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Abstract

We provide almost eigenfunctions for Toeplitz operators with real-analytic symbols, at the bottom of
non-degenerate wells. These almost eigenfunctions follow the WKB ansatz; the error is O(e−cN ), where
c > 0 and N → +∞ is the inverse semiclassical parameter.

1 Introduction

This paper is concerned with Berezin-Toeplitz quantization. We associate, to a real-valued function f on a
compact Kähler manifold M , a sequence of self-adjoint operators (TN (f))N≥1 acting on spaces of sections
over M . These operators are called Toeplitz operators. Examples of Toeplitz operators are spin systems
(where M is a product of two-spheres), which are indexed by the total spin S = N

2 . Motivated by questions
arising in the physics literature about the behaviour of spin systems at low temperature, we wish to study
the eigenvalues and eigenvectors of Toeplitz operators in the limit N → +∞. In this paper we specifically
study exponential estimates, that is, approximate expressions with O(e−cN ) remainder for some c > 0.

We provide, in the special case where f is real-analytic and reaches a non-degenerate minimum, a
construction of almost eigenfunctions for TN (f): we build (Theorem A) a sequence of normalised sections
(u(N))N≥1 and a real sequence (λ(N))N≥1, with asymptotic expansions in decreasing powers of N , such
that

TN (f)u(N) = λ(N)u(N) +O(e−cN ).

The sequence u(N) takes the form of a Wentzel-Kramers-Brillouin (WKB) ansatz: it is written as

u(N) : x 7→ CNdeNϕ(x)(u0 +N−1u1 + . . .).

Since TN (f) is self-adjoint, the existence of an almost eigenfunction implies that λ(N) is exponentially
close to the spectrum of TN (f), but not necessarily that u(N) is exponentially close to an eigenfunction.
In Theorem A, we also prove that, if f is Morse, the eigenvectors associated with the lowest eigenvalue of
TN (f) are exponentially close to a finite sum of almost eigenvectors u(N) constructed above.
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1.1 Bergman kernels and Toeplitz operators

Let (M,ω) be a compact symplectic manifold. Berezin-Toeplitz quantization associates, to a function f , a
sequence of Toeplitz operators (TN (f))N≥1. To this end, we have to provide a supplementary geometrical
information: a complex structure J , which encodes the notion of holomorphic functions, and which is
compatible with ω.

Definition 1.1. Let (M,ω, J) be a Kähler manifold. Let L be a complex line bundle over M , and let h be
a Hermitian metric on L, such that curvh = 2iπω. (The couple (L, h) exists if and only if the integral of ω
over each closed surface in M is an integer multiple of 2π. We then say that M is quantizable.) Let N ∈ N.

The Bergman projector SN is the orthogonal projector, from the space of square-integrable sections
L2(M,L⊗N ) to the subspace of holomorphic sections H0(M,L⊗N ).

Let f ∈ C∞(M,R). The Toeplitz operator TN (f) associated with f is the following operator:

TN (f) : H0(M,L⊗N ) → H0(M,L⊗N )
u 7→ SN (fu).

The space H0(M,L⊗N ) is always finite-dimensional. Given a Hilbert basis (s1, . . . , sdN
) of H0(M,L⊗N ),

the Bergman projector SN admits the following integral kernel:

SN (x, y) =
dN∑

i=1

si(x) ⊗ si(y).

The study of the Bergman kernel as N → +∞ lies at the core of the semiclassics of Toeplitz quantization.
In a previous article [3], we developed a semiclassical machinery in real-analytic regularity, in order to give
asymptotic formulas for SN , and Toeplitz operators, in the case where the symplectic form ω is real-analytic
on the complex manifold (M,J).

Definition 1.2. Let (M,ω, J) be a compact quantizable Kähler manifold and (SN )N≥1 be the associated
sequence of Bergman projectors. Let x ∈ M and N ∈ N. The coherent state ψN

x at x is the element of
H0(M,L⊗N ) ⊗ Lx given by freezing the second variable of the Bergman kernel: for every y ∈ M , one has

ψN
x (y) = SN (y, x).

Theorem A. Let M be a quantizable compact real-analytic Kähler manifold. Let f be a real-analytic
function on M with min(f) = 0.

1. Let P0 ∈ M be a non-degenerate minimal point of f . Then there exist

• positive constants c, c′, R,

• a neighbourhood V of P0,

• a holomorphic function ϕ on V with |ϕ(x)| ≤ d(x,P0)2

2 ,

• a sequence of holomorphic functions (uk)k≥0, with u0(P0) = 1 and uk(P0) = 0 for k 6= 0,

• a real sequence (λk)k≥0, where λ0 is the ground state energy of the Hessian of f at P0 (see [2]),

such that, if ψN
P0

denotes the coherent state at P0, then with

u(N) = ψN
P0
eNϕ

(
cN∑

k=0

N−kuk

)
,

2
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one has ∥∥∥∥∥TN (f)u(N) −N−1

(
cN∑

k=0

N−kλk

)
u(N)

∥∥∥∥∥
L2(M,L⊗N )

≤ Ce−c′N ,

and

|λk| ≤ CRkk!

sup
U

|uk| ≤ CRkk!,

2. If the minimal set of f consists in a finite number of non-degenerate minimal points, then any eigen-
function of TN (f) with minimal eigenvalue is exponentially close to a linear combination of the func-
tions constructed in item 1 at each minimal point.

The pseudodifferential equivalent of this result is claimed in [6], using the Sjöstrand analytic classes [9],
but all details are not given.

Pseudodifferential operators with real-analytic symbols can be written exactly as Toeplitz operators, with
M = Cn, so that Theorem A also contains (modulo some hypotheses on f at infinity) a complete proof for
the result stated in [6]. This point of view on pseudodifferential operators is pertinent for WKB eigenmode
construction and exponential estimates, both from the perspective of physics [11] and from mathematics (all
related proofs use the Fourier-Bros-Iagolnitzer transformation, which relates pseudodifferential operators to
Toeplitz operators). In addition, the Toeplitz setting contains other semiclassical quantum operators such
as spin systems, on which tunnelling estimates are widely studied in the physics community [7], although
not always in a rigorous way.

Remark 1.3. If the minimal set of f consists in several non-degenerate wells, then applying the Part 1 of
Theorem A at every well yields that the actual ground state, which is exponentially close to an orthogonal
linear combination of almost eigenfunctions as above, has Agmon-type exponential decay in a neighbourhood
of the minimal set, as in [5].

Even if the function ϕ can be defined and yields, formally, exponential decay far from the minimal point,
this rate of decay is blurred, not only by the error terms in the expression of the Bergman kernel (Proposition
2.3) but also by the fact that we can only sum up to cN with c small when summing analytic symbols (see
Proposition 2.2), which yields a fixed error of order e−c′N with c′ > 0 small. This yields an upper bound on
the decay rate, as a function of the position, which follows the blue, continuous line in the following picture:

c′

ℜ(ϕ)+φ

P0

Near P0, the rate of decay is sharp, but we have no explicit control on the constant c′.

Theorem A has applications to tunnelling in spin systems. In Proposition 5.1 we prove that, if f has
two symmetrical wells, and λ0, λ1 denote the two first eigenvalues of TN (f) (with multiplicity), then

λ1 − λ0 ≤ Ce−c′N ,

3
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where c′ is as in Theorem A. In the physics community, the tunnelling rate −N−1 log(λ1 − λ0) is often
estimated using the degree zero approximation ϕ in the WKB ansatz, which solves a Hamilton-Jacobi
equation (see Proposition 3.3). However, in Proposition 5.2, we provide a series of examples which illustrate
that the tunnelling rate is not given by ϕ, let alone by the best possible constant c′ in Theorem A.

1.2 Outline

In Section 2 we briefly present the tools which we developed in [3] to tackle problems from semiclassical
analysis in real-analytic regularity. We then proceed to the proof of Theorem A. Section 3 contains the
geometrical ingredients required in order to build a formal WKB ansatz, that is, for every K ∈ N, an
approximate eigenstate of the form

x 7→ ψP0
(x)eϕ(x)(a0(x) +N−1a1(x) + . . .+N−KaK(x)).

In Section 4, we identify the formal sequences (ak)k≥0 and (λk)k≥0 corresponding to a candidate for the
smallest eigenvalue and associated eigenvector, and prove that these sequences belong to an analytic class;
this allows us to construct an approximate eigenstate of the form

x 7→ ψP0
(x)eϕ(x)

cN∑

k=0

N−kak(x),

which satisfies the eigenvalue equation for TN (f) up to O(e−c′N ), with c > 0 and c′ > 0. A standard analysis
of the distribution of low-lying eigenvalues of TN (f) allows us to conclude the proof in Section 5, where we
also discuss the constant c′ in the statement of Theorem A.

2 Calculus of analytic Toeplitz operators

The core of the proof of Theorem A consists in Propositions 3.5 and 4.2, where we prove that the sequences
(λk)k≥0 and (uk)k≥0 can be built by induction and satisfy the growth control

|λk| ≤ CRkk!

|uk| ≤ CRkk!.

To this end, we use the framework developed in our previous paper [3], which allowed us to study Toeplitz
operators with real-analytic regularity.

For some real parameters r > 0,m, we say that a function on a smooth open set U of Rd belongs to the
space H(m, r, U) when there exists C > 0 such that, for every j ≥ 0, one has

‖u‖Cj (U) ≤ C
rjj!

(j + 1)m
.

The minimal C such that the control above is true is a Banach norm for the space H(m, r, U). Such functions
are real-analytic. Reciprocally, for all V ⊂⊂ U , every real-analytic function on U belongs to H(m, r, V ) for
some m, r.

Generalising this notion leads to the definition of analytic (formal) symbols.

Definition 2.1.

4
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• Let X be a compact manifold (with smooth boundary). We fix a finite set (ρV )V ∈V of local charts on
open sets V which cover X.

Let j ≥ 0. The Cj norm of a function f : X 7→ C which is continuously differentiable j times is defined
as

‖f‖Cj(X) = max
V ∈V

sup
x∈V

∑

|µ|=j

|∂µ(f ◦ ρV )(x)|.

• Let X be a compact manifold (with boundary), with a fixed set of covering local charts.

Let r,R,m be positive real numbers. The space of analytic symbols Sr,R
m (X) consists of sequences

(ak)k≥0 of real-analytic functions on X, such that there exists C ≥ 0 such that, for every j ≥ 0, k ≥ 0,
one has

‖ak‖Cj(X) ≤ C
rjRk(j + k)!

(j + k + 1)m
.

The norm of an element a ∈ Sr,R
m (X) is defined as the smallest C as above; then Sr,R

m (X) is a Banach
space.

These analytic classes, which we defined and studied in [3], are well-behaved with respect to standard
manipulations of functions (multiplication, change of variables, ...) and, most importantly, with respect
to the stationary phase lemma. Another important property is the summation of such symbols: if ~ is a
semiclassical parameter (here ~ = N−1), then for c > 0 small depending on R, the sum

c~−1∑

k=0

~
kuk

is uniformly bounded as ~ → 0; in this sum, terms of order k = ~
−1 are exponentially small, so that the

precise choice of c has an exponentially small influence on the sum.

Proposition 2.2.

Summation Let X be a compact Riemannian manifold with boundary and let f ∈ Sr,R
m (X). Let cR = e

3R
.

Then

1. The function

f(N) : x 7→
cRN∑

k=0

N−kfk(x)

is bounded on X uniformly for N ∈ N.

2. For every 0 < c1 < cR, there exists c2 > 0 such that

sup
x∈X

∣∣∣∣∣∣

cRN∑

k=c1N

N−kfk(x)

∣∣∣∣∣∣
= O(e−c2N ).

Cauchy product There exists C0 ∈ R and a function C : R2 7→ R such that the following is true.

Let X be a compact Riemannian manifold (with boundary) and with a fixed finite set of covering charts.
Let r,R ≥ 0 and m ≥ 4. For a, b ∈ Sr,R

m (X), let us define the Cauchy product of a and b as

(a ∗ b)k =
k∑

i=0

aibk−i.

5
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1. The space Sr,R
m (X) is an algebra for this Cauchy product, that is,

‖a ∗ b‖
S

r,R
m

≤ C0‖a‖
S

r,R
m

‖b‖
S

r,R
m
,

Moreover, there exists c > 0 depending only on R such that as N → +∞, one has

(a ∗ b)(N) = a(N)b(N) +O(e−cN ).

2. Let r0, R0,m0 positive and a ∈ Sr0,R0
m0

(X) with a0 nonvanishing. Then, for every m large enough
depending on a, for every r ≥ r02m−m0 , R ≥ R02m−m0 , a is invertible (for the Cauchy product)
in Sr,R

m (X), and its inverse a⋆−1 satisfies:

‖a∗−1‖
S

r,R
m (X)

≤ C(‖a‖
S

r0,R0
m0

(X)
,min(|a|)).

This summation property, together with the stationary phase lemma, allows us to study Toeplitz op-
erators up to an exponentially small error. One of the main results of [3] is an expansion of the Bergman
kernel on a real-analytic Kähler manifold, with error O(e−c′N ), in terms of an analytic symbol.

Proposition 2.3. (See [3], Theorem A) Let M be a quantizable compact real-analytic Kähler manifold of
complex dimension d. There exists positive constants r,R,m, c, c′, C, a neighbourhood U of the diagonal
in M × M , a section Ψ of L ⊠ L over U , and an analytic symbol a ∈ Sr,R

m (U), holomorphic in the first
variable, anti-holomorphic in the second variable, such that the Bergman kernel SN on M satisfies, for each
x, y ∈ M ×M and N ≥ 1:

∥∥∥∥∥SN (x, y) − Ψ⊗N (x, y)
cN∑

k=0

Nd−kak(x, y)

∥∥∥∥∥
h⊗N

≤ Ce−c′N .

Similar ideas appear in the literature, and have been successfully applied to the theory of pseudodif-
ferential operators with real-analytic symbols. Early results [1] use a special case of our analytic classes,
when m = 0; from there, a more geometrical theory of analytic Fourier Integral operators was developed
[9], allowing one to gradually forget about the parameters r and R. It is surprising that the introduction of
the parameter m, which mimics the definition of the Hardy spaces on the unit ball, was never considered,
although it simplifies the manipulation of analytic functions (the space H(m, r, V ) is stable by product if
and only if m ≥ 3). In the paper [3] and the present article, it is crucial that we are able to choose m
arbitrary large.

3 Geometry of the WKB Ansatz

In this section we provide the geometric ingredients for the proof of Theorem A. We formally proceed as
in the case of a Schrödinger operator [4]. If a real-analytic, real-valued function f has a non-degenerate
minimum at P0 ∈ M , we seek for a sequence of eigenfunctions of the form

ψN
P0
eNϕ(u0 +N−1u1 + . . .),

where ψN
P0

denotes the coherent state at P0. If the value of f at the bottom of the well is 0, then the associated
sequence of eigenvalues should be of order O(N−1), that is to say, follow the asymptotic expansion:

N−1λ0 +N−2λ1 + . . . .

When solving the eigenvalue problem, the terms of order 0 in

e−NϕTN (f)ψN
P0
eNϕ(u0 +N−1u1 + . . .)

6
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yield an equation on ϕ. In the case of a Schrödinger operator this is the eikonal equation |∇ϕ|2 = V , which
is solved using the Agmon metric. In our more general case, we are in presence of a form of the Hamilton-
Jacobi equation (1) which we solve in Proposition 3.3 using a geometric argument based on the existence of
a stable manifold, in the spirit of [10]. Associated with f and ϕ are transport equations which we must solve
in order to recover the sequence of functions (ak)k≥0. In Proposition 3.5 we study this transport equation
under the point of view of symbol spaces of Definition 2.1. Then, in Proposition 4.2, we perform an analytic
summation of the ak’s in order to find an exponentially accurate eigenfunction for TN (f), with exponential
decay away from P0.

The plan of this section is as follows: we begin in Subsection 3.1 with the study of an analytic phase which
will be a deformation of the phase Φ1 considered above. We then define and study the Hamilton-Jacobi
equation associated with a real-analytic function near a non-degenerate minimal point, and the associated
transport equations, in Subsections 3.2 and 3.3 respectively.

In the rest of this article,

• M is a quantizable real-analytic compact Kähler manifold;

• f is a real-valued function on M with real-analytic regularity, such that min(f) = 0 and all minimal
points are non-degenerate;

• U ⊂ M is an open set on which f vanishes at exactly one point. U is identified with a neighbourhood
of 0 in Cd, with f(0) = 0 (in particular, P0 = 0);

• φ is a Kähler potential on U such that

φ(y) =
|y|2

2
+O(|y|3);

• φ̃ is the function on U ×U , holomorphic in the first variable, anti-holomorphic in the second variable,
such that φ̃(x, x) = φ(x) (holomorphic extension or polarisation of φ);

• More generally, ˜ represents holomorphic extension of real-analytic functions: for instance, f̃ is the
extension of f and is defined on U × U ;

• Φ1 is the phase associated with the composition of two Bergman kernels, that is,

Φ1 : (x, y,w, z) 7→ 2φ̃(x,w) − 2φ̃(y,w) + 2φ̃(y, z) − 2φ̃(x, z).

Here, and in all this article, we write Φ1(x, y,w, z) to indicate that Φ1 has anti-holomorphic dependence in
its two last variables.

The section Ψ of Proposition 2.3 satisfies the following equation, for all x, y, z close enough from each
other:

〈Ψ⊗N (x, y),Ψ⊗N (y, z)〉
L⊗N

y
= Ψ⊗N (x, z) exp(NΦ1(x, y, y, z)).

Here, y is merely the complex conjugate of y.

3.0 Formal identification of the WKB ansatz

We search for an eigenfunction of TN (f) of the form

x 7→ eNϕ(x)(u0(x) +N−1u1(x) + . . .)ψN
0 (x),

where ψN
0 is the coherent state at 0 (see Definition 1.2), and φ, u0, u1, . . . are holomorphic functions on U .

7
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This construction is local. Indeed, the holomorphic functions φ, u0, u1, . . . can only be extended to the
whole of M if they are constant. However, if ϕ does not grow too fast (see Definition 3.1), then the trial
function above is exponentially small outside any fixed neighbourhood of zero.

In particular, applying TN (f) yields

TN (f)(eNϕ(u0 +N−1u1 + . . .)ψN
0 ) :

x 7→ ψN
0 (x)eNϕ(x)

∫

U
eNΦ1(x,y,y,0)+Nϕ(y)−Nϕ(x)f(y)

(
cN∑

k=0

Nd−kak(x, y)

)(
u0(y) +N−1u1(y) + . . .

)
dy

+O(e−cN ).

If the function appearing in the exponential is a positive phase function (see Proposition 3.2), one can apply
the stationary phase lemma. If y∗(x) is the critical point of this phase (which belongs to U×U), at dominant
order, one has

TN (f)(eNϕu0ψ
N
0 )(x) = ψN

0 (x)eNϕ(x)f̃(y∗(x))a0(x, y∗(x))u0(y∗(x))J(x) +O(N−1).

where J is a non-vanishing Jacobian.
Since we search for an eigenfunction with eigenvalue close to zero, we want this principal term to vanish.

As J and a0 do not vanish, this yields
f̃(y∗(x)) = 0,

which boils down to a particular PDE on ϕ, the Hamilton-Jacobi equation. We provide a geometric solution
to this equation in Proposition 3.3.

At next order, the eigenvalue equation reads, for all x ∈ U ,

N−1λ0u0(x) +O(N−2) = TN (f)(eNϕ(u0 +N−1u1)ψN
0 )(x) +O(N−2)

= N−1ψN
0 (x)eNϕ(x)

(
f̃J(a0u1 + a1u0)(y∗(x)) + ∆̃(x)(f̃a0u0J)(y∗(x))

)
+O(N−2).

Here ∆̃(x) is the Laplace operator conjugated with a change of variables (this change of variables acts on
(y, y) and is parametrized by x: it conjugates the initial phase with v 7→ −|v|2).

Since f̃(y∗(x)) = 0, there is no contribution from u1 at this order. Moreover, one can distribute

∆̃(f̃a0u0J) = f̃a0J∆̃u0 + u0∆̃(f̃a0J) + ∇̃(f̃a0J) · ∇̃(u0).

Then, the first term of the right-hand side is zero when evaluated at y∗(x) since f̃(y∗(x)) = 0. The second
term, evaluated at zero will yield the associated eigenvalue at first order. Hence, it remains to solve

(
∇̃(x)(f̃a0J)

)
(y∗(x)) · (∇̃(x)u0)(y∗(x)) = u0(x)

(
λ0 − ∆̃(x)(f̃ a0J)(y∗(x))

)
.

Observe that f̃ , as the complex extension of f , has a critical point at x = 0, so that, as long as y∗(0) = 0
(which is proved in Proposition 3.2), there holds ∇̃(0)(f̃ a0J)(y∗(0)) = 0. Hence, the equation above implies

λ0 = ∆̃(0)(f̃ a0J)(0).

We will see in Proposition 4.1 that λ0 indeed corresponds to the ground state energy of the Hessian of f at
zero.

It remains to solve an equation of the form
(
∇̃(x)(f̃a0J)

)
(y∗(x)) · (∇̃(x)u0)(y∗(x)) = u0(x)h(x),

8
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where h vanishes at zero. We solve this equation in Proposition 3.5.
Similar equations are satisfied by the successive terms uk. This family of equations is solved (with a

convenient control on the size of the solution) in Proposition 3.5. Then, in Section 4 we prove that the
sequence uk indeed forms an analytic symbol and that the eigenvalue equation admits a solution up to an
O(e−cN ) error.

3.1 A family of phase functions

In this subsection we study a family of analytic phases (in the sense of Definition 3.11 in [3]) given by a
WKB ansatz at the bottom of a well. To begin with, we describe the conditions on a holomorphic function
ϕ at a neighbourhood of zero, such that eNϕψN

P0
is a convenient first-order candidate for the ground state

of TN (f).

Definition 3.1. A holomorphic function ϕ on U is said to be admissible under the following conditions:

ϕ(0) = 0

dϕ(0) = 0

∃t < 1, ∀x ∈ U, |ϕ(x)| <
t

2
|x|2.

Proposition 3.2. Let ϕ be an admissible function. The function from U × U to R defined by:

(x, y) 7→ Φ1(x, y, y, 0) + ϕ(y) − ϕ(x)

is, for all x in a small neighbourhood of zero, a positive phase function of y.
The complex critical point is y∗(x) = (x, yc(x)), where the holomorphic function x 7→ yc(x) satisfies

−2∂1φ̃(x, yc(x)) + 2∂1φ̃(x, 0) = −∂ϕ(x).

In particular, yc(0) = 0.

Proof. Near y = w = 0, there holds

Φ1(0, y, w, 0) = −y · w +O(|y,w|3).

In particular, for x = 0, the function (y,w) 7→ Φ1(0, y, w, 0)+ϕ(y) has a critical point at (0, 0) with non-

degenerate, real negative Hessian (because |ϕ(y)| ≤ t|y|2

2 ). In particular, for x small enough, the function
(y,w) 7→ Φ1(x, y,w, 0) + ϕ(y) − ϕ(x) has exactly one critical point near 0, with non-degenerate, negative
real Hessian. The critical point (y,w) satisfies the two equations

∂wφ̃(x,w) − ∂wφ̃(y,w) = 0

−2∂yφ̃(y,w) + 2∂y φ̃(y, 0) = −∂ϕ(y).

The first equation yields y = x, then the second equation has only one solution w := yc(x), so that the
phase at this critical point is equal to

2φ̃(x, yc(x)) − 2φ̃(x, yc(x)) + 2φ̃(x, 0) − 2φ̃(x, 0) + ϕ(x) − ϕ(x) = 0.

This concludes the proof. �

9
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3.2 Hamilton-Jacobi equation

Let ϕ be an admissible function. For every x ∈ M close to 0, there exists one yc(x) in U such that (x, yc(x))
is a critical point for the phase of Proposition 3.2.

In order to find the phase of the WKB ansatz, we want to solve, in a neighbourhood of 0, the following
system of equations on ϕ and yc, where ϕ is an admissible function:

{
f̃(x, yc(x)) = 0.

−2∂1φ̃(x, yc(x)) + 2∂1φ̃(x, 0) = −∂ϕ(x).
(1)

This will be called the Hamilton-Jacobi equation. This equation is non-trivial already at the formal level:
for fixed x the equation f̃(x, y) = 0 defines (a priori) a manifold of complex codimension 1, which has a
singularity at x = 0. On the other hand, we need to ensure that ∂1φ̃(x, yc(x)) is a closed 1-form in order to
solve for ϕ.

Proposition 3.3. The Hamilton-Jacobi equation (1) admits a solution near 0. It is given by the stable
manifold of the Hamiltonian flow of f̃ , with respect to a particular symplectic form.

Proof. Since the Taylor expansion of φ at zero is

φ(x) =
1

2
|x|2 +O(|x|3),

the map
w 7→ 2∂1φ̃(x,w) = w +O(|x,w|2)

is a biholomorphism in a neighbourhood of zero, for x small. Let γx denote its inverse, then γx is tangent
to identity at x = w = 0.

Let
f̃1 : (x, z) 7→ f̃(x, γx(z)),

then the Hamilton-Jacobi equation (1) is equivalent to the modified system:

{
f̃1(x, zc(x)) = 0

−zc(x) + 2∂1φ̃(x, 0) = −∂ϕ(x).

Let Q be the Hessian of f at zero and Q̃ its holomorphic extension. Then f̃1(x, z) = Q̃(x, z) + O(|x, z|3)
since γx is tangent to identity at x = w = 0.

In the modified system, there holds zc(x) = ∂(2φ̃(x, 0) + ϕ(x)), so that finding x 7→ zc(x) amounts to
finding a holomorphic Lagrange submanifold L = {x, zc(x)} of Cd × Cd near 0, for the standard symplectic
form ℑ(

∑
dxj ∧ dzj) (which extends the symplectic form

∑
dℜ(xj) ∧ dℑ(xj)), such that L is contained in

{f̃1 = 0} and is transverse to x. Then, near 0, one has L = {x, ∂F (x)} for some holomorphic F , and it will
only remain to check that ϕ = F − 2φ̃(·, 0) is admissible. As in [10], from f and the standard symplectic
form, the Lagrangean L will be constructed as the stable manifold of the fixed point 0 for the symplectic
flow of f̃1.

Let us first focus on the special case where f̃1 is quadratic. Then f̃1 = Q̃.
The quadratic form Q admits a symplectic diagonalisation with respect to the (real) symplectic form∑

dℜ(xj) ∧ dℑ(xj): there exists a symplectic matrix S, and positive numbers λ1, . . . , λd, such that

Q = ST diag(λ1, λ1, λ2, λ2, . . . , λd, λd)S.
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Let us study how this symplectic change of variables behaves under complexification. From the KAK
decompostion of the semisimple Lie group Sp(2d) (or, more practically, using a Singular Value Decompo-
sition), the matrix S can be written as U1DU2, where U1 and U2 belong to Sp(2d) ∩ O(2d) ≃ U(d), and
D = diag(µ1, µ

−1
1 , . . . , µd, µ

−1
d ).

The complexified actions of U1 and U2 are straightforward: for j = 1, 2 one has Ũj(x, z) = (Ujx,U
−1
j z).

The action of D is diagonal: D = diag(D1, . . . ,Dd), with

Dj(ℜ(xj),ℑ(xj)) = µjℜ(xj) + µ−1
j ℑ(xj).

Hence, the action of D̃ is block-diagonal, with

D̃j(xj , zj) =

(
µj + µ−1

j

2
xj −

µj − µ−1
j

2
zj ,

µj − µ−1
j

2
xj +

µj + µ−1
j

2
zj

)
.

After applying successively the changes of variables Ũ1, D̃, Ũ2, in the new variables, the quadratic form
becomes

f̃1 ◦ S̃ : (q, p) 7→
d∑

j=1

λjqjpj.

Among the zero set of this form, a space of particular interest is {p = 0}. It is a holomorphic Lagrangean
subspace, which is preserved by the symplectic gradient flow of f̃1, and such that every solution starting
from this subspace tends to zero for positive time. This subspace {p = 0} is the stable manifold of zero for
the symplectic gradient of f̃1. Let us show that, in the starting coordinates (x, z), the stable manifold of f̃1

has the requested properties for the solution of the Hamilton-Jacobi equation.

• The inverse change of variables Ũ−1
2 leaves {p = 0} invariant.

• The inverse change of variables D̃−1 sends {p = 0} to {z = Ax}, with ‖Ax‖ℓ2 ≤ t‖x‖ℓ2 for some t < 1.

Indeed, the matrix A has diagonal entries
µj−µ−1

j

µj+µ−1

j

.

• The inverse change of variables Ũ−1
1 sends {z = Ax} to Λ0 = {z = U1AU

−1
1 x}, with a similar property:

for some t < 1, there holds ‖U1AU
−1
1 x‖ℓ2 ≤ t‖x‖ℓ2 .

Then Λ0 is a linear space of the form {z = ∂F0(x)}, where F0 is the holomorphic function

F0 : x 7→
1

2
〈x,U1AU

−1
1 x〉.

Then ϕ : x 7→ F0(x) − 2φ̃(x, 0) = F0(x) +O(|x|3) is a solution to the Hamilton-Jacobi equations.
If f̃1 is quadratic, we just identified a holomorphic Lagrange submanifold transverse to {x = 0} and

contained in {f̃1 = 0}, as the stable manifold of 0 for the Hamiltonian flow of f̃1. In the general case, f̃1

is a small perturbation of its quadratic part in a small neighbourhood of 0, so that, by the stable manifold
Theorem ([8], Theorem 6.1), the stable subspace Λ0 is deformed into a stable manifold L which has the
same properties: L is Lagrangean (since it is a stable manifold of a symplectic flow, it must be isotropic,
and L has maximal dimension), and it is transverse to x a small neighbourhood of zero since T0L is the
linear Lagrangean subspace Λ0 described above. Moreover, the Hamiltonian flow of f̃1 preserves f̃1 so that
L is contained in {f̃1 = 0}.

We finally let F be a holomorphic function such that L = {x, ∂F (x)}. With ϕ : x 7→ F (x) − 2φ̃(x, 0),
and zc(x) = ∂F (x), we obtain a solution to the modified Hamilton-Jacobi equation

{
f̃1(x, zc) = 0

−zc + ∂1φ̃(x, 0) = −∂ϕ(x).
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Since φ̃(x, 0) = O(|x|3), one has ϕ(x) = F (x) +O(|x|3) = F0(x) +O(|x|3), so that

|ϕ(x)| = |F0(x)| +O(|x|3) <
t

2
|x|2

for some t < 1 on a neighbourhood of 0. This concludes the proof.

Remark 3.4 (Uniqueness). In general, the solution to the Hamilton-Jacobi is non-unique. Once written in
the form ∑

λjqjpj,

we might have chosen another solution than {p = 0}. Among these linear spaces, only {p = 0} corresponds
to an admissible solution.

Proposition 4.3 implies that there can be only one admissible solution to the Hamilton-Jacobi equation.
Indeed, from two different admissible solutions, one can build two different approximate eigenfunctions
corresponding to the same ground state energy.

3.3 Transport equations

Given an admissible function ϕ which solves the Hamilton-Jacobi equation (1) associated with f , the function

(x, y) 7→ Φ1(x, y, y, 0) + ϕ(y) − ϕ(x)

is a positive phase function of y, with parameter x, by Proposition 3.2; one can apply the holomorphic
Morse lemma to reduce this function, after a change of variables, to the holomorphic extension of the phase
(x, v) 7→ −|v|2. The Laplace operator and the standard gradient, conjugated by the change of variables
above and which appear in the stationary phase lemma (we use the notation convention of Proposition 3.13
in [3]), are associated with a family of transport equations, which we solve now.

Proposition 3.5. Let f ′ : U × Ũ 7→ C be holomorphic and such that

f ′(x, y,w) = f̃(y,w) +O(|x, y,w|3),

and let ϕ be an admissible solution of the Hamilton-Jacobi equation (1). Let x ∈ U and let ∇̃(x) denote the
modified gradient in the stationary phase lemma associated with the phase

(y,w) 7→ Φ1(x, y,w, 0) + ϕ(y) − ϕ(x).

That is, if κx is a biholomorphism (y,w) 7→ v(x, y,w) which conjugates the phase above with the holomorphic
extension of −|v|2, the operator ∇̃(x) acts on functions defined on U × Ũ by

(∇̃(x)a) : (x, y,w) 7→

(
∂a(x, κ−1

x (v))

∂vj
(x, κx(y,w))

)

1≤j≤2d

.

Let also yc be the holomorphic function of x such that (x, yc(x)) is the critical point of the phase above.
Then, for every g : U → C holomorphic with g(0) = 0, and every h : U → C holomorphic with h(0) = 0,

there exists a unique holomorphic function u : U → C with u(0) = 0 which solves the following transport
equation:

(∇̃(x)f ′)(x, x, yc(x)) · (∇̃(x)[(x, y, w̃) 7→ u(y)])(x, x, yc(x)) = h(x)u(x) + g(x).

Moreover, up to a fixed linear change of variables, there exist r0(h, f ′, ϕ),m0(h, f ′, ϕ), C(h, f ′, ϕ) > 0 such
that, for every

k ≥ 0, m ≥ m0(h, f ′, ϕ), r ≥ r0(h, f ′, ϕ)(3/2)m−m0(h,f ′,ϕ), Cg > 0,
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for every g as above which satisfies, for every j ≥ 0,

∑

|µ|=j

|∂µg(0)| ≤ Cg

rj(j + k + 1)!

(1 + j + k + 1)m
.

one has, for every j ≥ 0,
∑

|µ|=j

|∂µu(0)| ≤ C(h, f ′, ϕ)Cg

rj(j + k)!

(1 + j + k)m
.

Proof. We let X be the vector field on U such that

(∇̃(x)f ′)(x, x, yc(x)) · (∇̃(x)[(x, y, w̃) 7→ u(y)])(x, x, yc(x)) = X · u(x).

The proof consists in three steps. In the first step we prove that all trajectories of X converge towards 0 in
negative time, so that there is no dynamical obstruction to the existence of u (if X had wandering or closed
trajectories, solving X · u = fu + g would require conditions on f and g). In the second step, we identify
the successive terms of a formal power expansion of u, which allows us to control successive derivatives of u
at 0. In the third step, we prove that the solution u is well-defined on U .

First step

We study the dynamics of the vector field X in a neighbourhood of zero. To this end, we relate κ to the
linear change of variables which appeared in the proof of Proposition 3.3 in the case where f is quadratic.

We first note that, as the Taylor expansion of f ′ is

f ′ = f̃ +O((x, y,w)3) = O((x, y,w)2),

one has X(0) = 0. The Hessian of ϕ at zero is determined by the Hessian of f at zero; it then determines
the linear part of κ at 0, hence the linear part of X at 0. Up to a linear unitary change of variables, there
exists a diagonal matrix A, a unitary matrix U , and positive λ1, . . . , λd, such that

f : x 7→
d∑

j=1

λj |(UAx)j |2 +O(|x|3).

Then ϕ(x) = 1
2x · UAU−1x+O(|x|3), so that the phase reads

Φ1(x, y,w, 0) + ϕ(y) − ϕ(x) = 2(x− y) ·

(
w −

1

4
UAU−1(x+ y)

)
+O(|x, y,w|3).

In particular, at first order, one can write

κx(y,w) =

(
y − x,w −

1

4
U−1AU(y + x)

)
+O(|(x, y,w)|2).

Hence, the inverse change of variables is of the form

κ−1
x (v, v) =

(
v + x, v +

1

4
U−1AU(v + 2x)

)
+O(|(x, v, v)|2),

so that
u ◦ κ−1

x (v, v) = u(v + x+O|(x, v, v)|2)

is holomorphic with respect to v, at first order.
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We then wish to compute

∇̃(x)f ′ · ∇̃(x)u := ∂v(f ′ ◦ κ−1
x ) · ∂v(u ◦ κ−1

x ) + ∂v(f ′ ◦ κ−1
x ) · ∂v(u ◦ κ−1

x )

which is equal, at first order, to the opposite symplectic flow (for the symplectic form ℑ(dv ∧ dv)) of f
applied to u:

∇̃(x)f ′ · ∇̃(x)u := ∂v(f̃ ◦ κ−1
x ) · ∂v(u ◦ κ−1

x ) − ∂v(f̃ ◦ κ−1
x ) · ∂v(u ◦ κ−1

x ) +O(|x|2).

As seen in the proof of Proposition 3.3, the critical manifold {v = v = 0} is the stable manifold for the
Hamiltonian flow of f̃ , so that each trajectory of the vector field above is repulsed from zero in a non-
degenerate way; this concludes the first part of the proof.

Second step.

Since X has 0 as non-degenerate repulsive point, it can be diagonalised: there exists a linear change of
variables on Cd after which

X =
d∑

i=1

λixi∂xi
+O(|x|2),

for positive λi. From now on we apply this linear change of variables and we will control ‖∇ju(0)‖ℓ1 in these
coordinates. Let us expand

X · u(x) =
d∑

i=1


λixi +

∑

|ν|≥2

ai,ν

ν!
xν


 ∂

∂xi
u(x)

h(x) =
∑

|ν|≥1

hν

ν!
xν

g(x) =
∑

|ν|≥1

gν

ν!
xν .

Then, for some V ⊂⊂ U which contains 0, for some positive r0,m0, one has ai ∈ H(m0, r0, V ) and
h ∈ H(m0, r0, V ), so that, for all ν such that |ν| ≥ 1,

|hν | ≤ Ch

r
|ν|
0 ν!

(1 + |ν|)m0

|ai,ν | ≤ Ca
r

|ν|−1
0 ν!

(|ν|)m0
if |ν| ≥ 2.

Let m ≥ m0 and r ≥ r02m−m0 , to be fixed later on. Then, one has

|hν | ≤ Ch

r|ν|ν!

(1 + |ν|)m

|ai,ν | ≤ Ca
r|ν|−1ν!

(|ν|)m
.

Let us suppose that, for some k ≥ 0, for every j ≥ 0, one has

∑

|ν|=j

|gν | ≤ Cg
rj(j + k + 1)!

(1 + k + j + 1)m
.
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We will solve the transport equation with

u : x 7→
∑

|ν|≥1

uν

ν!
xν ,

and prove by induction on j ≥ 0 that

∑

|µ|=j

|uµ| ≤ C(h, f ′, φ)Cg
rj(j + k)!

(1 + k + j)m
,

as long as m is large enough with respect to Ca and Ch, and r is large enough accordingly.
For j = 0, one has u(0) = 0 by hypothesis. The transport equation is equivalent to the following family

of equations indexed by µ with |µ| ≥ 1:

uµ

∑d
i=1 λiµi

µ!
=
∑

|ν|≥1

hνuµ−ν

ν!(µ − ν)!
+
gµ

µ!
−

d∑

i=1

∑

|ν|≥2

ai,νuµ−ν+ηi

ν!(µ− ν + ηi)!
.

Here, as in the rest of the proof, ηi denotes the base polyindex with coefficients (0, 0, . . . , 0, 1, 0, . . . , 0) where
the 1 is at the site i.

Observe that uµ appears only on the left-hand side of the equation above, while the right-hand side
contains coefficients uρ with ρ < µ. As the eigenvalues λi are all positive, one can solve for uµ by induction.
Indeed, there exists Cλ > 0 such that, for every |µ| 6= 0 there holds

d∑

i=1

λiµi ≥ C−1
λ (|µ| + 1).

In particular,

|uµ| ≤
Cλ

|µ| + 1


|gµ| +

∣∣∣∣∣∣

∑

|ν|≥1

hνuµ−νµ!

ν!(µ− ν)!

∣∣∣∣∣∣
+

∣∣∣∣∣∣

d∑

i=1

∑

|ν|≥2

ai,νuµ−ν+ηi
µ!

ν!(µ− ν + ηi)!

∣∣∣∣∣∣


 .

One has

∑

|µ|=j

∣∣∣∣∣∣

∑

|ν|≥1

hνuµ−νµ!

ν!(µ − ν)!

∣∣∣∣∣∣
=

j−1∑

ℓ=1

∑

|ρ|=ℓ

|uρ|
∑

|µ|=j
µ≥ρ

|hµ−ρ|

(µ− ρ)!

µ!

ρ!

≤ Ch

j−1∑

ℓ=1

rj−ℓ
∑

|ρ|=ℓ

|uρ|
∑

|µ|=j
µ≥ρ

µ!

ρ!

1

(1 + j − ℓ)m
.

For |ρ| = ℓ there holds

sup
|µ|=j
µ≥ρ

µ!

ρ!
≤
j!

ℓ!
,

since if ρM denotes the largest index of ρ the supremum above is (ρM + 1)(ρM + 2) . . . (ρM + j − ℓ).
Moreover, there are less than (j − ℓ+ 1)d polyindices µ such that |µ| = j and µ ≥ ρ with |ρ| = ℓ. Hence,

∑

|µ|=j

∣∣∣∣∣∣

∑

|ν|≥1

hνuµ−νµ!

ν!(µ− ν)!

∣∣∣∣∣∣
≤ Ch

j−1∑

ℓ=1

rj−ℓ
j!

ℓ!

(1 + j − ℓ)d

(1 + j − ℓ)m

∑

|ρ|=ℓ

|uρ|

≤ ChC(h, f ′, ϕ)Cg

rj

(1 + k + j)m

j−1∑

ℓ=1

j!(ℓ+ k)!

ℓ!

(1 + j − ℓ)d(1 + k + j)m

(1 + j − ℓ)m(1 + k + ℓ)m
.
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First, (ℓ+k)!
ℓ! = (ℓ+ k)(ℓ+ k − 1) . . . (ℓ+ 1) is increasing with respect to ℓ, so that

j!(ℓ+ k)!

ℓ!
≤
j!(k + j)!

j!
= (k + j)!.

Second, from Lemma 2.12 in [3], if m ≥ max(d+ 2, 2d), there holds

j−1∑

ℓ=1

(1 + j − ℓ)d(1 + k + j)m

(1 + j − ℓ)m(1 + k + ℓ)m
≤ C(d)

3m

4m
.

In particular,

∑

|µ|=j

∣∣∣∣∣∣

∑

|ν|≥1

hνuµ−νµ!

ν!(µ − ν)!

∣∣∣∣∣∣
≤ ChC(d)

3m

4m
C(h, f ′, ϕ)Cg

rj(j + k)!

(1 + k + j)m
.

For m large enough with respect to ChC(d)Cλ, and r ≥ r02m−m0 , one has

∑

|µ|=j

∣∣∣∣∣∣

∑

|ν|≥1

hνuµ−νµ!

ν!(µ− ν)!

∣∣∣∣∣∣
≤

1

3Cλ

C(h, f ′, ϕ)Cg

rjj!

(1 + k + j)m
.

Similarly, one can control, for 1 ≤ i ≤ d, the quantity

∣∣∣∣∣∣

∑

|ν|≥2

ai,νuµ−ν+ηi
µ!

ν!(µ− ν + ηi)!

∣∣∣∣∣∣
=

j−1∑

ℓ=1

∑

|ρ|=ℓ

|uρ|
∑

|µ|=j
µ≥ρ−ηi

|ai,µ−ρ+ηi
|µ!

(µ− ρ+ ηi)!ρ!

≤ Ca

j−1∑

ℓ=1

∑

|ρ|=ℓ

|uρ|
∑

|µ|=j
µ≥ρ−ηi

rj−ℓ
µ!

ρ!

1

(1 + j − ℓ)m

Letting ρM denote again the large index of ρ, and ρm its smallest non-zero index, then

max
|µ|≥|ρ|−1

µ!

ρ!
=

(ρM + j − ℓ+ 1)!

ρM !ρm
≤

(j + 1)!

ℓ!
.

In particular, since
∑

|ρ|=ℓ

|uρ| ≤ C(h, f ′, ϕ)Cg
rℓ(k + ℓ)!

(k + ℓ+ 1)m
,

one has, since (k + ℓ)!/ℓ! = (k + ℓ)(k + ℓ− 1) . . . (ℓ+ 1) ≤ (k + j + 1)!/(j + 1)!, that

∣∣∣∣∣∣

∑

|ν|≥2

ai,νuµ−ν+ηi
µ!

ν!(µ− ν + ηi)!

∣∣∣∣∣∣
≤ CaC(h, f ′, ϕ)Cgr

j
j−1∑

ℓ=1

(k + ℓ)!(j + 1)!

ℓ!

(1 + j − ℓ)d

(1 + j − ℓ)m(1 + k + ℓ)m

≤ CaC(h, f ′, ϕ)Cg

rj(j + k + 1)!

(1 + j + k)m

j−1∑

ℓ=1

(1 + j − ℓ)d(1 + j + k)m

(1 + j − ℓ)m(1 + k + ℓ)m

≤ CaC(d)
3m

4m
C(h, f ′, ϕ)Cg

rj(j + k + 1)!

(1 + j + k)m
.
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Hence, for m and r large enough, one has, for every 1 ≤ i ≤ d,
∣∣∣∣∣∣

∑

|ν|≥2

ai,νuµ−ν+ηi
µ!

ν!(µ − ν + ηi)!

∣∣∣∣∣∣
≤

1

3dCλ

C(h, f ′, ϕ)Cg

rj(j + k + 1)!

(1 + k + j)m
.

To conclude, if C(h, f ′, ϕ) ≥ 3, then

∑

|µ|=j

|uµ| ≤
1

j + 1

(
1

3
C(h, f ′, ϕ) +

1

3
C(h, f ′, ϕ) +

1

3
C(h, f ′, ϕ)

)
Cg

rj(j + k)!

(1 + k + j)m
,

which concludes the induction.
Third step

It only remains to prove that u is well-defined and holomorphic on U . Since the sequence of derivatives
of u at 0 is well-controlled, the associated power series converges on some small neighbourhood V of 0.
Then, from the knowledge of u on V one can build u on U using the geometric structure of the transport
equation. Indeed, we recall that 0 is a repulsive fixed point for X. In particular, letting (Φt)t∈R denote the
flow of −X, there exists T > 0 such that ΦT (U) ⊂ V . Then the transport equation on u is equivalent to

u(x) = u(ΦT (x)) +

∫ T

0
g(Φt(x))dt+

∫ T

0
u(Φt(x))h(Φt(x))dt.

By the analytic Picard-Lindelöf theorem, the unique solution of this degree 1 differential equation, where
the initial data u(ΦT (x)) and the coefficients have real-analytic dependence on ΦT (x) ∈ V , is well-defined
and real-analytic. Then u is well-defined on U , and holomorphic since the derived equation on ∂u is ∂u = 0.
This concludes the proof.

4 Construction of almost eigenvectors

Solving the Hamilton-Jacobi equation then controlling successive transport equations allows us to prove the
first part of Theorem A, which is the object of this section.

The strategy of proof is the following: we first exhibit sequences (ui)i≥0 and (λi)i≥0 such that the
eigenvalue equation (3) is valid up to O(N−∞), and we control these sequences in analytic spaces. Then we
prove that one can perform an analytic summation in (3).

Before proceeding, we note that, if ϕ is admissible and u(N) is the summation of an analytic symbol,
then eNϕu(N)ψN

0 concentrates at 0, and moreover, by Proposition 2.2 and the stationary phase lemma,
there exists C > 0 such that, for every N ∈ N, there holds

1

C
N−n‖eNϕu(N)ψN

0 ‖L2 ≤ CN−n.

In particular, if
‖(TN (f) − λN )eNϕu(N)ψN

0 ‖L2 ≤ Ce−c′N

then λN will be exponentially close to the spectrum of TN (f). Thus, through Proposition 4.3 we are indeed
providing almost eigenstates of TN (f) which concentrate on 0.

Proposition 4.1. Let ϕ denote an admissible solution to the Hamilton-Jacobi equations (1), and let ψN
0

denote the sequence of coherent states at 0. There exists V ⊂⊂ U containing zero, a sequence (uk)k≥0 of
holomorphic functions on U , and a sequence (λk)k≥0 of real numbers, such that for every K ≥ 0 there holds

∥∥∥∥∥

(
TN (f) −

K∑

k=0

N−kλk

)
ψN

0 e
Nϕ

N∑

k=0

N−kuk

∥∥∥∥∥
L2(V )

= O(N−n−K−1).

17

[ January 18, 2019 at 9:05 ]



One has
λ0 = min Sp(T1(Hess(f)(0))).

Proof. By Proposition 2.3, if a denotes the symbol of the Bergman kernel, then there exists c′ > 0 such
that, for all x ∈ U ,

TN (f)
(
ψN

0 e
Nϕu(N)

)
(x) =

ψN
0 (x)eNϕ(x)

∫

y∈M
eN(Φ1(x,y,y,0)+ϕ(y)−ϕ(x)) a(N)(x, y)

a(N)(x, 0)
a(N)(y, 0)f(y, y)u(N)(y)dy +O(e−c′N ).

We are able to apply the stationary phase Lemma. Let ∗ denote the Cauchy product of symbols, and let b
be the analytic symbol such that

b(x, y,w) = f(y,w)a(x,w) ∗ a∗−1(x, 0) ∗ a(y, 0)J(x, y,w),

where J is the Jacobian of the change of variables κx mapping

(y,w) 7→ Φ1(x, y,w, 0) + ϕ(y) − ϕ(x)

to the holomorphic extension of v 7→ −|v|2. Let also ∆̃(x) = κ−1
x ◦ ∆ ◦ κx (where κx acts on functions by a

change of variables). Then

e−Nϕ(x)TN (f)
(
ψN

0 e
Nϕu

)
(x) = ψN

0 (x)
+∞∑

k=0

N−k
k∑

n=0

∆̃n(x)

n!
(u(y)bk−n(x, y,w))

∣∣∣∣∣
(y,w)=(x,yc(x))

+O(N−∞). (2)

The modified Laplace operator ∆̃(x) depends on x and acts on y,w. Using Proposition 3.5 with

f ′ : (x, y,w) 7→ b0(x, y,w),

which indeed coincides with f up to O(|x, y,w|3), we will construct by induction a sequence of holomorphic
functions ui and a sequence of real numbers λi such that

TN (f)

(
ψN

0 e
Nϕ

+∞∑

k=0

N−kuk

)
(x) = ψN

0 (x)eNϕ(x)




+∞∑

j=0

N−j−1λj



(

cN∑

k=0

N−kuk(x)

)
+O(N−∞). (3)

We further require that

uk(0) =

{
1 if k = 0

0 else.

In the right-hand side of (3), there are no terms of order 0. In the left-hand side, the term of degree 0
is given by the term k = 0 in (2), so that one needs to solve

f(x, yc(x))u0(x)
a0(x, 0)

a0(y, 0)
a0(x, y)J(x, x, yc(x)) = b0(x, x, yc(x))u0(x) = 0.

Since f(x, yc(x)) = 0, this equation is always satisfied.
By the stationary phase lemma (2), the order 1 in (3) reads

λ0u0(x) − (∆̃(x)b0)(x, x, yc(x))u0(x) − (∇̃(x)b0)(x, x, yc(x)) · ∇̃(x)u0(x) = 0. (4)
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The equation (4) allows us to solve for u0 with the supplementary condition u0(0) = 1. Indeed, as
∇̃(x)b0(0) = 0, at x = 0, the order 1 reads

λ0 − (∆̃(x)b0)(0, 0, 0) = 0,

so that we set
λ0 = (∆̃(x)b0)(0, 0, 0).

We now prove that λ0 coincides with the ground state energy of the associated quadratic operator
TN (Hess(f)(0)). Indeed, λ0 depends only on the Hessian of f and φ at zero (which together determine the
Hessian of ϕ at zero as seen in Proposition 3.3, thus they determine the linear part of the change of variables
κ in the stationary phase lemma, which in turn determines ∆̃ and J at 0). If f and φ are quadratic, then
the solution ϕ of the Hamilton-Jacobi equation is also quadratic as constructed in Proposition 3.3, so that
u0 = 1 satisfies (3) exactly. Thus, λ0 is an eigenvalue of TN (Hess(f)(0)) which depends continuously on
Hess(f)(0). Moreover, if Hess(f)(0) : y 7→ |y|2, then Hess(ϕ) = 0 so that the eigenvector of TN (Hess(f)(0))
associated with λ0 is the coherent state (in Cd) ψN

0 , which is the ground state of TN (|y|2); thus in this case
λ0 is the ground state energy. Since the set of positive definite quadratic forms in R2d is connected, and
since there is always a gap between the ground state energy and the first excitation, then λ0 is always the
ground state energy of TN (Hess(f)(0)).

We wish now to find u0 such that u0(0) = 1. Setting v0 = u0 − 1 yields

∇̃(x)v0(x) · (∇̃(x)b0)(x, x, yc(x)) = v0(x)
[
(∆̃(x)b0)(x, x, yc(x)) − (∆̃(x)b0)(0, 0, 0)

]
.

We then solve for v0 using Proposition 3.5 with f ′ = b0, which indeed yields v0(0) = 0.
Let us now find the remaining terms of the sequences (uk)k≥0 and (λk)k≥0 by induction. For k ≥ 1, the

term of order k + 1 in (3) is given again by the stationary phase lemma (2): at this order, the equation is

λku0(x) + λ0uk(x) − (∆̃(x)b0)(x, x, yc(x))uk(x) − (∇̃(x)b0)(x, x, yc(x)) · ∇̃(x)uk(x)

= −
k−1∑

j=1

λjuk−j(x) +
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y,w))

∣∣∣∣∣
(y,w)=(x,yc(x))

. (5)

In this equation, we have put to the left-hand side all terms involving λk or uk, and all terms involving λl and
ul with l < k to the right-hand side. We can apply Proposition 3.5 to solve for uk, λk once (ul, λl)0≤l≤k−1

are known.
Observe that (5), at order k + 1, takes the form

(∇̃(x)b0)(x, x, yc(x)) · ∇̃uk(x) = gk(x) + h(x)uk(x),

with h(x) = ∆̃(x)b0(x, x, yc(x)) − λ0 and

gk(x) = −
k−1∑

l=1

λluk−l(x) − λku0 +
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y,w))

∣∣∣∣∣
(y,w)=(x,yc(x))

.

By construction of λ0, one has h(0) = 0; moreover,

gk(0) =
k+1∑

n=2

k+1−n∑

l=0

∆̃n(0)

n!
(ul(y)bk+1−n−l(0, y, w))

∣∣∣∣∣
(y,w)=(0,0)

− λk.

Thus, one can solve for λk by setting gk(0) = 0, then solve for uk using Proposition 3.5 (indeed, gk is a
holomorphic function, so that it belongs to some analytic space H(m, r, V )). This concludes the proof.
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Proposition 4.2. Let (uk)k≥0 and (λk)k≥0 be the sequences constructed in the previous proposition, corre-
sponding to an O(N−∞) eigenfunction of TN (f). Then there exist C > 0, R > 0, r > 0, m ∈ R and an open
set V ⊂⊂ U containing 0 such that, for all k ≥ 0, j ≥ 0, one has

‖uk‖Cj(X) ≤ C
rjRk(j + k)!

(j + k + 1)m

|λk| ≤ C
Rk(k + 1)!

(k + 2)m
.

Before the proof, let us recall that we fixed the following convention for the Cj norm in Definition 2.1
(in the case of an open set of Cd):

‖f‖Cj(V ) = sup
x∈V

∑

|µ|=j

|∂µf(x)|.

In particular, this corresponds to the control in Proposition 3.5 (which we performed only at zero).

Proof. Let us prove that λk and uk are controlled in an analytic way as k grows. The proof consists in three
steps. In the first step, we show that in equation (5) (that is, in the definition of gk), no derivatives of ul of
order larger than n appear. The second step is an induction: we suppose some control on all derivatives of
ul at zero, for 0 ≤ l ≤ k− 1, and we apply the Lemma 4.6 of [3] to deduce that the derivatives of gk at zero
are well-behaved. We then apply Proposition 3.5 to obtain a control on the derivatives of uk at zero. In the
last step, we deduce, from a control of the derivatives of uk at zero, a control of the same nature on a small
open neighbourhood.

First step.

Let g be a holomorphic function near 0 in M . Then TN (g) is, locally, a multiplication operator, so that

e−NϕTN (g)(ψN
0 e

Nϕu) = ψN
0 gu+O(e−c′N ).

In this particular case, no derivative of u of order ≥ 1 appear in (2), hence in (5).
We then decompose any real-analytic function g as

g(y, y) = g(y, yc(x)) + (g(y, y) − g(y, yc(x))) .

In the right-hand side, the second term vanishes when y = yc(x), so that, with

Φ : (x, y,w) 7→ Φ1(x, y, 0) + ϕ(y) − ϕ(x),

there exists a smooth vector-valued function g1 such that

g(y, y) = g(y, yc(x)) + ∂yΦ(x, y, y) · g1(x, y, y).

Now SN acts as the identity on holomorphic functions and yc is a holomorphic function of x so that, by
integration by parts:

∫
e−NΦ(x,y,y)a(N)(x, y)g(y, y)u(y)dy

= g(x, yc(x))u0(x) +

∫
e−NΦ(x,y,y)a(N)(x, y)∂yΦ(x, x, y) · g1(x, y, y)u(y)dy +O(e−c′N )

= g(x, yc(x))u0(x) +N−1
∫
e−NΦ(x,y,y)a(N)(x, y)∂y [g1(x, y, y)u(y)] dy +O(e−c′N ).
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By induction, the terms of order N−k in the expansion (2) only contain derivatives of u of order smaller
than k.

Second step.

Let us prove by induction that the sequences (uk)k≥0 and (λk)k≥0 are analytic symbols. We will make use
of the precise controls obtained in Proposition 3.5. Since (bk)k≥0 is an analytic symbol and u0 is holomorphic,
by Proposition 2.2 there exists a small open neighbourhood V of zero and r0, R0,m0, Cb, C0 > 0 such that,
after the Morse change of variables,

‖bk‖Cj(V ) ≤ Cb

rj
0R

k
0(j + k)!

(j + k + 1)m0

‖u0‖Cj(V ) ≤ C0
rj

0j!

(j + 1)m0
.

In particular, for any m ≥ m0, for any r ≥ 2m+1−m0r0 and R ≥ 2m+1−m0R0, one has, after the Morse
change of variables,

‖bkJf‖Cj(V ) ≤ Cb

(r/3)j(R/3)k(j + k)!

(j + k + 1)m

‖u0‖Cj(V ) ≤ C0
rjj!

(j + 1)m
.

In equation (5), let us isolate the terms involving u0. There holds

λku0(x) + λ0uk(x) − ∆̃(x)b0(x, x, y)uk(x) − ∇̃(x)b0(x, x, yc(x)) · ∇̃(x)uk(x)

=
k+1∑

n=2

∆̃n(x)

n!
(u0(y)bk+1−n(x, y, y)) (x, yc(x))

−
k−1∑

j=1

λjuk−j(x) +
k+1∑

n=2

k+1−n∑

l=1

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y)) (x, yc(x)).

Let m, r,R,Cu, Cλ be large enough (they will be fixed in the course of the induction), and suppose that, for
all 0 ≤ l ≤ k − 1 and all j ≥ 0, one has

|λl| ≤ Cλ

Rl(l + 1)!

(l + 2)m

‖∇jul(0)‖ℓ1 ≤ Cu

rjRl(j + l)!

(j + l + 1)m
.

To begin with, we estimate how the iterated modified Laplace operator ∆̃n(x) acts on uℓ using the fact that
it differentiates it at most n times.

After a change of variables κx : (y,w) 7→ v(x, y, y) for which the phase is the holomorphic extension of
the standard quadratic form −|v|2, one has simply

∆̃(x) = ∆v =
2d∑

i=1

∂2

∂v2
i

.
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Hence,

∆n
v [ul(y(v))bk+1−n−l(x, y(v), y(v))]v=0

=
∑

|µ|=n

∑

ν≤2µ

n!(2µ)!

µ!ν!(2µ − ν)!
∂ν

vul(x, y(x, v))v=0∂
2µ−ν
v bk+1−n−l(x, y(x, v), y(x, v))v=0.

Since ∆n
v differentiates at most n times on ul, in the expression above, the differential operator

∂ν
vul(x, y(x, v))v=0

can be replaced with its truncation into a differential operator of degree less or equal to n, which we denote
by (∂ν

κ)[≤n]ul(x) as in [3], Lemma 4.6 and Proposition 4.7. In particular, for every ρ ∈ Nd,

∂ρ
x∆n

v [ul(y(v))bk+1−n−l(x, y(v), y(v))]v=0 =

∑

|µ|=n

∑

ν≤2µ

∑

ρ1≤ρ

n!(2µ)!ρ!

µ!ν!(2µ − ν)!ρ1!(ρ− ρ1)!
∂ρ1

x (∂ν
κ)[≤n]ul(x)∂ρ−ρ1

x ∂2µ−ν
v bk+1−n−l(x, y(x, v), y(x, v))v=0.

Moreover, if |µ| = n then
n!

µ!
≤ (2d)n,

and if ν ≤ 2µ then, by Lemma 5.2 in [3],

(2µ)!ρ!

ν!(2µ− ν)!ρ1!(ρ− ρ1)!
=

(
2µ

ν

)(
ρ

ρ1

)
≤

(
2n

|ν|

)(
|ρ|

|ρ1|

)
.

Hence,

‖∇j
x∆n

v [ul(y(v))bk+1−n−l(x, y(v), y(v))]v=x=0‖ℓ1

≤ (2d)n
2n∑

i1=0

j∑

j1=0

(
2n

i1

)(
j

j1

)
‖∇j1

x (∇i1

κ )[≤n]ul‖ℓ1‖bk+1−n−l(x, y(v), y(v))‖Cj−j1+2n−i1 (V ).

By the induction hypothesis, one has

‖∇j
vul(0)‖ℓ1 ≤ Cu

rjRk(j + l)!

(j + l + 1)m
,

then, by Lemma 4.6 in [3],

‖∇j1

x (∇i1

κ )[≤n]ul(y(v))x=v=0‖ℓ1

≤ id+1
1 jd+1

1 Cu

rj1+i1Rl

(i1 + j1 + l + 1)m
(C ′′r0)i1 ×

{
max((n+ j1 + l)!(i1 − n)! , (j1 + l)!i1!) if i1 ≥ n

(i1 + j1 + l)! otherwise.
(6)

In the case l = 0, the constant Cu can be replaced with the smaller constant C0.
The control (6) allows us to conclude the induction. We first solve for λk using equation (5) at x = 0:

λk =
k+1∑

n=2

k+1−n∑

l=0

∆̃n

n!
(ul(y)bk+1−n−l(x, y, y))(0, 0).
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Then, by the induction hypothesis and (6),

|λk| ≤ CuCb

k+1∑

n=2

Rk(k + 1)!

(k + 2)m
(2d)nR

(
C ′′r2

R

)n

×

2n∑

i1=0

k+1−n∑

l=0

(2n)!A(i1, 0, l, n)(k + 1 − n− l + 2n− i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!

(k + 2)m

(i1 + l + 1)m(k + 2 + n− l − i1)m
,

with

A(i1, j1, l, n) =

{
max((n+ j1 + l)!(i1 − n)! , (j1 + l)!i1!) if i1 ≥ n

(i1 + j1 + l)! otherwise.

Let us prove that
(2n)!A(i1, 0, l, n)(k + 1 − n− l + 2n − i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!
≤ 2n.

If i1 ≤ n, since

(k + 1 − n− l + 2n− i1)! ≤ (2n− i1)!(k + 1 − n− l)!2k+1−n−l−2n−i1 ,

one has
(2n)!(i1 + l)!(k + 1 − n− l + 2n− i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!
≤

(2n)!(i1 + l)!(k + 1 − n− l)!

n!i1!(k + 1)!
.

The right-hand side is increasing with respect to i1 as it can be written C(i1 + l)(i1 + l − 1) . . . (i1 + 1), so
that

(2n)!(i1 + l)!(k + 1 − n− l + 2n− i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!
≤

(2n)!

n!n!

(n+ l)!(k + 1 − n− l)!

(k + 1)!
≤ 2n

(
k + 1

n+ l

)−1

≤ 2n.

If i1 ≥ n, in one case, since
(k + 1 − n− l + 2n − i1)!

(2n − i1)!
≤

(k + 1 − l)!

n!
,

one has
(2n)!i1!l!(k + 1 − n− l + 2n − i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!
≤

(2n)!l!(k + 1 − l)!

n!n!(k + 1)!
≤ 2n

(
k + 1

l

)−1

≤ 2n.

In the other case,

(2n)!(n + l)!(i1 − n)!(k + 1 − n− l + 2n− i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!
≤

(2n)!(n + l)!(i1 − n)!(k + 1 − n− l)!

i1!n!(k + 1)!
.

The right-hand term is maximal at i1 = n, so that

(2n)!(n + l)!(i1 − n)!(k + 1 − n− l + 2n− i1)!

3k+1−n−l+2n−i1i1!(2n − i1)!n!(k + 1)!
≤

(2n)!(n + l)!(k + 1 − n− l)!

n!n!(k + 1)!
≤ 2n.

In particular,

|λk| ≤ CuCb

k+1∑

n=2

Rk(k + 1)!

(k + 2)m
(2d)nR

(
2C ′′r2

R

)n 2n∑

i1=0

k+1−n∑

l=0

(k + 2)m

(i1 + l + 1)m(k + 2 + n− l − i1)m
,
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Since (k + 2)m ≤ (k + 2 + n)m, one has

|λk| ≤ CuCb

k+1∑

n=2

Rk(k + 1)!

(k + 2)m
(2d)nR

(
2C ′′r2

R

)n 2n∑

i1=0

k+1−n∑

l=0

(k + n+ 2)m

(i1 + l + 1)m(k + 2 + n− l − i1)m
,

Then, by Lemma 2.12 in [3], there holds

|λk| ≤ CuCb

Rk(k + 1)!

(k + 2)m
R

k+1∑

n=2

(
κr2

R

)n

.

For R large enough (once r,m,Cu, Cλ are fixed), this is smaller than Cλ

Rk(k + 1)!

(k + 2)m
.

We now pass to the control on uk. We recall that uk solves an equation of the form

X · uk = huk + gk,

with X and h independent on k and

gk : x 7→ −
k−1∑

l=1

λluk−l(x) − λku0(x) +
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y))

∣∣∣∣∣
(y,y)=(x,yc(x))

.

Let us control the derivatives of gk at zero, in order to apply Proposition 3.5. One has first

‖λk∇ju0(0)‖ℓ1 ≤ CλC0
rjRk(j + k + 1)!

(j + k + 2)m
.

Once Cλ is fixed, this is smaller than ǫCu for Cu large enough.
Moreover,

∥∥∥∥∥

k−1∑

l=1

λl∇
juk−l(0)

∥∥∥∥∥
ℓ1

≤ CλCu

rjRk(j + k + 1)!

(j + k + 2)m

k−1∑

l=1

l!(j + k − l + 1)!

(j + k + 1)!︸ ︷︷ ︸
=(j+k+1

l )
−1

≤1

(k + j + 2)m

(l + 2)m(k − l + j + 1)m
.

Hence, by Lemma 2.12 in [3],

∥∥∥∥∥

k−1∑

l=1

λl∇
juk−l(0)

∥∥∥∥∥
ℓ1

≤ CCλCu
3m

4m

rjRk(j + k + 1)!

(j + k + 2)m
.

Once Cλ and Cu are fixed, the constant CCλCu
3m

4m is smaller than ǫCu for m large enough.
It remains to estimate

∥∥∥∥∥∥
∇j


x 7→

k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y))

∣∣∣∣∣
(y,y)=(x,yc(x))




x=0

∥∥∥∥∥∥
ℓ1

.
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By (6), one has

∥∥∥∥∥∥
∇j



x 7→
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y))

∣∣∣∣∣
(y,y)=(x,yc(x))





x=0

∥∥∥∥∥∥
ℓ1

≤ CuCb

rjRk(j + k + 1)!

(j + k + 2)m

k+1∑

n=2

R

(
κr2

R

)n k+1−n∑

l=0

2n∑

i1=0

j∑

j1=0

(2n)!j!A(i1, j1, l, n)(k + 1 − n− l + 2n− i1 + j − j1)!

3k+1−n−l+2n−i1+j−j1i1!(2n − i1)!j1!(j − j1)!n!(k + j + 1)!

×
(k + j + 2)m

(i1 + l + j1 + 1)m(k + 2 + n− l − i1 + j − j1)m
.

Let us prove, similarly to the control on λk, that

(2n)!j!A(i1, j1, l, n)(k + 1 − n− l + 2n− i1 + j − j1)!

3k+1−n−l+2n−i1+j−j1i1!(2n − i1)!j1!(j − j1)!n!(k + j + 1)!
≤ 2n.

Again,
(k + 1 − n− l + 2n− i1 + j − j1)!

(2n− i1)!(j − j1)!(k + 1 − n− l)!
≤ 3k+1−n−l+2n−i1+j−j1,

so that

(2n)!j!A(i1, j1, l, n)(k + 1 − n− l + 2n− i1 + j − j1)!

3k+1−n−l+2n−i1+j−j1i1!(2n − i1)!j1!(j − j1)!n!(k + j + 1)!
≤

(2n)!j!A(i1, j1, l, n)(k + 1 − n− l)!

i1!j1!n!(k + j + 1)!
.

If i1 ≤ n, then A(i1, j1, l, n) = (i1 + j1 + l)! so that

(2n)!j!(i1 + j1 + l)!(k + 1 − n− l)!

i1!j1!n!(k + j + 1)!

is increasing with respect to i1 and j1. Thus, it is maximal at i1 = n and j1 = j, so that

(2n)!j!A(i1, j1, l, n)(k + 1 − n− l + 2n− i1 + j − j1)!

3k+1−n−l+2n−i1+j−j1i1!(2n − i1)!j1!(j − j1)!n!(k + j + 1)!
≤

(2n)!(n + j + l)!(k + 1 − n− l)!

n!n!(k + j + 1)!

=

(
2n

n

)(
k + j + 1

n+ j + l

)−1

≤ 2n.

If i1 ≥ n, then A(i1, j1, l, n) = max((n+ j1 + l)!(i1 − n)!, (j1 + l)!i1!). On one hand,

(2n)!j!(n + j1 + l)!(i1 − n)!(k + 1 − n− l)!

n!i1!j1!(k + j + 1)!

is increasing with respect to j1 and decreasing with respect to i1, and at i1 = n, j1 = j, it is equal to

(2n)!(n + j + l)!(k + 1 − n− l)!

n!n!(k + j + 1)!
=

(
2n

n

)(
k + j + 1

n+ j + l

)−1

≤ 2n.

On the other hand,

(2n)!j!(j1 + l)!i1!(k + 1 − n− l)!

n!i1!j1!(k + j + 1)!
=

(2n)!j!(j1 + l)!(k + 1 − n− l)!

n!j1!(k + j + 1)!
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is increasing with respect to j1. At j1 = j, it is equal to

(2n)!(j + l)!(k + 1 − n− l)!

n!(k + j + 1)!
≤

(2n)!(j + l)!(k + 1 − l)!

n!n!(k + j + 1)
=

(
2n

n

)(
k + j + 1

j + l

)−1

≤ 2n.

Thus,

∥∥∥∥∥∥
∇j



x 7→
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y))

∣∣∣∣∣
(y,y)=(x,yc(x))





x=0

∥∥∥∥∥∥
ℓ1

≤ CuCb

rjRk(j + k + 1)!

(j + k + 2)m

k+1∑

n=2

R

(
2κr2

R

)n k+1−n∑

l=0

2n∑

i1=0

j∑

j1=0

(k + j + 2)m

(i1 + l + j1 + 1)m(k + 2 + n− l − i1 + j − j1)m

≤ CuCb
rjRk(j + k + 1)!

(j + k + 2)m

k+1∑

n=2

R

(
2κr2

R

)n k+1−n∑

l=0

2n∑

i1=0

j∑

j1=0

(k + j + n+ 2)m

(i1 + l + j1 + 1)m(k + 2 + n− l − i1 + j − j1)m
.

By Lemma 2.12 in [3], there exists C > 0 such that, for m large enough, one has

∥∥∥∥∥∥
∇j



x 7→
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y))

∣∣∣∣∣
(y,y)=(x,yc(x))





x=0

∥∥∥∥∥∥
ℓ1

≤ CCuCb

rjRk(j + k + 1)!

(j + k + 2)m

k+1∑

n=2

R

(
2κr2

R

)n

.

Thus, for R large enough,

∥∥∥∥∥∥
∇j



x 7→
k+1∑

n=2

k+1−n∑

l=0

∆̃n(x)

n!
(ul(y)bk+1−n−l(x, y, y))

∣∣∣∣∣
(y,y)=(x,yc(x))





x=0

∥∥∥∥∥∥
ℓ1

≤ ǫCu
rjRk(j + k + 1)!

(j + k + 2)m
.

To conclude, for every ǫ > 0, there exists Cu, Cλ,m, r,R, such that one can proceed in the induction
with

‖∇jgk(0)‖ℓ1 ≤ ǫCu

rjRk(j + k + 1)!

(j + k + 2)m
.

Then, one can apply Lemma 3.5 since uk is given by the transport equation

∇̃(x)b0(x, x, yc(x)) · ∇̃uk(x) = gk(x) + h(x)uk(x),

where again h : x 7→ ∆̃(x)b0(x, x, yc(x)) − λ0. Hence, there exists C(b0, ϕ) such that

‖∇juk(0)‖ℓ1 ≤ ǫC(b0, ϕ)Cu

rjRk(j + k)!

(j + k + 1)m
.

If ǫ is chosen such that ǫ < C(b0, ϕ)−1, one can conclude the induction.
Third step.

We successfully constructed and controlled the sequences (λk)k≥0 and (uk)k≥0 which satisfy (3) at every
order. Let us now prove that uk is controlled on a small neighbourhood of 0.
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In the second step, we controlled the functions uk as follows, at zero:

‖∇juk(0)‖ℓ1 ≤ Cu

(2r)j(2R)kj!k!

(j + k + 1)m
.

Since uk is real-analytic, in a small neighbourhood of zero, it is given by the power series

u(y) =
∑

ν

∂νu(0)

ν!
yν .

Since
∂νu(0)

ν!
≤ Cu(2R)kk!

|ν|!

ν!
(2r)|ν| ≤ Cu(2R)kk!(2rd)|ν|,

the power series above converges for y ∈ P (0, (2rd)−1), the polydisk centred at zero with radius (2rd)−1.
Moreover, for every a < 1, there exists C(a) such that

sup
P (0,a(2rd)−1)

|uk| ≤ C(a)Cu(2R)kk!.

In particular, by Proposition 2.14 in [3], for every a < 1
2 , there exists C(a) such that

‖a‖
H

(
−d, 2d2r

a
,P (0, a

2rd
)

) ≤ C(a)Cu(2R)kk!.

In other terms, letting V = P (0, a(2rd)−1), for every j ≥ 0, one has

‖a‖Cj(V ) ≤ C(a)Cu

(2R)k(2d2

a
r)jj!k!

(j + 1)−d
.

In particular, u is an analytic symbol on V .

We are now in position to perform an analytic summation.

Proposition 4.3. For c > 0 and c′ > 0 small, one has
∥∥∥∥∥∥



TN (f) −
cN∑

j=0

N−j−1λj




(
ψN

0 e
Nϕ

cN∑

k=0

N−kuk

)∥∥∥∥∥∥
L2

= O(e−c′N ).

Proof. Let c > 0. By construction, in a small neighbourhood V of zero (outside of which the result is
trivial), there holds



TN (f) −
cN∑

j=0

N−j−1λj




(
ψN

0 e
Nϕ

cN∑

k=0

N−kuk

)
(x)

= −
cN∑

j=0

cN∑

k=cN−j

N−1−j−kψN
0 (x)eNϕ(x)λjuk(x) +

∑

j+k≤cN

N−1−j−kψN
0 (x)eNϕ(x)R(j, k,N)(x),

where R(j, k,N) is the remainder at order cN − k − j in the stationary phase Lemma applied to

N2dλje
−Nϕ(x)

∫

y∈M
e−NΦ1(x,y,y,0)+Nϕ(y)(u ∗ b)k(x, y, y)dy.
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Since λ ∗ u is an analytic symbol by Proposition 2.2, we have, for c > 0 and c′ > 0 small enough,

∥∥∥∥∥∥

cN∑

j=0

cN∑

k=CN−j

N−1−j−kλjuk

∥∥∥∥∥∥
L∞(V )

≤ Ce−c′N ,

so that ∥∥∥∥∥∥




cN∑

j=0

cN∑

k=cN−j

N−1−j−kλjuk(x)



ψN
0 (x)eNϕ(x)

∥∥∥∥∥∥
L2(V )

≤ Ce−c′N .

The remainder R(j, k,N) can be estimated using Proposition 3.13 in [3]. Indeed, let r > 0 and R > 0 be
such that u ∈ Sr,R

4 (V ) and b ∈ Sr,R
4 (V ). By Proposition 2.2, u ∗ b is an analytic symbol of the same class,

so that
‖(u ∗ b)k‖Cj(V ) ≤ CCuCbR

krj(j + k)! ≤ (CCuCb(2R)kk!)(2r)jj!.

In particular, (u ∗ b)k admits a holomorphic extension to a k-independent complex neighbourhood Ṽ of V ,
with

sup
Ṽ

|(u ∗ b)k| ≤ CCuCb(2R)kk!.

In particular, by Proposition 3.13 in [3], one has, for some c1 > 0, that the remainder at order c1N in the
stationary phase Lemma applied to

N2dλje
−Nϕ(x)

∫

y∈M
e−NΦ1(x,y,y,0)+Nϕ(y)(u ∗ b)k(x, y, y)dy

is smaller than CCuCb(2R)k(2R)jj!k!e−c′N . In particular,

(
1

n!
∆̃(x)n((u ∗ b)kJ)(yc)

)

n

is an analytic symbol in a fixed class, with norm smaller than C(2R)kk!.
If j + k < 1

2cN , we will compare R(j, k,N) to the remainder at order c1N . If j + k ≥ 1
2cN , we will

compare R(j, k,N) to the remainder at order 0.
Without loss of generality, c < c1. Then, for all j, k such that j + k < 1

2cN , since the expansion in the
stationary phase

c1N∑

n=cN−j−k

(n!Nd+n)−1∆̃(x)n((u ∗ b)kJ)(yc)

corresponds to an analytic symbol, then by Lemma 2.2 this sum is O(e−c′N ); thus if j + k < c/2 one has

R(j, k,N) ≤ Ce−c′N .

If 1
2cN < j + k < cN , then, on one hand

N−1−j−k

∣∣∣∣N
2dλje

−Nϕ(x)
∫

y∈M
e−NΦ1(x,y,y,0)+Nϕ(y)(u ∗ b)k(x, y, y)dy

∣∣∣∣ ≤ C

(
2R

N

)j+k

(j + k)!

is smaller than Ce−c′N if c is small enough; on the other hand, again

(
1

n!
∆̃(x)n((u ∗ b)kJ)(yc)

)

n
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is an analytic symbol in a fixed class (with norm smaller than C(2R)kk!), so that, by Proposition 2.2, if c
is small enough,

Nd−1−j−kλj

cN−j−k∑

n=0

1

n!Nn
∆̃(x)n((u ∗ b)kJ)(yc) < C

(
2R

N

)j+k

(j + k)! ≤ Ce−c′N .

This concludes the proof.

5 Spectral estimates at the bottom of a well

5.1 End of the proof of Theorem A

We now prove part 2 of Theorem A. Suppose that min(f) = 0 and that the minimal set of f consists in a
finite-number of non-degenerate minimal points P1, . . . , Pj . At each of these points Pi with 1 ≤ i ≤ j, one
can construct (see Proposition 4.3) a sequence vi(N) of O(e−c′N )-eigenfunctions of TN (f). From Proposition
4.1, if µ denotes the Melin value (see Section 3.3 of [2]), then, for every 1 ≤ i ≤ j one has

TN (f)vi(N) = N−1µ(Pi)vi(N) +O(N−2).

Moreover, from Theorem B in [2], for ǫ > 0 small, the number of eigenvalues of TN (f) in the interval
[0, min

1≤i≤j
µ(Pi) +N−1ǫ] is exactly the number of i’s such that Pi minimises µ.

Hence, any normalised sequence of ground states of TN (f) is O(Ne−c′N ) = O(e−(c′−ǫ)N )-close to a linear
combination of those vi(N) whose associated well Pi minimises µ (as the spectral gap is of order N−1 and
the the vi(N)’s are O(e−c′N )-eigenvectors). This concludes the proof.

5.2 Tunnelling

The main physical application of Theorem A is the study of the spectral gap for Toeplitz operators which
enjoy a local symmetry. Let us formulate a simple version of this result.

Proposition 5.1. Suppose that min(f) = 0 and that the minimal set of f consists of two non-degenerate
critical points P0 and P1. Suppose further that these wells are symmetrical: there exist neighbourhoods U0

of P0 and U1 of P1, and a ω-preserving biholomorphism σ : U0 7→ U1, such that σ ◦ f = f .
Then there exists c > 0 and C > 0 such that, for every N ≥ 1, the gap between the two first eigenvalues

of TN (f) is smaller than Ce−cN .

Proof. Near P0, one can build a sequence of O(e−c′N )-eigenvectors as in Proposition 4.3, with c > 0; near P1

one can build another sequence of O(e−c′N )-eigenvectors. Since M and f are equivalent near P0 and near
P1, the associated sequences of eigenvalues are identical up to O(e−c′N ), and the approximate eigenvectors
are orthogonal with each other since they have disjoint support, so that there are at least two eigenvalues
in an exponentially small window near the approximate eigenvalue. As above (see Theorem B in [2]), there
are no more than two eigenvalues in the window [minSp(TN (f)),minSp(TN (f)) + ǫN−1], for ǫ small; hence
the claim.

Unfortunately, the actual spectral gap between two symmetrical wells cannot be recovered from Propo-
sition 4.2 or the solution ϕ of the Hamilton-Jacobi equation.

Proposition 5.2. Suppose that min(f) = 0 and that the minimal set of f consists of two symmetrical wells.
Let λ0 and λ1 denote the two first eigenvalues of TN (f) (with multiplicity), and let

σ = lim inf
N→+∞

(
−N−1 log(λ1 − λ0)

)
.
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Then σ is unrelated to the best possible constant c′ in Proposition 4.2, and unrelated to the solution ϕ of the
Hamilton-Jacobi equation.

Proof. We first let χ : [−1, 1] 7→ R be an even smooth function; we suppose that χ reaches its minimum only
at −1 and 1, with χ(−1) = 0 and χ′(−1) > 0. We consider the associated function f on S2 which is the
composition of χ with the height function. Then f is invariant under a rotation around the vertical axis,
so that TN (f) is diagonal in the natural spin basis (which consists of the eigenfunctions for the Toeplitz
operator associated with the height function). Among this basis, the states which minimise the energy are
the coherent states at the North and South poles, respectively; they have the same energy. In this setting the
first eigenvalue is degenerate, and shared between two states which localise at one of the two non-degenerate
wells.

Let us give a formal solution to the Hamilton-Jacobi equation. In stereographic coordinates near one
of the poles, the symbol reads g(|r|2) = g(rr) for some g ∈ C∞(R,R). The expression g(rs) does not make
sense if rs is not a real number, but taking s = 0 yields g(r × 0) = 0. A formal solution of g̃(x, ∂ϕ) = 0 is
then given by ϕ = 0. This corresponds indeed to the exponential decay of the exact ground states: ϕ = 0
means that the ground state decays as fast as the coherent state (they actually coincide).

In the system above, the formal solution of the Hamilton-Jacobi equation yields the correct decay rate.
However, from the point of view of Proposition 4.2, one has c′ = 0: if χ is not real-analytic near 1 we cannot
hope to perform an analytic summation for the sequence λi as in Proposition 4.3.

We consider now a smooth perturbation of the function χ above: let χ1 : R 7→ [0, 1] be a smooth,
non-zero function supported on [0, 1/2]. If we replace χ with χ+χ1 in the previous discussion, we still get a
symbol invariant under vertical rotation, which is diagonal in the spin basis. The Hamilton-Jacobi equation
has the same formal solution. However, the two candidates for the ground state now have different energies,
with an exponentially small but non-zero gap e−cN . Here, c can be made arbitrarily small by moving the
support of χ1 close to 1. The spectral gap is then not determined by the solution ϕ of the Hamilton-Jacobi
equation.
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