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Abstract   29 

Excessive consumption of industrialized food and beverages is a major etiologic factor in the 30 

epidemics of obesity and associated metabolic diseases because these products are rich in fat 31 

and sugar. In addition, they contain food contact materials and environmental pollutants 32 

identified as metabolism disrupting chemicals. To evaluate the metabolic impact of these 33 

dietary threats (individually or combined), we used a male mouse model of chronic exposure 34 

to a mixture of low-dose archetypal food-contaminating chemicals that was added in standard 35 

or high-fat, high-sucrose (HFHS) diet. Specifically, the mixture contained bisphenol A, 36 

diethylhexylphthalate, 2,3,7,8-tetrachlorodibenzo-p-dioxine and polychlorinated biphenyl 37 

153. Exposure lasted from 5 to 20 weeks of age. Metabolic exploration was conducted setting 38 

the basis of candidate gene expression mRNA analyses in liver, jejunum and adipose tissue 39 

depots from 20 week-old mice. Strong metabolic deleterious effects of the HFHS diet were 40 

demonstrated in line with obesity-associated metabolic features and insulin resistance. 41 

Pollutant exposure resulted in significant changes on plasma triglyceride levels and on the 42 

expression levels of genes mainly encoding xenobiotic processing in jejunum; estrogen 43 

receptors, regulators of lipoprotein lipase and inflammatory markers in jejunum and adipose 44 

tissues as well as adipogenesis markers. Importantly, the impact of pollutants was principally 45 

evidenced under standard diet. In addition, depending on nutritional conditions and on the 46 

metabolic tissue considered, the impact of pollutants could mimic or oppose the HFHS 47 

effects. Collectively, the present study extends the cocktail effect concept of a low-dosed 48 

pollutant mixture and originally points to tissue-specificity responsiveness especially in 49 

jejunum and adipose tissues.  50 

 51 

 52 

 53 



 
 

3 

Highlights:  54 

Low-dosed pollutants trigger metabolic disturbances in postnatally exposed male mice  55 

The mixture of pollutants induced metabolic alterations in a tissue-specific manner 56 

Jejunum is highly sensitive with regards to xenobiotic receptors and lipolysis 57 

Pollutants have a greatest metabolic impact in standard nutritional conditions 58 

Differences in the response to the pollutant mixture were seen between the 2 fat pads 59 

 60 
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1. Introduction 64 

According to WHO (World Health Organization), obesity is an ‘‘abnormal or 65 

excessive fat accumulation that presents a risk to health’’. This accumulation of fat is 66 

deleterious because it could lead to a large spectrum of metabolic diseases (type 2 diabetes, 67 

cardiovascular diseases…) which are among the first causes of mortality with 10 million 68 

deaths in 2016. For example, more than 1.9 billion of adults in 2016, 18 years and older, were 69 

overweight, of those over 650 million were obese (WHO, 2018a, b). Diabetes also exploded 70 

these last decades with an average of 400 million worldwide in 2014 (WHO, 2017). In 71 

addition, metabolic disorders constitute a heavy cost for society. For example, worldwide cost 72 

of diabetes caring exceeded $673 billion in 2015 (WHO, 2016).  73 

Metabolic disorders are multifactorial diseases. Apart from genetic susceptibility and 74 

low physical activity, environmental concern relates to excessive consumption of 75 

industrialized food and beverages for their content in fat and sugar but also food contact 76 

materials and environmental pollutants. Food contact materials may include phthalates and 77 

bisphenols which can leach from packaging to cause contamination (Startin et al., 1987; 78 

Vandenberg et al., 2007; Koch and Calafat, 2009; Muncke, 2009). Environmental pollutants 79 

include persistent pollutants such as dioxins or polychlorobiphenyls (PCBs) which are 80 

lipophilic and bioaccumulate through the food chain being virtually present in all animal 81 

products (Schafer and Kegley, 2002).  82 

Importantly, risk assessment evaluation bodies e.g., the European Food Safety 83 

Authority (EFSA) or the U.S. Food and Drug administration (FDA) focused primarily on 84 

single chemicals with the definition of tolerable daily intake (TDI) doses based on the no-85 

observed-adverse effect levels (NoAELs) or the lowest-adverse-effect levels in animal studies 86 

(Dorne, 2010). Consistently, the mean exposures for the general population were found to be 87 

below the current levels determined to be safe for chemicals (Schafer and Kegley, 2002; Koch 88 
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and Calafat, 2009). However, a recent concern arose with chemicals possibly acting at doses 89 

lower than the NoAEL doses identified in animal studies and for some chemicals in the range 90 

of the TDI doses (Vandenberg et al., 2007; Vandenberg et al., 2012), and interfering with 91 

hormonal action, the so-called endocrine disruptors (Zoeller et al., 2014).  92 

There are more than 900 molecules present in our environment that could be 93 

considered as endocrine disruptors (EDs) (WHO/UNEP, 2013) and to which we are non-94 

voluntary but chronically exposed.  Individually, their concentration may be too low to exert 95 

an effect but through acting on identical biological outcomes, the resulting effects of mixtures 96 

may grow as significant, an event now identified as the cocktail effect (Kortenkamp, 2014; 97 

Svingen and Vinggaard, 2016; Le Magueresse-Battistoni et al., 2017; Le Magueresse-98 

Battistoni et al., 2018a).  It is therefore of striking importance to further implement the 99 

metabolic impact of mixtures of pollutants at dosage lower than their NoAEL determined in 100 

animal studies.  101 

Interestingly, we recently developed a mouse model of exposure to four pollutants 102 

(Naville et al., 2013; Naville et al., 2015; Labaronne et al., 2017; Julien et al., 2018) selected 103 

among archetypal EDs. Specifically, the mixture is made of two persistent pollutants, 2,3,7,8-104 

tetrachlorodibenzo-pdioxine (TCDD) and Polychlorinated Biphenyl 153 (PCB153) and two 105 

non-persistent pollutants, Bisphenol A (BPA) and diethylhexylphthalate (DEHP). These 106 

pollutants were chosen as an attempt to mimic a real-world exposure based on persistence 107 

with two short-lived and two persistent molecules, on their large occurrence in a Western-108 

diet, on the broad range of signaling pathways activated not to mention the many cross-talks 109 

occurring between them (Casals-Casas and Desvergne, 2011; Thayer et al., 2012; Vandenberg 110 

et al., 2012). In addition, they are considered as metabolism disrupting chemicals (Casals-111 

Casas and Desvergne, 2011; Heindel et al., 2017). Notably, BPA whom worldwide 112 

production reached millions of tons yearly and which is mainly used in the manufacture of 113 
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plastics and resins, has been well identified as triggering metabolic disturbances acting among 114 

others through estrogeno-mimetic activities (Alonso-Magdalena et al., 2011; Vandenberg et 115 

al., 2012; Vom Saal et al., 2012; Beausoleil et al., 2018; Le Magueresse-Battistoni et al., 116 

2018b). Phthalates are massively produced to soften plastics. They have been described as 117 

anti-androgenic compounds although not acting through binding the Androgen Receptor (AR) 118 

(Schug et al., 2011). PCB153 and TCDD (also known as the Seveso Dioxin) are persistent 119 

with a very long half-life and they bioaccumulate in the fat (Casals-Casas and Desvergne, 120 

2011). Dioxins act through binding to the Aryl hydrocarbon Receptor (AhR) and PCB153, 121 

which could bind the Pregnane X and Constitutive Androstane Receptors (PXR and CAR, 122 

respectively) but not AhR, may interfere with thyroid but also estrogen signaling (Diamanti-123 

Kandarakis et al., 2009; Casals-Casas and Desvergne, 2011; Pavek, 2016) to mediate their 124 

metabolism disrupting effects (Angrish et al., 2012; Wahlang et al., 2013; Heindel et al., 125 

2017). Noteworthy, diet is the major route of exposure for pollutants including those present 126 

in the mixture used in the present study (Diamanti-Kandarakis et al., 2009; Casals-Casas and 127 

Desvergne, 2011; Thayer et al., 2012; Vandenberg et al., 2012). 128 

With this model, we demonstrated that chronic exposure to such a mixture at dosage 129 

lower than the NoAELs for each chemical of the mixture, could trigger metabolic 130 

disturbances in the progeny of diet-induced obese mice in a sex-dependent way (Le 131 

Magueresse-Battistoni et al., 2018c). Importantly, male mice developed alterations in 132 

cholesterol metabolism whereas females exhibited altered glucose tolerance, probably linked 133 

to reduced estrogen signaling in the liver, all occurring without additional obesogenic effects 134 

(Naville et al., 2013). As a step further, the present study aims to evaluate the metabolic 135 

impact of two challenging stressors, i.e. the high-fat high-sucrose (HFHS) diet and the 136 

mixture of pollutants, independently and combined, focusing on males in a one-generation 137 

study. Consistently, we analyzed the liver and the intestine, specifically the jejunum, because 138 
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these two organs play pivotal roles in detoxification processes and in glucose and lipid 139 

metabolisms. In addition, the jejunum is a predominant organ for dietary fat and sugar 140 

absorption. Adipose tissues were also surveyed as they play a major role in the development 141 

of insulin resistance. 142 

2. Materials and Methods 143 

2.1. Diet and animals 144 

Mouse studies were performed with the approval of the Regional Committee of Ethics for 145 

Animal Experiments. Thirty-two C57Bl/6J male mice were purchased from Envigo (Gannat, 146 

France) at the age of 4 weeks (wks) and were housed two per cage at 21°C with a normal 147 

light-dark cycle and free access to water. Cages and bottles of water were made of 148 

polypropylene to avoid BPA leaching from polycarbonate equipment. After 1 wk-149 

acclimatization, mice were divided into four groups depending on the diet: ST0 (standard diet 150 

from Genestil, Royaucourt, France; without the mixture of pollutants), STp (standard diet 151 

with the mixture of pollutants), HF0 (HFHS diet from Envigo, without the mixture of 152 

pollutants) and HFp (HFHS diet with the mixture of pollutants). Pollutants (TCDD from 153 

LGC-Promochem, Molsheim, France; PCB153, BPA and DEHP from Sigma-Aldrich, Lyon, 154 

France) were each used at doses in the range of their tolerable daily intake (TDI) reference 155 

dose and at least 10 times lower than their NoAEL dose (van Leeuwen et al., 2000; WHO, 156 

2003; European Food Safety Authority Panel on Food Additives, 2005) (Supplementary Table 157 

1). They were diluted in DMSO, solubilized in corn oil and mixed into the diet. All animals 158 

received the same amount of DMSO and corn oil. To make sure mice received the adequate 159 

quantity of pollutants, calculations for doses were made for 1 g of food for 17 g of body 160 

weight/day and extra food devoid of pollutants but containing vehicle was given ad libitum. 161 

Diet composition is detailed elsewhere (Labaronne et al., 2017). Mice were weighed weekly 162 
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and food changed three times a week. Exposure to pollutants lasted 15 wks after which 163 

animals were fasted for 6 h and weighed. Blood was collected and mice euthanized by 164 

cervical dislocation. The organs: liver, jejunum, perigonadal and inguinal subcutaneous 165 

adipose tissues (pgAT and scAT, respectively) were rapidly removed, weighed, frozen in 166 

liquid nitrogen and conserved at -80°C until experiments.  167 

2.2. Metabolic explorations 168 

Metabolic tests were conducted on all animals with a one wk interval. After 12 wks of diet, 169 

mice were fasted for 16 h and received an intragastric bolus of lipids (250µl of Isio4
TM

 oil, 170 

Lesieur). Blood samples were collected from the tail vein before gavage and at 1, 2, 3 and 4 h 171 

after gavage for triglyceride measurement. This test will reflect the intestinal fat clearance. 172 

After 13 wks of diet, mice were fasted 6 h and were orally administered a solution of 10% D-173 

xylose (1mg of D-xylose/g of body weight). Blood samples were collected at 20, 40, 60 and 174 

120 min after gavage for xylose measurement. This exploration of the intestinal uptake of 175 

ingested D-xylose will mirror a post-prandial sugar uptake. After 14 wks of diet, glucose 176 

tolerance test (GTT) was performed on 6 h fasted mice as previously described (Gout et al., 177 

2010).  178 

2.3. Tissue and plasma dosages 179 

Blood glucose concentrations were determined using the Accu-Chek Performa glucometer 180 

(Roche Diabetes Care France, Meylan). Insulin (Mouse ultrasensitive ELISA, Eurobio, 181 

Courtaboeuf, France), triglycerides (Biolabo, Maizy, France), free fatty acid, total cholesterol 182 

and cholesteryl esters, Alanine Aminotransferase and Aspartate aminotransferase activities 183 

(all kits from Sigma-Aldrich), leptin and adiponectin (ELISA kits from Crystal Chem Europe, 184 

Zaandam, Netherlands), were also assayed in plasma. Xylose plasma levels were determined 185 

as described elsewhere (Conarello et al., 2007). Triglycerides and total cholesterol were also 186 
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measured in liver samples after extraction of the lipids using lipid extraction kit chloroform 187 

free (Clinisciences, Nanterre, France).  188 

2.4. Real time PCR analyses 189 

Total RNA was extracted from liver, jejunum and adipose tissue samples. After reverse 190 

transcription using the Prime Script RT Reagent kit (Takara Bio Europe SAS, Saint-Germain-191 

en-Laye, France), cDNAs were analyzed by real time PCR using the SYBR Premix Ex Taq ™ 192 

(Takara) in the presence of specific primers specifically designed to encompass an intron 193 

(Supplementary Table 2) as previously described (Naville et al., 2011). Data were normalized 194 

using housekeeper genes which differ according to the tissues. They were chosen because 195 

consistently expressed in all groups in a particular tissue and they encode TATA-Box Binding 196 

Protein (Tbp) for scAT and pgAT, Beta-Glucuronidase (Gusb), for the liver, and 197 

Hypoxanthine Phosphoribosyltransferase (Hprt) for the jejunum. 198 

2.5. Histological analyses 199 

The two adipose tissue depots were fixed with 4 % formaldehyde solution during 24 h and 200 

then paraffin embedded. Serial sections of the paraffin-embedded blocks (4 µm thick) were 201 

obtained and immunolabeled using the rabbit anti-laminin antibody (1:100, Sigma, L9393) 202 

followed by by alexafluor secondary antibody (Invitrogen, Villebon-sur-Yvette, France; 203 

A11012). Measurement of adipocyte area was performed from the immunofluorescence 204 

acquisition using DP74 camera (Olympus, France). At least 150 adipocytes for each sample 205 

were considered. Image analyses were performed with ImageJ software. 206 

2.6. Statistical analysis 207 

Results are presented as means ± SEM. Groups were compared using one-way ANOVA 208 

followed by Bonferroni multiple comparison post-hoc test. Two-way ANOVA for non-209 
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repeated measures was also used to determine the overall effects of the diet (Standard 210 

ST0/STp vs HFHS HF0/HFp), the mixture (non-exposure ST0/HF0 vs exposure STp/HFp) 211 

and their interaction (diet x mixture). When significant effects without interaction were 212 

obtained, differences were tested using Student's t-test between each pollutant-exposed group 213 

and corresponding non-exposed group. GraphPad Prism 5.0 software was used for all 214 

statistical analysis and differences were considered significant at P - values < 0.05. 215 

3. Results 216 

3. 1. Metabolic characterization of males fed the HFHS versus the ST diet, containing or not 217 

the mixture of pollutants 218 

Feeding 5-wk old male mice a HFHS diet for 15 wks resulted in a time-dependent increase of 219 

body weight with first significant effects observed at 8 wks of age i.e. wk 3 of feeding 220 

(Supplementary Fig. 1A).  At the end of the 15-wk HFHS feeding, strong significant diet-221 

induced obesogenic effects were reported on body weight (+38%) and fat mass (+250% for 222 

pgAT weight and +380% for scAT weight) (Fig. 1A and B). This was associated with 223 

significant increases of hepatic and plasma triglycerides (TG), plasma cholesterol and blood 224 

glucose levels (Fig. 1D, F and Supplementary Fig. 1D). An overall effect of the diet was also 225 

noticed on plasma insulin level (Fig. 1D) resulting in a 4.5-fold significant enhancement of 226 

the HOMA index of insulin resistance (HOMA-IR; Supplementary Fig. 1E).  Moreover, the 227 

ratio of adiponectin to leptin, a marker of insulin resistance (Mirza et al., 2011; Lopez-228 

Jaramillo et al., 2014), was strongly decreased in HFHS-fed mice (Fig.1E and Supplementary 229 

Fig. 1F). These data are consistent with the metabolic tests performed on fasting animals 230 

showing a significant decrease in blood lipid clearance (increased Area Under Curve, AUC, 231 

after oral lipid load) and increased glucose absorption (estimated using the xylose absorption 232 
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test) as well as glucose intolerance in HFHS diet-induced obese mice (Fig. 1C and 233 

Supplementary Fig. 1B and C).   234 

Pollutant exposure did not result in body weight changes regardless of the nutritional context. 235 

Interestingly, slight but significant effects (P < 0.05) of the mixture of pollutants could be 236 

observed in STp-fed mice on several features including an increase of the intestinal fat 237 

clearance after oral lipid load, a significant reduction in plasma levels of TG with a tendency 238 

(P=0.05) to a reduction of plasma FFA levels and a significant increased ratio of adiponectin 239 

to leptin, all seemingly and unexpectedly converging to some alleviation of metabolic 240 

conditions (Fig. 1C, 1E, 1F and Supplementary Fig. 1F). On the opposite, mice exposed to the 241 

mixture of pollutants and fed a HFHS diet exhibited a significant enhancement of the weight 242 

of pgAT as compared to HF0 mice (Fig. 1B), in line with the observed trend (P=0.08) for 243 

enhanced leptin plasma levels (Supplementary Fig. 1F).  244 

 245 

3. 2. Gene expression analysis of proteins involved in lipid metabolism in the liver 246 

As an attempt to better comprehend the metabolic features, we first focused on liver, a central 247 

regulator of lipid metabolism and detoxification. Potential toxicity linked to pollutant 248 

exposure was first excluded through measuring plasma transaminases. Indeed, both AST and 249 

ALT levels were unchanged regardless of treatment (Supplementary Fig. 2). To understand 250 

bases for the alleviation of the lipid profile in pollutant-exposed STp mice compared with ST0 251 

mice (Fig. 1C and 1F), measurement of the expression levels of genes involved in the uptake 252 

of circulating fatty acids, de novo lipogenesis, fatty acid breakdown, lipoprotein metabolism 253 

and lipolysis as well as cholesterol homeostasis was conducted in liver. Specifically, studied 254 

genes included Cd36 encoding cluster of differentiation 36 and Fabp1 encoding fatty acid 255 

binding protein 1 involved in the uptake of FA, the lipid sensor Nr1h3 encoding Liver X 256 
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receptor (LXR)α,  SrebF1 encoding Sterol Regulatory Element-Binding Protein 1 257 

(SREBP1c), a master regulator of de novo lipogenesis, Scd1 and Acaca encoding stearoyl-258 

CoA desaturase and acetyl-CoA carboxylase (ACC1), respectively. Lipid oxidation was 259 

assessed measuring mRNA levels of Nr1c1 (encoding peroxisome proliferator-activated 260 

receptor α, PPARα), its target genes Cpt1a (encoding carnitine palmitoyltransferase 1α) and 261 

Vnn1 (encoding Vanin-1). Expression levels of Apoa5 encoding Apolipoprotein A-V (APOA-262 

V) a lipoprotein lipase (LPL) activator and Apoc3, encoding an inhibitor of LPL (APO-C III) 263 

were as well studied so were several key genes involved in cholesterol metabolism: Cyp7a1, 264 

Hmgcr, Cyp51, Abcg5, Abcg8, Abca1 encoding Cytochrome P450 Family 7 Subfamily A 265 

Member 1, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR), P450 sterol 14a-266 

demethylase and ATP-binding cassette (ABC) transporters, respectively. 267 

On this panel of genes, effects observed in the liver were essentially due to the HFHS diet 268 

(comparison HF0 vs ST0) with significant increases of Cd36, SrebF1, Scd1 (Fig. 2A, C), 269 

Nr1c1, Vnn1 (Fig. 2D) and Cyp7a1 (Fig.2E) expressions. As well, the fat-enriched diet 270 

induced a decrease in the expression of Apoa5 (Fig. 2B), Hmgcr, Cyp51 (Fig. 2E) and Abcg5, 271 

but not of Abcg8, Abca, Nr1h3 and Fabp1 (data not shown). It is interesting to note that some 272 

alterations of gene expression induced by the fat-enriched diet were only observed in the 273 

presence of pollutants: decreased expression of Acaca and increased expression of Apoc3. As 274 

well, pollutants in a standard diet context significantly increased the mRNA expression of 275 

Cyp7a1 (Fig. 2E). However, no effect of the pollutant mixture was observed on the other 276 

investigated genes of the cholesterol field area including Hmgcr, Cyp51 (Fig. 2E), Nr1h3 as 277 

well as Abcg5, Abcg8 and Abca1 (data not shown).  278 

To discriminate between hepatic steatosis and steatohepatitis, a more severe liver disease than 279 

fatty liver characterized by a chronic inflammatory state with high levels of cytokines among 280 

which IL6 and tumor necrosis factor (TNF)α  (Tilg and Moschen, 2008; Chen et al., 2017), 281 
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expression levels of Il6 and Tnfα  were surveyed but no impact was observed regardless of 282 

treatments (Fig. 2F). Nonetheless, Ccl2 encoding the chemokine monocyte chemoattractant 283 

protein 1 (MCP1/CCL2) which levels could be increased from simple steatosis (Greco et al., 284 

2008) were found significantly enhanced by the HFHS diet (Fig. 2F). 285 

 286 

3. 3. Gene expression analysis of proteins involved in lipid absorption and metabolism in 287 

jejunum 288 

In the present study, dietary fat and glucose absorption were shown impacted by the 289 

nutritional stressors tested e.g., HFHS diet and/or the pollutant mixture (Fig. 1 and 290 

Supplemental Fig. 1). Inasmuch as the jejunum is a predominant site for these functions, we 291 

analyzed the expression levels of jejunal genes involved in the absorption of fatty acids 292 

including Got2 (encoding Plasma membrane Fatty Acid Binding Protein, FABPpm), Cd36 293 

and Slc27a4 (encoding Fatty Acid Transport Protein 4, FATP4). Expression of genes involved 294 

in the cholesterol metabolism: Npc1l1 gene (encoding Niemann Pick C1 Like-1, NPC1L1) 295 

and the lipoprotein biosynthesis: Sar1b (encoding Secreted associated Ras related GTPase 1B, 296 

SAR1B) and Mttp (encoding Microsomal Triglyceral Transfert Protein, MTP) were also 297 

investigated, together with the anti-inflammatory marker Il10 encoding the interleukin IL10.  298 

The HFHS diet (HF0 vs ST0) altered the expression of Got2 and Cd36 (increased expression, 299 

Fig. 3A) as well as Npc1l1 (decreased expression, Fig. 3B). The pollutant mixture had no 300 

significant effect in a context of a standard diet but it has to be noted that Slc27a4 and Mttp 301 

expressions were only significantly modified by the HFHS diet in a context of pollutant 302 

exposure (Fig. 3A and 3C).  303 
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The expression of genes encoding inhibitors of the lipoprotein lipase (LPL) enzyme 304 

responsible for blood chylomicron clearance: Angptl4 and Apoc3 encoding Angiopoietin-Like 305 

4 (ANGPTL4) and Apolipoprotein-CIII (APO-CIII), respectively, were also studied. Feeding 306 

HFHS diet resulted in a significant enhancement of Apoc3 and Angptl4 mRNA levels both in 307 

the absence or presence of pollutants (Fig. 3D). Of note, exposure to pollutants resulted in a 308 

significant down-regulation of Apoc3 mRNA and a downward trend for Angptl4 (P = 0.09) in 309 

ST fed mice only (Fig. 3D). Interestingly pollutants induced a significant decrease in the Il10 310 

expression at the mRNA level (Fig. 3E) in a context of standard diet and an inverse effect in 311 

the context of HFHS diet (Fig. 3E). 312 

Eventually, we found that genes involved in intestinal glucose transport and sensing such as 313 

Slc2a2 and Slc5a1 (encoding the proteins Glucose Transporter 2, GLUT2 and sodium-314 

dependent glucose cotransporter SGLT1, respectively) (Roder et al., 2014) were expressed at 315 

similar levels between groups (data not shown).   316 

3. 4. Gene expression analysis of proteins involved in adipocyte differentiation  317 

As a next step, we analyzed genes related to adipogenesis including Nr1c3 encoding 318 

peroxisome proliferator activated receptor (PPAR)γ, a master regulator of adipocyte 319 

differentiation;  Fabp4 encoding Fatty Acid Binding Protein (FABP4), and Cidec encoding 320 

Cell Death Inducing DFFA Like Effector C (CIDEC). Importantly, the two different ATs 321 

studied herein responded differently to nutritional stressors. While in scAT, Fabp4 and Cidec 322 

mRNA levels were significantly enhanced in response to HFHS diet, they remained 323 

unchanged in pgAT (Fig. 4A and 5A). Conversely, Nr1c3 mRNA levels remained unchanged 324 

in scAT from HF0 vs ST0 mice (Fig. 4A) but were significantly reduced in pgAT (Fig. 4A). 325 

These distinct features were also observed for genes involved in TG metabolism including 326 

Pnpla2 encoding Adipose Triglyceride Lipase (ATGL); Lipe encoding Hormone-Sensitive 327 
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Lipase (HSL); and Lpl encoding Lipoprotein Lipase (LPL). While Pnpla2 mRNA levels 328 

remained unchanged in scAT, they were strongly decreased after HF feeding in pgAT (Fig. 329 

4B and 5B). On the contrary, an enhanced expression of Lipe and Lpl was induced by the 330 

HFHS diet in scAT while no change was observed in pgAT (Fig. 4B and 5B). 331 

Pollutants also targeted scAT differently than pgAT. There was a significantly enhanced 332 

expression of Cidec and Lipe and a trend to an enhanced expression of Nr1c3, Fabp4 333 

(P=0.07) and Lpl (P=0.06) in scAT from STp mice as compared to ST0 mice (Fig.4A and 4B) 334 

but no significant effect was observed in a context of HFHS diet. Conversely, the pollutant 335 

effects in pgAT were observed in a context of HFHS diet with a significant decrease of Nr1c3 336 

mRNA levels in HFp versus HF0 samples (Fig. 5A).  337 

To complete the study, histological analyses were performed on both subcutaneous and 338 

perigonadal ATs. Consistent with enhanced fat pads and body weight (Fig. 1), adipocytes 339 

were of larger size in response to the HFHS diet. However, there was no major difference in 340 

the mean diameter of adipocytes of both fat pads in response to exposure to the mixture of 341 

pollutants (Supplementary Fig. 3). 342 

                        343 

3. 5. Gene expression analysis of inflammatory markers in adipocyte tissues 344 

It is well described that AT inflammation conveys insulin-resistance (Ouchi et al., 2011). 345 

Pollutants have also been described as pro-inflammatory in certain conditions (Rebourcet et 346 

al., 2010; Kim et al., 2012; Magre et al., 2012; La Merrill et al., 2013). We therefore 347 

examined the expression levels of genes including Tnfα, Il-1b and Ccl2 encoding major pro-348 

inflammatory markers TNFα, interleukin 1 (IL1) β, and MCP1, respectively, as well as Il10 349 

encoding an anti-inflammatory cytokine, interleukin 10. Apart from Il10 which expression 350 

levels did not change in response to HFHS diet alone (Fig. 4C and 5C), most pro-351 
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inflammatory cytokines had their expression significantly enhanced in both AT samples from 352 

HFHS-fed mice consistent with the phenotype of insulin resistance evidenced in this HF0 353 

group as compared to ST0 group. Il-1β expression was the exception with a down-regulation 354 

of its mRNA levels in pgAT samples of HFHS-fed mice (Fig. 5C).  355 

Interestingly, as well as for adipogenesis and lipolysis markers, pollutants had differential 356 

impact depending on AT depots. In a standard diet context, the global impact was anti-357 

inflammatory in scAT samples with significant enhancement of Il10 mRNA expression (Fig. 358 

4C) and no impact on pro-inflammatory cytokines (Fig 4C). In HFHS-fed mice, the 359 

inflammatory state based on the investigated studies remained unchanged by pollutant 360 

exposure in scAT (Fig 5C). Conversely, pollutants tended to reduce the pro-inflammatory 361 

state in pgAT, although Il10 expression remained unchanged, with a significant and strong 362 

down-regulation of Il1b mRNA levels in response to pollutant exposure in ST-fed mice. 363 

Contrary to the observed decrease in Il1b expression after exposure to HFHS diet in the 364 

absence of pollutant, the exposure to the mixture in this HFHS context induced an increased 365 

expression of this gene (Fig. 5C).  366 

3.6. Gene expression analysis of xenobiotic receptors 367 

One way pollutants trigger metabolic disruption is through their direct interaction with 368 

xenobiotic receptors and downstream activation of xenobiotic processing genes, among which 369 

cytochromes P450 (CYPs) (Aleksunes and Klaassen, 2012). Therefore, a gene expression 370 

analysis of the xenobiotic receptors was undertaken. The expression of Ahr encoding the 371 

dioxin receptor AHR, could be detected in all investigated tissues consistent with its 372 

ubiquitous expression (Barouki et al., 2012a). A HFHS effect on Ahr expression was observed 373 

in jejunum, liver and scAT but not in pgAT with a significant down-regulation of the Ahr 374 

mRNA levels (Fig. 6A). The AHR target gene Cyp1a2 was also reduced at the mRNA levels 375 

in liver (Fig. 6A) but could not be quantifiable in the jejunum and adipose tissues (not 376 
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shown). Expression of Nr1i2 encoding Pregnane X Receptor (PXR) and Nr1i3 encoding 377 

Constitutive Androstane Receptor (CAR) was detected in jejunum and liver (Fig. 6B-C) but 378 

not in ATs (not shown). Neither Nr1i2 nor Nr1i3 had their expression levels modified by 379 

nutritional stressors in liver. In contrast, the expression of Nr1i2 was significantly decreased 380 

in the jejunum samples from HFHS-fed mice while Nr1i3 expression tended to increase 381 

(P=0.06) as compared to ST0-fed mice (Fig. 6C).  382 

Interestingly, a trend (P = 0.06) for enhanced expression of Nr1i3 was also detected in the 383 

jejunum of STp as compared to ST0 mice, which is consistent with the significant 384 

augmentation of the expression of Cyp3a11, a PXR target gene (Fu et al., 2016). In contrast, 385 

the HFHS diet induced a significant and robust decrease of the expression levels of Cyp3a11  386 

in jejunum and liver (Fig. 6B-C). Results in liver are consistent with previous reports 387 

(Fromenty, 2013) although discrepancies still exist regarding the regulation of Cyp3a11 388 

expression in the liver of high-fat fed mice (Ning and Jeong, 2017). Intriguingly, expression 389 

levels of Cyp2b10, a CAR target gene (Aleksunes and Klaassen, 2012), was significantly 390 

down-regulated in jejunum and up-regulated in liver from HFHS-fed mice. Noteworthy, a 391 

significant down-regulation of the expression of Cyp2b10 was observed in STp versus ST0 392 

liver samples (Fig. 6B-C). No alteration of the expression of Ugt1a1, also a CAR target gene, 393 

was noted between groups in jejunum and liver (data not shown). 394 

 395 

3. 7. Gene expression analysis of estrogen and androgen receptors 396 

To complete the study, we surveyed receptors for estrogen and androgen because steroid 397 

hormones regulate energy metabolism (Mauvais-Jarvis, 2011) and that the pollutants of the 398 

mixture have been endowed with estrogeno-mimetic activities by interacting either with 399 

steroid signaling or its signaling machinery (Casals-Casas and Desvergne, 2011; Thayer et al., 400 

2012). ERα, encoded by the gene Esr1, is the main receptor in rodent liver (Gao et al., 2008). 401 
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The liver is also expressing the Androgen Receptor (AR, encoded by Nr3c4) (Lin et al., 402 

2008). While the expression of Esr1 and Nr3c4 was detected in the liver, these genes were not 403 

found expressed in the jejunum (data not shown) contrary to Gper1 encoding the G Protein-404 

Coupled Estrogen Receptor 30 (GPR30), a membrane estrogen receptor (Sharma et al., 2018). 405 

These 3 genes were expressed in both scAT and pgAT (Fig. 7C and 7D). In response to the 406 

HFHS diet, expression levels of Nr3c4 were significantly reduced in ATs but augmented in 407 

liver.  Esr1 expression levels were also altered by the HFHS diet in liver and ATs, but only 408 

under pollutant exposure, with a significant increase in liver (Fig. 7A) and a significant 409 

decrease in ATs (Figure 7C and 7D). Strongest effects were observed on Gper1 mRNA levels 410 

in ATs with 2.2 and 1.6-fold increases in scAT and pgAT, respectively, while there was a 411 

significant decrease of 20% in jejunum (Fig. 7B-D). Pollutant exposure in a standard diet 412 

context resulted in a 1.5-fold increase of Esr1 mRNA levels (P < 0.01) in scAT but not in 413 

pgAT or liver (Fig. 7). In jejunum, pollutants also induced a downward trend (P=0.07) in 414 

Gper1 expression, only in HFHS-fed mice (Fig. 7B). Importantly, the ratio Esr1/Nr3c4 was 415 

significantly up-regulated by pollutant exposure in the scAT of ST-fed mice but remained 416 

unchanged in pgAT samples. A significant increase was induced by the HFHS diet in scAT 417 

(Fig. 7C). In the liver, this ratio was significantly reduced in response to the HFHS diet (HF0 418 

vs ST0) and a tendency to decrease (P=0.05) was observed under pollutant exposure in a 419 

standard diet context (Fig. 7A). 420 

 421 

Discussion 422 

The results of the present study indicate that exposure to a mixture of low-dose pollutants for 423 

15 weeks triggers metabolic effects in male mice challenged from 5 wks onwards in the 424 

absence of general toxicity and that the resulting effects depended on the nutritional status, 425 
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i.e., ST or HFHS diet, thus extending previous data of the laboratory (Naville et al., 2013; 426 

Naville et al., 2015; Labaronne et al., 2017). In addition, this study indicates, in an original 427 

way, that low-dosed pollutant cocktail exposure elicited tissue-specific responses at least at 428 

the gene expression mRNA level. Specifically, we herein demonstrated that jejunum and 429 

adipose tissues were major targets of xenobiotics in this one-generation experimental study 430 

and that scAT responded differently to the pollutant mixture than pgAT.  431 

The protocol used herein was adapted from the previously described model (Naville et al., 432 

2013; Naville et al., 2015; Labaronne et al., 2017) in that mice were either fed a standard or a 433 

HFHS diet containing the mixture of pollutants with treatments starting from the age of 5 434 

weeks for a total duration of 15 weeks. As reviewed (Le Magueresse-Battistoni et al., 2017), 435 

pollutants comprising the used mixture were selected to approach a realistic scenario with 436 

both persistent and non-persistent chemicals, all bearing endocrine-disrupting activities and 437 

all of high concern for human health for their suspected links with metabolic diseases 438 

(Alonso-Magdalena et al., 2011; Casals-Casas and Desvergne, 2011; Gore et al., 2015). Thus, 439 

this one-generation study allowed investigating in males (females were not explored in this 440 

report) the metabolic impact of the pollutant mixture in a standard and in a HFHS diet context 441 

to better understand the individual and combined contribution of both threats to the nowadays 442 

epidemics of metabolic diseases. In addition to a thorough metabolic exploration of male mice 443 

fed the high-fat high-sucrose diet, we investigated the regulation of target gene expression in 444 

the liver, adipose tissues, and the jejunum. Both liver and jejunum play major detoxifying role 445 

and express the repertoire of xenobiotic processing genes including xenobiotic receptors and 446 

related transcription factors as well as phase I and II metabolizing enzymes and transporters 447 

(Fu et al., 2016). In addition, the small intestine is the first organ directly in contact with the 448 

dietary nutrients and the contaminating chemicals. 449 
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Within this study, HFHS diet recapitulated metabolic disorders linked to obesity and insulin 450 

resistance including dyslipidemia, hyperglycemia, elevated plasma levels of insulin and 451 

leptin. Interestingly, the metabolic impact was found more deleterious herein than in the two-452 

generation study with regards to insulin resistance (Homa-IR) and leptin levels (Naville et al., 453 

2013).  There was also impaired lipid homeostasis as evidenced through the oral lipid load 454 

test and the findings of enhanced expression of several genes encoding proteins involved in 455 

lipid transport and/or lipoprotein synthesis in the jejunum, in fat uptake and lipogenesis 456 

favoring steatosis in the liver. In addition, fat mass was largely increased with an overall 457 

inflammatory profile in both ATs (apart from a decreased Il1b expression in pgAT) and 458 

augmented adipogenesis in scAT. Curiously, jejunum has so far not been extensively 459 

investigated in response to HFHS diet and several features, indicative of alterations in 460 

jejunum homeostasis, could be originally described in the present study. The anti-461 

inflammatory cytokine Il10 gene expression was severely down-regulated concurrently with 462 

the decreased expression of genes encoding the estrogen receptor Gper, the xenobiotic 463 

receptors Ahr and Nr1i2 as well as processing genes Cyp3a11 and Cyp2b10. Additional work 464 

would help to resolve why Nr1i2 and Nr1i3 mRNA levels did not change the same way in 465 

liver and jejunum in response to HFHS diet along with their target genes, Cyp3a11 and 466 

Cyp2b10. Namely, CYP3A11 is an important phase I enzyme which catalyzes detoxification 467 

of a wide range of substrates thus, in the long run, an inhibition of this enzyme, as observed in 468 

both jejunum and liver, would be harmful consistent with reduced metabolization of 469 

pharmacological drugs in obese patients (Fromenty, 2013). Whether increased Cyp2b10 470 

mRNA levels will compensate for the decreased Cyp3a11 expression in liver warrants further 471 

study.  472 

Interestingly, mice fed the HFHS diet in this experimental study retained some metabolic 473 

adaptability as exemplified with the mild hepatic phenotype (accumulation of TG with limited 474 
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inflammation) and unchanged FFA levels restricting lipotoxicity. The upregulation of genes 475 

encoding inhibitors of lipoprotein activity in liver and jejunum and the down-regulation of a 476 

LPL activator in liver may have also contributed to this phenotype. In addition, gene 477 

expression studies suggested restrained hypercholesterolemia through a reduced expression of 478 

Npc1l1 which encoding protein transports cholesterol in jejunum and of genes encoding 479 

protein involved in liver cholesterol synthesis (Hmgcr, Cyp51) coupled to its enhanced 480 

metabolization (Cyp7a1) in biliary acids.  Importantly, AT depots responded differently to the 481 

HFHS diet with regards to inflammation, adipocyte differentiation, Ahr expression as well as 482 

estrogen and androgen receptors. Because it is known that estrogens favor subcutaneous over 483 

visceral fat (Mauvais-Jarvis, 2011), it would be of interest to determine if the relative 484 

limitation of the metabolic disorders observed in male mice fed the HFHS diet, particularly 485 

concerning the fasting plasma glucose, could not be linked to the enhanced ratio of 486 

Esr1/Nr3c4 found in the scAT.  487 

Analysis of the metabolic impact of a chronic exposure to the mixture of pollutants revealed  488 

that effects were more marked in ST than in HFHS-fed mice. A major difference with the 489 

HFHS threat consisted in the lack of any effect of pollutants on body weight which is 490 

consistent with our previous data using the same mixture of pollutants (Naville et al., 2013; 491 

Naville et al., 2015; Labaronne et al., 2017). In addition and contrasting with previous 492 

published data using the chemicals present in the mixture but tested individually and at higher 493 

doses (Wahlang et al., 2013; Wei et al., 2014; Duval et al., 2017; Heindel et al., 2017), the 494 

pollutant cocktail did not trigger hepatic TG accumulation nor was the HFHS-induced TG 495 

accumulation exacerbated in the pollutant-exposed mice. Discrepancies may be due to a 496 

different diet composition, differences in the experimental chemical doses, the strain species 497 

and the period of exposure to the pollutants which excluded in the present study the highly 498 

vulnerable maternal period (Barouki et al., 2012b).  However, one remarkable effect was the 499 
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alteration of the post-prandial plasma TG (in response to an oral lipid load) in ST-fed 500 

pollutant-exposed males while glucose absorption was not affected. Post-prandial TG levels 501 

result from intestinal TG secretion and clearance which depend on expression levels of 502 

several binding proteins and apolipoproteins (Drover et al., 2005; Petit et al., 2007). 503 

Interestingly, the significant increase of blood TG clearance in STp vs ST0 mice is consistent 504 

with the decrease in the 6h-fasting plasma TG. In addition, the concomitant decrease in Apoc3 505 

gene expression in the jejunum might suggest a higher efficiency of TG clearance by LPL 506 

(Petit et al., 2007). The reduced plasma TG levels associated with the trend to decreased FFA 507 

levels induced by the pollutants in a ST context were also indicative of changes in lipid 508 

metabolism.  509 

 Regarding gene expression analysis of xenobiotic receptors, a trend for an elevation of Nr1i3 510 

expression and a significant enhancement in Cyp3a11 mRNA levels were shown in jejunum 511 

of STp vs ST0 mice, but not in liver, again documenting that jejunum is highly responsive to 512 

its environment. The meaning of the significant decrease of Cyp2b10 expression in liver, an 513 

enzyme which regulation is dependent on estrogens (Yamada et al., 2002) could be linked to 514 

estrogen signaling impairment in response to pollutant exposure. Moreover, metabolic tissues 515 

express estrogen and/or androgen receptors and there was a significant increase of the ratio of 516 

Esr1 to Nr3c4 mRNA levels in scAT from STp vs ST0 mice, and a trend to a decrease of this 517 

same ratio in liver, all indicative of changes in the estrogen signaling in these tissues. 518 

Additionally, it is possible that the enhanced ratio of adiponectin to leptin that we observed in 519 

the STp male mice and which suggests a better insulin sensitivity was linked to the estrogen 520 

signaling changes in adipose tissues as adiponectin and leptin are synthesized by these tissues.  521 

There were other features in addition to the effect of pollutants on plasma TG and on the ratio 522 

of adiponectin to leptin which were the opposite of the effect induced by the HFHS diet, such 523 
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as the findings of reduced levels of Il-1β mRNA levels in pgAT, Apoc3 in jejunum, Cyp2b10 524 

in liver as well as enhanced Il10 expression in scAT and of Cyp3a11 in jejunum, all from STp 525 

vs ST0 mice. However, not all of the pollutant effects were opposite to those observed in 526 

response to the HFHS diet. Interestingly, we observed effects mimicking HFHS-induced 527 

metabolic disorders in the scAT. For example, there were enhanced expressions of genes 528 

encoding markers of lipolysis and adipogenesis suggesting higher differentiation of 529 

subcutaneous adipocytes. Collectively, and in line with a recently proposed hypothesis of an 530 

estrogeno-mimetic effect of the pollutant mixture (Julien et al., 2018), our data could suggest 531 

that the pollutant-induced changes of estrogen signaling may favor subcutaneous over visceral 532 

fat as described in males fed the HFHS diet (this study) or injected with estradiol E2 (Clegg et 533 

al., 2006), resulting in the “feminization” of the fat deposition. Whether, such “feminization” 534 

will explain all of the changes described in STp fed mice will warrant further studies.  535 

Another finding of the present study is that, according to the diet, the effects of the pollutants 536 

were either to alleviate or to aggravate metabolic features. Indeed, exposure of HFHS-fed 537 

mice to the pollutant mixture could aggravate some of the effects of the HFHS alone such as 538 

the increased weight of the pgAT depot and the slight but not significant enhancement of 539 

plasma leptin levels. There were also significant spotted impacts on gene expression in 540 

jejunum and pgAT. Specifically, the increased (Mttp) or decreased (Gper1 and Slc27a4) 541 

expressions in jejunum were only observed in HFHS-fed pollutant exposed mice not in 542 

absence of pollutant. As well, pollutants induced a strong significant increase of Il10 543 

expression in jejunum in the HFHS context (the reverse effect being observed in ST-fed 544 

pollutant exposed mice). In this HFHS context, pollutants were capable to decrease Nr1c3 and 545 

increase Il1b expression in pgAT only, thus amplifying the impact of the HFHS diet. 546 
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These data obtained from post-weaning studies induced metabolic changes somehow different 547 

from the previous two-generation study in which male adult offspring showed reduced hepatic 548 

cholesterol levels and alteration of cholesterol metabolism in response to the HFHS diet-549 

containing pollutants. If comparing the one- (this study) and two-generation (Naville et al., 550 

2013) studies on the various endpoints monitored, cholesterol metabolism does not appear to 551 

be a major pollutant target in the present study apart from Cyp7a1 enhancement. 552 

Discrepancies do not seem to rely to the difference in pollutant dosage between the two 553 

experimental protocols. Because we previously demonstrated that the low-dose pollutant 554 

mixture could trigger metabolic disturbances leading to common and specific features as 555 

compared to a HFHS diet (Labaronne et al., 2017), it may be considered that some effects of 556 

the pollutants could be masked by the more pronounced effect of the HFHS diet in this study 557 

regarding body weight and markers of insulin resistance (HOMA-IR, leptin levels) than in the 558 

two-generation study (Naville et al., 2013). Thus, a more likely explanation for differences in 559 

metabolic outcome in HFHS-fed pollutant exposed mice could be in line with the 560 

Developmental Origin of Health and Disease (DOHaD) concept (Barker et al., 2002; Suzuki, 561 

2018). This concept proposes that part of adult diseases finds their origins during fetal life 562 

which is a highly vulnerable period of time specifically with regards to pollutant exposure 563 

(Barker et al., 2002; Barouki et al., 2012b; Le Magueresse-Battistoni et al., 2016).  564 

In conclusion, the present study underlines that the threat posed by a Western-style diet 565 

relates to the fat and sugar content but that pollutants which contaminate food are also part of 566 

the equation. In addition to evidences for metabolic deleterious effects of the HFHS diet in 567 

line with obesity associated metabolic features and insulin resistance, we demonstrated, at 568 

least at the mRNA expression level that metabolic tissues responded in a tissue-specific way 569 

to the cocktail of pollutants and that the greatest metabolic impact of pollutants was evidenced 570 

in standard nutritional conditions in this one-generation study. Importantly, jejunum was 571 
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highly sensitive with regards to xenobiotic receptors and lipolysis and AT depots responded 572 

differently to both nutritional stressors. Moreover, the impact of pollutants was found to 573 

mimic or oppose the HFHS effects in a manner depending on nutritional conditions and on 574 

the metabolic tissue considered. Collectively and although pollutants in the mixture have not 575 

been tested individually, we here reinforce previous observations (Le Magueresse-Battistoni 576 

et al., 2017) that the resulting effect of a mixture of low dosed pollutants cannot be derived 577 

from the expected effect of one chemical at a time based on its dosage and this is raising 578 

important implications in terms of recommendations for food market security. 579 
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Figure legends 776 

 777 

 778 

Figure 1: (A) Body weight measured at the end of the protocol (after 6 h of fasting). (B) 779 

Weight of perigonadal and subcutaneous adipose tissues (pgAT and scAT) at the end of the 780 

protocol. (C) Tests performed after 12 wks of diet (Oral lipid load expressed as differences of 781 

triglyceride levels from time 0 and corresponding AUC) (D-F) Biochemical parameters: 782 

Blood glucose and plasma insulin (D); adponectin/leptin ratio (E); plasma and hepatic 783 

Triglycerides; plasma Free Fatty Acids (FFA) (F).  Values are means ± SEM with n=8. 784 

***P<0.001; ** P<0.01; *P<0.05 785 

Figure  2: Effect of the HFHS diet and the mixture of pollutants on the hepatic expression of 786 

genes related to Fat uptake (A), Lipoprotein lipase (B), lipogenesis (C), lipid oxidation (D), 787 

cholesterol homeostasis (E) and inflammation (F). Values are means ± SEM with n=8. 788 

***P<0.001; ** P<0.01; *P<0.05 789 

Figure  3: Effect of the HFHS diet and the mixture of pollutants on the jejunum expression of 790 

genes related to Fatty Acid absorption (A), cholesterol metabolism (B), lipoprotein 791 

biosynthesis (C), and encoding LPL inhibitors (D) or inflammatory markers (E). Values are 792 

means ± SEM with n=8. ***P<0.001; ** P<0.01; *P<0.05 793 

Figure 4: Effect of the HFHS diet and the mixture of pollutants on the scAT expression of 794 

genes related to adipocyte differentiation (A), triglyceride metabolism (B) or encoding 795 

inflammatory markers (C). Values are means ± SEM with n=8. ***P<0.001; ** P<0.01; 796 

*P<0.05 797 

Figure 5: Effect of the HFHS diet and the mixture of pollutants on the pgAT expression of 798 

genes related to adipocyte differentiation (A), triglyceride metabolism (B) or encoding 799 
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inflammatory markers (C). Values are means ± SEM with n=8. ***P<0.001; ** P<0.01; 800 

*P<0.05 801 

Figure 6: Effect of the HFHS diet and the mixture of pollutants on the expression of genes 802 

encoding xenobiotic receptors. Ahr and Cyp1a2 mRNA expression in liver;  Ahr mRNA 803 

expression  in jejunum, scAT and pgAT (A). Nr1i2 and Nr1i3 mRNA expression and their 804 

respective target gene en liver (B) and jejunum (C). Values are means ± SEM with n=8. 805 

***P<0.001; *P<0.05 806 

Figure 7: Effect of the HFHS diet and the mixture of pollutants on the expression of genes 807 

encoding estrogen and androgen receptors in liver (A), jejunum (B), scAT (C) and pg AT (D). 808 

Values are means ± SEM with n=8. ***P<0.001; ** P<0.01; *P<0.05 809 
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Figure 2 829 
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Figure 3 834 
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Figure 5 854 
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Figure 6 861 
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Figure 7 876 
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Supplementary Tables 878 

Supplementary Table 1: References doses of the pollutants present in the  879 

mixture and doses used in the diets (all per kg and per day). 880 

 881 

 882 

 883 

 884 

 885 

Supplementary Table 2: List of the primers used in RT-qPCR 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

Pollutants in 

the mixture 
PCB153 BPA TCDD DEHP

NOAEL 40µg 5mg 2 ng 5mg

TDI 20ng 4µg 1-4pg 50µg

doses used 200ng 40µg 20pg 500µg

gene reference sense antisense

Abca1 NM_013454 CAG-GAG-GTG-ATG-TTT-CTG-ACC-A TTG-GCT-GTT-CTC-CAT-GAA-GGT-C

Abcg5 NM_031884 AGC-CTC-GCT-CTG-AGC-TCT-TC TTC-AGG-ACA-GGG-GTA-ACC-AC

Abcg8 NM_026180;NM_001286005 AGC-CTC-GCT-CTG-ACA-TCT-TC GTC-AAG-TCC-ACG-TAG-AAG-TC

Acaca NM_022193 GAG-CAA-GGG-ATA-AGT-TTG-AG AGG-TGC-ATC-TTG-TGA-TTA-GC

Ahr NM_013464.4 TCA-TCT-GGT-TTC-CTG-GCA-ATG-AAT ATA-AGC-TGC-CCT-TTG-GCA-TC 

Angptl4 NM_020581 GA-CCT-TAA-CTG-TGC-CAA-GAG AAG-TCA-CTG-TCT-TCT-TAG-GC

Apoa5 NM_080434 AGA-GCC-TCT-GGG-ACT-ACT-TC GTC-CCA-GCT-TTT-CTA-GGT-AA

Apoc3 NM_001289755;NM_001289756;NM_023114;NM_001289833 GCT-AAG-TAG-CGT-GCA-GGA-GT TCC-TCA-GGG-TTA-GAA-TCC-CA

Ccl2 NM_011333 TGG-AGC-ATC-CAC-GTG-TTG-GC ACT-ACA-GCT-TCT-TTG-GGA-CA

Cd36 NM_001159558.1 AAG-ATC-CAA-AAC-TGT-CTG-TA GTC-CTG-GCT-GTG-TTT-GGA-GG

Cidec NM_178373;NM_001301295 TGG-CAC-AAT-CGT-GGA-GAC-AG AGA-GGG-TTG-CCT-TCA-CGT-TC

Cpt1a NM_001876;NM_001031847 TAC-AAC-AGG-TGG-TTT-GAC-A GGC-TGT-CAA-TGG-ACA-TGA-CG

Cyp1a2 NM_009993 TCA-TCC-TGG-AGA-TCT-ACC-GA TGA-CCT-GCC-ACT-GGT-TTA-TG

Cyp51 NM_020010 AGT-GCC-TGG-ATG-GGC-TTC-TT GGA-GGC-CTC-AGT-CTT-AGT-GT

Cyp3a11 NM_007818 ACG-CCT-CTC-CTT-GCT-GTC-ACC TTG-CCT-TCT-GCC-TCA-AGT-AC

Cyp7a1 NM_007824.2 TAC-AGA-GTG-CTG-GCC-AAG-AG AGT-GAA-GTC-CTC-CTT-AGC-TG

Cyp2b10 NM_009999 TTC-TGC-CCT-TCT-CAA-CAG-GA CCT-TAG-GAG-CAA-CAT-GGC-TT

Esr1 NM_000125;NM_001122740;NM_001122741;NM_001122742 TGT-TTG-CTC-CTA-ACT-TGC-TC CCT-TCT-CTT-CCA-GAG-ACT-TC

Fabp1 NM_017399 TGC-GAA-CTG-GAG-ACC-ATG-AC CCA-ATG-TCA-TGG-TAT-TGG-TG

Fabp4 NM_024406 CAG-AAG-TGG-GAT-GGA-AAG-TCG CGA-CTG-ACT-ATT-GTA-GTG-TTT-GA

Got2 NM_010325 ATG-GTG-AAG-GAT-GCC-TGG TTC-ATC-CGC-ATC-TTT-GCA-GAC-C

Gper1 NM_029771 AGC-TGA-TCA-GAT-CTA-GGG-AG GTC-CTG-GGA-GCC-TGT-TAG-TC

Gusb  NM_010368 CTT-CAT-GAC-GAA-CCA-GTC-AC GCA-ATC-CTC-CAG-TAT-CTC-TC

Hmgcr NM_008255 CCG-GCC-TGT-GTG-TCG-CTG-GT CCA-GCG-ACT-ATG-AGC-GTG-AA

Hprt NM_013556 TTG-CTG-ACC-TGC-TGG-ATT-AC AGT-TGAG-AGA-TCA-TCT-CCA-C

Il1b NM_008361 ACT-GTT-CCT-GAA-CTC-AAC-TG CTT-GTT-GAT-GTG-CTG-CTG-CG

Il6 NM_031168 AGT-TGC-CTT-CTT-GGG-ACT-GAT TCC-ACG-ATT-TCC-CAG-AGA-AC

Il10 NM_010548 CAG-GGC-CCT-TTG-CTA-TGG-TG CGG-CTG-GGG-GAT-GAC-AGT-AG

Lipe NM_001039507,NM_010719 GTG-TGT-CAG-TGC-CTA-TTC-AG GTC-AGC-TTC-TTC-AAG-GTA-TC

Lpl NM_008509 GGT-CGA-AGC-ATT-GGA-ATC-CAG TAG-GGC-ATC-TGA-GAA-CGA-GTC

Mttp NM_008642,NM_001163457 GGA-GAA-GTA-ACC-TGA-ACA-TC ACA-GGT-CTG-AGC-TGA-ACA-TC

Npc1l1 NM_207242 GCT-AGC-AGC-CAA-CAT-CAC-AG CAG-TAG-GAG-GTA-GCA-GAC-CA

Nr1c1 NM_011144; NM_001113418.1 AAG-GGC-TTC-TTT-CGG-CGA-AC GTT-CAT-GTT-GAA-GTT-CTT-CAG

Nr1c3 NM_001127330,NM_011146 TCT-CTC-CGT-AAT-GGA-AGA-CC GCA-TTA-TGA-GAC-ATC-CCC-AC

Nr3c4 NM_013476.3 AGA-AGA-CCT-GCC-TGA-TCT-G GCT-GGC-ACA-TAG-ATA-CTT-CTG

Nr1h3 NM_013839 CCG-GGA-AGA-CTT-TGC-CAA-AGC GGA-GCT-GGT-CCT-GCA-CGT-TG

Nr1i2 NM_010936.3 AGG-AGG-AGT-ATG-TGC-TGA-TG CTT-CAG-GAA-CAG-GAA-CCT-GTG

Nr1i3 NM_001243063;NM_001243062;NM_009803 GTC-CCA-TCT-GTC-CGT-TTG-C AGG-GCT-TCT-GAC-AGT-ATC

Pnpla2 NM_025802,NM_001163689 TCA-TC-CAG-GCC-AAT-CTC-TGC TGG-ATG-TTG-GTG-GAG-CTG-TC

Sar1b NM_025535 ATT-GCT-GGC-ATG-ACG-TTT-AC TGC-CAT-TGA-TAG-CAG-GAA-GG

Scd1 NM_009127 GAT-ACA-CTC-TGG-TGC-TCA-AC AAC-GTG-GTG-AAG-TTG-ATG-TG

Slc2a2 NM_031197 TGG-GTA-CTC-TTC-ACC-AAC-TG AGG-ATG-TGC-CAA-TGA-TCC-TG

Slc5a1 NM_019810 GCT-CCT-TGA-CCT-CCA-TCT-TC CAG-GCA-ATG-CTG-ATG-CCA-AT

Slc27a4 NM_011989 GAC-ACC-TCA-AAG-GCA-CGA-GC GAG-GG-TCC-AGA-TGC-TCT-GTG

Srebf1 NM_011480 ACG-GAG-CCA-TGG-ATT-GCA-CA AAG-GGT-GCA-GGT-GTC-ACC-TT

Tnfa NM_013693 CCA-GAC-CCT-CAC-ACT-CAG-ATC CAC-TTG-GTG-GTT-TGC-TAC-GAC

Tbp NM_013684 TGG-TGT-GCA-CAG-GAG-CCA-AG TTC-ACA-TCA-CAG-CTC-CCC-AC

Ugt1a1 NM_201645 GCA-TCT-ATC-TGG-CTG-ATG-AG CAG-AGG-CGT-TGA-CAT-AGG

Vnn1 NM_ 011704 CTG-AAG-TGT-TGC-TGA-GTG-AG GAT-GCC-CAG-TCC-TTC-CCA-TA

sequences: 5'->3'
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 Supplementary Figures 903 

 904 

Supplementary Figure 1: (A) Body weight measured along the 15 weeks of diet (B/C) Tests 905 

performed after 13 wks of diet (Xylose absorption test) and after 14 wks of diet (Glucose 906 

tolerance test) (D) Plasma total cholesterol and cholesteryl esters and hepatic total cholesterol 907 

(E) HOMA-IR calculated from blood glucose and plasma insulin measurements. 908 

Values are means ± SEM with n=8. ***P<0.001; ** P<0.01; *P<0.05 909 

(F) Plasma measurement of leptin and adiponectin by ELISA. Results are expressed as means 910 

± SEM. Significant differences were assessed after One-way ANOVA followed by 911 

Bonferroni post-hoc test for leptin and overall HFHS effect by Two-way ANOVA using 912 

Bonferroni as post-hoc test for adiponectin. (*** P<0.001) 913 

0

10

20

30

40

50

0 3 6 9 12 15

weeks of diet

B
o

d
y
 w

e
ig

h
t 

(g
)

A Body weight (0-15 wk)                                      Xylose test                                                              Glucose Tolerance TestB

0

1

2

3

4

0 20 40 60 80 100 120

Time (min)

p
la

s
m

a
 x

y
lo

s
e
 (

m
M

)

0

5

10

15

20

25

30

0 15 30 45 60 75 90

B
lo

o
d

 g
lu

c
o

s
e
 (

n
m

o
l/

L
)

Time (min)

ST0

STp

HF0

HFp

C

D Plasma Cholesterol Hepatic cholesterol

0.0

0.5

1.0

1.5

2.0

2.5

to
ta

l 
c

h
o

le
s

te
ro

l 
(m

g
/m

l)

ST0   STp                HF0   HFp

*

0.0

0.5

1.0

1.5

2.0

c
h

o
le

s
e

é
ro

l 
e

s
te

rs
  
(m

g
/m

l)

ST0    STp                HF0   HFp
0.0

0.5

1.0

1.5

2.0

2.5

3.0

to
ta

l 
c

h
o

le
s

te
ro

l 
(µ

g
/m

g
 l
iv

e
r)

ST0   STp               HF0   HFp

0

5

10

15

20

25

30

35

H
O

M
A

-I
R

 

ST0    STp                HF0    HFp

**

*

E F

0

10

20

30

40

50

60

le
p

ti
n

 (
n

g
/m

l)

***

ST0   STp                  HF0    HFp

***

HOMA-IR                                                                Plasma leptin Plasma adiponectin

0

2

4

6

8

10

a
d

ip
o

n
e

c
ti

n
 (

µ
g

/m
l)

ST0   STp                HF0   HFp

***



 
 

41 

 914 

 915 
 916 
 917 
 918 

 919 
 920 
 921 
 922 
 923 

Supplementary Figure 2: Plasma measurement of Alanine Aminostransferase (ALT) and 924 
Aspartate Aminotransferase activities. 925 

Values are means ± SEM with n=8. 926 
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 944 

 945 

Supplementary Figure 3: Representative laminin immunostaining of paraffin section of 946 

adipose tissues obtained from mice fed standard diet without (ST0) or with the pollutant 947 

mixture (STp), and mice fed high fat high sucrose diet without (HF0) or with the pollutant 948 

mixture (HFp). Adipose tissue acquisition is represented for subcutaneous (scAT) and 949 

perigonadal (pgAT) depots using objective x10. Scale bar=100µm. For adipocyte area 950 

measurement, at least 150 adipocytes for each sample were considered. Image analyses were 951 

performed with ImageJ software. Values are means ± SEM with n=3. When n=2, the value is 952 

the aryhtmetic mean.  953 
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