments is very classical and may be found in many
articles dealing with the stabilization of damped wave equations. We present them here
for sake of completeness and because we will need to generalize most of them in the next
appendix.

We begin with the resolvent (A − iµ)−1 for fixed µ ∈ R, that is that we consider the
low frequencies.

Proposition B.1. Let µ ∈ R, the three following propositions are equivalent

(i) (A− iµId) is invertible in L(X),

(ii) PB(µ) is invertible in L(H),

(iii) for any u ̸= 0 solution of Lu = µ2u, we have ⟨Bu|u⟩ ̸= 0.

Proof: Let U = (u1, u2) and V = (v1, v2) be vectors of X = D(L1/2) × H such that
(A− iµ)U = V . We have equivalently{

u2 − iµu1 = v1 in D(L1/2)
PB(µ)u1 = v2 +Bv1 + iµv1 in H .

(B.1)

Since L has compact resolvent, the PB(µ) is invertible if and only if its kernel is reduced
to {0} and if it does, PB(µ)

−1 is bounded from H into D(L). Thus (B.1) yields that
(i)⇔(ii). Moreover, if PB(µ)u = 0 with u ̸= 0 then taking the scalar product with u and
considering the imaginary part, we get that ⟨Bu|u⟩ = 0 and so B1/2u = 0. Thus, Bu = 0
and Lu = µ2u showing that (iii) fails. In the converse way, if we assume that (iii) fails,
the corresponding solution u also solves PB(µ)u = 0 showing that (ii) fails. □

To study the high-frequencies, we have to estimate the behaviors for large µ.

Proposition B.2. With the above notations, both estimations are equivalent

(i) for large µ ∈ R, ∥(A− iµ)−1∥L(X) = O(M(|µ|)),

(ii) for large µ ∈ R, ∥(PB(µ))
−1∥L(H) = O(M(|µ|)

|µ| ).
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Proof: The proof of (ii)⇒(i) is detailed in Proposition C.1 below, adding projections on
the high-frequencies. The implication stated here is simply the complete case n = 0.

Let us show the converse implication. Take v1 = 0 in (B.1). We have u2 = iµu1 and
PB(µ)u1 = v2. If (i) holds, that is ∥(A− iµ)−1∥L(X) ≤M(|µ|), we must have in particular
that ∥u2∥H ≤M(|µ|)∥v2∥H . Since u2 = iµPB(µ)

−1v2, we obtain (ii). □

In some cases, to obtain an estimation of ∥(PB(µ))
−1∥L(H), it is more convenient to

prove an observability estimate and to use the following proposition. Notice that this
proposition yields a loss due to the term f(µ)2 in M(µ). This loss may sometimes be
avoided but this may require an accurate study, based on particular dynamical properties
of the geodesic flow.

Proposition B.3. We set

P (µ) = −L+ µ2Id := P0(µ) .

Assume that there exist two positive functions f and g and µ0 ≥ 0 such that, for any µ
with |µ| ≥ µ0 and any u ∈ D(L),

∥u∥ ≤ f(µ)

µ
∥P (µ)u∥+ g(µ)∥

√
Bu∥ . (B.2)

Then, for any µ with |µ| ≥ µ0 and any u ∈ D(L),

∥u∥ ≤ M(µ)

|µ|
∥PB(µ)u∥ , (B.3)

where
M(µ) = 3max

(
f(µ) , f(µ)2∥

√
B∥2L(H) , g(µ)

2
)
. (B.4)

Proof: In fact, this proposition is simply Proposition C.2 below in the particular case
n = 0 that is Qn = Id. We choose to copy this particular case in this section for clarity.
□

To finish, let us study the case where L is replaced by L̃ = L+V where V is a bounded
non-negative operator, typically a potential or a linearized term. Using the previous
propositions, we show that, if M(µ) = o(µ), then the estimates for L are equivalent to
the estimates for L̃. Using Theorems A.3 or A.4, we may obtain a relation between the
decays of the semigroups.

Proposition B.4. We use the above notations and set

Ã =

(
0 Id

−L̃ −B

)
=

(
0 Id

−L− V −B

)
= A+

(
0 0

−V 0

)
.

Assume that for large µ ∈ R, ∥(A− iµ)−1∥L(X) = O(M(|µ|)) where M(|µ|) = o(µ). Then,

∥(Ã− iµ)−1∥L(X) = O(M(|µ|)) also holds for large µ.

Proof: If ∥(A− iµ)−1∥L(X) = O(M(|µ|)) withM(|µ|) = o(µ), then Proposition B.2 shows
that ∥PB(µ)

−1∥ = O(M(|µ|)/µ) = o(1). We set

P̃B(µ) = −L̃− iµB + µ2Id = PB(µ)− V .
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We have for large µ
P̃B(µ) = PB(µ)(Id− PB(µ)

−1V ) ,

showing that P̃B(µ) is invertible for large µ since PB(µ)
−1 goes to 0. In addition, it shows

that the estimates for ∥P̃B(µ)
−1∥ and ∥PB(µ)

−1∥ are equivalent. Then the reverse impli-
cation of Proposition B.2 finishes the proof. □

C Estimates for the high-frequencies projections

In Section 10, we need to estimate the decay of the semigroup projected into the eigenspaces
corresponding to the high frequencies of the Laplacian operator. This estimation is not
direct in the cases where the projectors on high-frequencies do not commute with A. The
purpose of this Section is to prove results yielding quickly to estimates of the decay of
the high-frequencies by using the above results Theorem A.3 and A.4. In particular, we
generalized some results of Appendix B by showing that they hold uniformly with respect
to cut-off frequency of the projection. Notice that this type of decay estimates for the
high-frequency part of the solutions of the damped wave equation is related to Theorem
10 of [9], which shows that the eigenspaces corresponding to the high frequencies of the
Laplacian operator are mainly preserved by the flow of the damped wave equation.

We use the notations of Appendix B. Since L is self-adjoint, positive and with compact
resolvent, there exists an orthonormal basis (ϕk)k≥0 of eigenfunctions of L. We introduce
the high-frequencies truncations Qn, that are the projectors on the space Span{ϕk, k ≥ n}

Qnu =
∑
k≥n

⟨u|ϕk⟩ϕk .

We also introduce the sequence of high-frequencies projections Qn = (Qn, Qn) on X.
We consider in QnH the operators

PQnBQn(µ) = QnPB(µ)Qn = −L− iµQnBQn + µ2Id .

and the projection of A on the high frequencies: that is, for any V ∈ QnX,

QnAQn =

(
0 Id
−L −QnBQn

)
.

We prove a generalization of the classical implication of Proposition B.2, which is uniform
with respect to the high-frequencies projections.

Proposition C.1. Assume that there exist a function M(µ), uniformly positive, and
µ0 ≥ 0 such that, for any µ with |µ| ≥ µ0, n ∈ N and u ∈ QnD(L), we have

∥u∥H ≤ M(|µ|)
|µ|

∥PQnBQn(µ)u∥H . (C.1)

Then, there exists K > 0 such that, for all n ∈ N and all |µ| ≥ µ0,∥∥∥(QnAQn − iµ)−1
∥∥∥
L(QnX)

≤ KM(|µ|) .
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Proof: Let U = (u1, u2) and V = (v1, v2) be vectors of QnX = Qn(D(L1/2) × H) such
that (QnAQn − iµ)U = V . We have{

u2 − iµu1 = v1 in D(L1/2)
(−L+ µ2Id)u1 − iµQnBQnu1 = v2 +QnBv1 + iµv1 in H

(C.2)

We set w = (PQnBQn(µ))
−1(v1). Since PQnBQn(µ) + L+ iµQnBQn = µ2Id, we have

w =
1

µ2
(PQnBQn(µ))

−1(PQnBQn(µ)v1 + Lv1 + iµQnBQnv1)

=
1

µ2
(
v1 + (PQnBQn(µ))

−1(Lv1) + iµ(PQnBQn(µ))
−1(QnBQnv1)

)
and so

∥w∥H ≤ 1

µ2
∥v1∥H +

1

µ2
∥(PQnBQn(µ))

−1∥L(D(L−1/2),H)∥v1∥D(L1/2)

+
1

µ
∥(PQnBQn(µ))

−1∥L(H)∥B∥L(H)∥v1∥H . (C.3)

Let us estimate ∥(PQnBQn(h))
−1∥L(H,D(L1/2)). We have

∥u∥2
D(L1/2)

= ⟨Lu|u⟩H
= ⟨−PQnBQn(µ)u+ µ2u− iµQnBQnu|u⟩H
≤ O(µ2)∥u∥2H + ∥PQnBQn(µ)u∥H∥u∥H

≤
(
O(µ2)∥(PQnBQn(µ))

−1∥2L(H,H) + ∥(PQnBQn(µ))
−1∥L(H,H)

)
∥PQnBQn(µ)u∥2H

where the above estimation are independent of n. The estimate ∥|(PQnBQn(µ))
−1∥|L(H,H)

is given by Hypothesis (C.1), yielding

∥u∥2
D(L1/2)

≤
(
M(|µ|)2 + M(|µ|)

|µ|

)
∥PQnBQn(µ)u∥2H .

Using that M is uniformly positive, M(µ)/µ = o(M(µ)2) and so

∥(PQnBQn(µ))
−1∥L(H,D(L1/2)) = O(M(|µ|)) .

Since PQnBQn(µ) defined from D(L−1/2) in H is the adjoint of PQnBQn(−µ) defined from
H in D(L1/2), we also have

∥(PQnBQn(µ))
−1∥L(D(L−1/2),H) = O(M(|µ|)) .

Coming back to (C.3), we obtain that

∥w∥H ≤ K
M(|µ|)
µ2

∥v1∥D(L1/2) .

Considering (C.2), we have that

PQnBQn(µ)(u1 − iµw) = v2 +QnBv1

and thus, due to (C.1), that ∥u1 − iµw∥H ≤ O(M(|µ|)/µ)∥V ∥X . Together with the above
estimate for w, we obtain that ∥u1∥H ≤ O(M(|µ|)/µ)∥V ∥X and, using the first equation
of (C.2), that ∥u2∥L2 ≤ O(M(|µ|))∥V ∥X .

41



It remains to estimate ∥u1∥D(L1/2). To this end, we take the scalar product of second
line of (C.2) with u1 and consider the real part to obtain

∥u1∥2D(L1/2)
− µ2∥u1∥2H ≤ O(µ)∥V ∥X∥u1∥H

and thus, due to the above estimates, ∥u1∥2D(L1/2)
≤ O(M(|µ|)2)∥V ∥2X . □

To obtain estimates as (C.1), it is convenient to generalize Proposition B.3 to the case
where high-frequencies projections appear. In this way, we can use the classical observ-
ability estimate without projections to study the decay of the high-frequencies semigroup.

Proposition C.2. We set

P (µ) = −L+ µ2Id := P0(µ) .

Assume that there exist two positive functions f and g and µ0 ≥ 0 such that, for any µ
with |µ| ≥ µ0 and any u ∈ D(L),

∥u∥H ≤ f(µ)

µ
∥P (µ)u∥H + g(µ)∥

√
Bu∥H . (C.4)

Then, for any µ with |µ| ≥ µ0, any n ∈ N and any u ∈ QnD(L),

∥u∥H ≤ M(µ)

|µ|
∥PQnBQn(µ)u∥H , (C.5)

where
M(µ) = 3max

(
f(µ) , f(µ)2∥

√
B∥2L(H) , g(µ)

2
)
. (C.6)

Proof: Let u ∈ QnD(L). We have

⟨PQnBQn(µ)u|u⟩ = −⟨Lu|u⟩+ µ2⟨u|u⟩ − iµ⟨BQnu|Qnu⟩ .
In particular, the imaginary part of ⟨PQnBQn(µ)u|u⟩ is µ⟨BQnu|Qnu⟩ and

∀u ∈ QnH , ⟨BQnu|Qnu⟩ = ∥
√
Bu∥2H ≤ 1

|µ|
∥PQnBQn(µ)u∥H∥u∥H . (C.7)

We write

∥P (µ)u∥H = ∥PQnBQn(µ)u+iµQnBQnu∥H ≤ ∥PQnBQn(µ)u∥H+|µ|∥QnBQnu∥H . (C.8)

Then, we compute, for any u ∈ QnH

∥QnBQnu∥2H ≤ ∥BQnu∥2H ≤ ∥
√
B∥2L(H)∥

√
BQnu∥2H

≤ ∥
√
B∥2L(H)⟨BQnu|Qnu⟩

and using (C.7), we obtain

∥QnBQnu∥2H ≤
∥
√
B∥2L(H)

|µ|
∥PQnBQn(µ)u∥H∥u∥H .

Combining this result with (C.4), (C.7) and (C.8), we get

∥u∥H ≤ f(µ)

|µ|
∥PQnBQn(µ)u∥H +

f(µ)√
|µ|

∥
√
B∥L(H)∥PQnBQn(µ)u∥

1/2
H ∥u∥1/2H

+
g(µ)√
|µ|

∥PQnBQn(µ)u∥
1/2
H ∥u∥1/2H .

We bound the sum on the right by three times the largest of the three terms. Depending
on which one is the largest one, we get three different bounds, which can be gathered in
(C.5) and (C.6). □
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