
HAL Id: hal-01985444
https://hal.science/hal-01985444v1

Preprint submitted on 17 Jan 2019 (v1), last revised 12 Aug 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Analysis for Almost-Sure Termination of
Probabilistic Programs

Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, Amir K Goharshady

To cite this version:
Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, Amir K Goharshady. Compositional Analysis
for Almost-Sure Termination of Probabilistic Programs. 2019. �hal-01985444v1�

https://hal.science/hal-01985444v1
https://hal.archives-ouvertes.fr

Compositional Analysis for Almost-Sure
Termination of Probabilistic Programs

Mingzhang Huang, Hongfei Fu
Shanghai Jiao Tong University

mingzhanghuang@gmail.com, fuhf@cs.sjtu.edu.cn

Krishnendu Chatterjee, Amir Kafshdar Goharshady
IST Austria (Institute of Science and Technology Austria)

kchatterjee@ist.ac.at, goharshady@ist.ac.at

Abstract—In this work, we consider the almost-sure termina-
tion problem for probabilistic programs that asks whether a given
probabilistic program terminates with probability 1. Scalable
approaches for program analysis often rely on compositional
analysis as their theoretical basis. In non-probabilistic programs,
the classical variant rule (V-rule) of Floyd-Hoare logic is the
foundation for compositional analysis. Extension of this rule to
almost-sure termination of probabilistic programs is quite tricky,
and a probabilistic variant was proposed in [15]. While the
proposed probabilistic variant cautiously addresses the key issue
of integrability, we show that the proposed compositional rule
is still not sound for almost-sure termination of probabilistic
programs.

Besides establishing unsoundness of the previous rule, our con-
tributions are as follows: First, we present a sound compositional
rule for almost-sure termination of probabilistic programs. Our
approach is based on a novel notion of descent supermartin-
gales. Second, for algorithmic approaches, we consider descent
supermartingales that are linear and show that they can be
synthesized in polynomial time. Finally, we present experimental
results on several natural examples that model various types of
nested while loops in probabilistic programs and demonstrate
that our approach is able to efficiently prove their almost-sure
termination property.

I. INTRODUCTION

PROBABILISTIC PROGRAMS. Extending classical imperative
programs with randomness, i.e. generation of random values
according to probability distributions, gives rise to probabilis-
tic programs [21]. Such programs provide a flexible framework
for many different applications, ranging from the analysis of
network protocols [17], [41], [26], to machine learning appli-
cations [37], [20], [40], [11], and robot planning [42], [43].
The recent interest in probabilistic programs has led to many
probabilistic programming languages (such as Church [18],
Anglican [44] and WebPPL [19]) and their analysis is an active
research area in formal methods and programming languages
(see [5], [45], [35], [1], [9], [7], [13], [28], [27]).
TERMINATION PROBLEMS. In program analysis the most
basic liveness problem is that of termination, that given a
program asks whether the program always terminates. In
presence of probabilistic behavior, there are two natural ex-
tensions of the termination problem: first, the almost-sure
termination problem that asks whether the program terminates
with probability 1; and second, the finite-termination problem
that asks whether the expected termination time is finite.
While finite-termination implies almost-sure termination, the
converse is not true. Both problems have been widely studied
for probabilistic programs, e.g. [27], [7], [28], [9].

COMPOSITIONAL APPROACHES. Scalable approaches for pro-
gram analysis are often based on compositional analysis as
their theoretical foundation. For non-probabilistic programs,
the classical variant rule (V-rule) of Floyd-Hoare logic [16],
[29] provides the necessary foundations for compositional
analysis. Such compositional methods allow decomposition of
the programs into smaller parts, reasoning about the parts, and
then combining the results on the parts to deduce the desired
result for the entire program. Thus, they are the key technique
in many automated methods for large programs.
COMPOSITIONAL APPROACHES FOR PROBABILISTIC PRO-
GRAMS. The compositional approach for almost-sure termi-
nation of probabilistic programs was considered in [15]. First,
it was shown that a direct extension of the V-rule of non-
probabilistic programs is not sound for almost-sure termination
of probabilistic programs, as there is a crucial issue regarding
integrability. Then, a compositional rule, which cautiously
addresses the integrability issue, was proposed as a sound rule
for almost-sure termination of probabilistic programs. We refer
to this rule as the FHV-rule.
OUR CONTRIBUTIONS. Our main contributions are as follows:

1) First, we show that the FHV-rule of [15], which is
the natural extension of the V-rule with integrability
condition, is not sound for almost-sure termination of
probabilistic programs.

2) Second, we show that besides the issue of integrability,
there is another crucial issue, regarding the non-negativity
requirement in ranking supermartingales, that is not ad-
dressed by [15]. We present a sound compositional rule
for almost-sure termination of probabilistic programs that
addresses both crucial issues. Our approach is based on a
novel notion called “descent supermartingales” (DSMs),
which is an important technical contribution of our work.

3) Third, while we present our compositional approach for
general DSMs, for algorithmic approaches we focus on
DSMs that are linear. We present an efficient polynomial-
time algorithm for the synthesis of linear DSMs.

4) Finally, we present an implementation of our synthesis
algorithm for linear DSMs and demonstrate that our ap-
proach is applicable to probabilistic programs containing
various types of nested while-loops and can efficiently
prove that they terminate almost-surely.

II. PRELIMINARIES

Throughout the paper, we denote by N, N0, Z, and R the sets
of positive integers, nonnegative integers, integers, and real

numbers, respectively. We first review several useful concepts
in probability theory and then present the syntax and semantics
of our probabilistic programs.

A. Stochastic Processes and Martingales

We provide a short review of some necessary concepts in
probability theory. For a more detailed treatment, see [46].

DISCRETE PROBABILITY DISTRIBUTIONS. A discrete prob-
ability distribution over a countable set U is a function
q : U → [0, 1] such that

∑
z∈U q(z) = 1. The support of

q is defined as supp(q) := {z ∈ U | q(z) > 0}.
PROBABILITY SPACES. A probability space is a triple
(Ω,F ,P), where Ω is a non-empty set (called sample space),
F is a σ-algebra over Ω (i.e. a collection of subsets of Ω that
contains the empty set ∅ and is closed under complementation
and countable union) and P is a probability measure on F ,
i.e. a function P : F → [0, 1] such that (i) P(Ω) = 1 and
(ii) for all set-sequences A1, A2, · · · ∈ F that are pairwise-
disjoint (i.e. Ai ∩ Aj = ∅ whenever i 6= j) it holds that∑∞
i=1 P(Ai) = P (

⋃∞
i=1Ai). Elements of F are called events.

An event A ∈ F holds almost-surely (a.s.) if P(A) = 1.

RANDOM VARIABLES. A random variable X from a proba-
bility space (Ω,F ,P) is an F-measurable function X : Ω →
R ∪ {−∞,+∞}, i.e. a function such that for all d ∈ R ∪
{−∞,+∞}, the set {ω ∈ Ω | X(ω) < d} belongs to F .

EXPECTATION. The expected value of a random variable X
from a probability space (Ω,F ,P), denoted by E(X), is
defined as the Lebesgue integral of X w.r.t P, i.e. E(X) :=∫
X dP. The precise definition of Lebesgue integral is some-

what technical and is omitted here (cf. [46, Chapter 5] for a
formal definition). If range X = {d0, d1, . . .} is countable,
then we have E(X) =

∑∞
k=0 dk · P(X = dk).

FILTRATIONS. A filtration of a probability space (Ω,F ,P)
is an infinite sequence {Fn}n∈N0

of σ-algebras over Ω such
that Fn ⊆ Fn+1 ⊆ F for all n ∈ N0. Intuitively, a filtration
models the information available at any given point of time.

CONDITIONAL EXPECTATION. Let X be any random variable
from a probability space (Ω,F ,P) such that E(|X|) < ∞.
Then, given any σ-algebra G ⊆ F , there exists a random
variable (from (Ω,F ,P)), denoted by E(X|G), such that
(E1) E(X|G) is G-measurable, and
(E2) E (|E(X|G)|) <∞, and
(E3) for all A ∈ G, we have

∫
A
E(X|G) dP =

∫
A
X dP.

The random variable E(X|G) is called the conditional expecta-
tion of X given G. The random variable E(X|G) is a.s. unique
in the sense that if Y is another random variable satisfying
(E1)–(E3), then P(Y = E(X|G)) = 1. We refer to [46,
Chapter 9] for details. Intuitively, E(X|G) is the expectation
of X , when assuming the information in G.

DISCRETE-TIME STOCHASTIC PROCESSES. A discrete-time
stochastic process is a sequence Γ = {Xn}n∈N0

of random
variables where Xn’s are all from some probability space
(Ω,F ,P). The process Γ is adapted to a filtration {Fn}n∈N0 if
for all n ∈ N0, Xn is Fn-measurable. Intuitively, the random
variable Xi models some value at the i-th step of the process.

DIFFERENCE-BOUNDEDNESS. A discrete-time stochastic pro-
cess Γ = {Xn}n∈N0

adapted to a filtration {Fn}n∈N0
is

difference-bounded if there exists a c ∈ (0,∞) such that for
all n ∈ N0, |Xn+1 −Xn| ≤ c almost-surely.
SUPERMARTINGALES. A discrete-time stochastic process Γ =
{Xn}n∈N0

adapted to a filtration {Fn}n∈N0
is a supermartin-

gale if for every n ∈ N0, E(|Xn|) < ∞ and it holds a.s.
that E(Xn+1|Fn) ≤ Xn. We refer to [46, Chapter 10] for a
deeper treatment. Intuitively, a supermartingale is a discrete-
time stochastic process in which for an observer who has seen
the values of X0, . . . , Xn, the expected value at the next step,
i.e. E(Xn+1|Fn), is no more than the last observed value Xn.

B. Syntax
In the sequel, we fix two disjoint countable sets: the set

of program variables and the set of sampling variables.
Informally, program variables are directly related to the control
flow of a program, while sampling variables represent random
inputs sampled from distributions. We assume that every pro-
gram variable is integer-valued, and every sampling variable is
bound to a discrete probability distribution over integers. We
first define several basic notions and then present the syntax.
VALUATIONS. A valuation over a finite set V of variables is
a function ν : V → Z that assigns a value to each variable.
The set of all valuations over V is denoted by ValV .
ARITHMETIC EXPRESSIONS. An arithmetic expression e over
a finite set V of variables is an expression built from the
variables in V , integer constants, and arithmetic operations
such as addition, subtraction, multiplication, exponentiation,
etc. For our theoretical results we consider a general setting for
arithmetic expressions in which the set of allowed arithmetic
operations can be chosen arbitrarily.
PROPOSITIONAL ARITHMETIC PREDICATES. A propositional
arithmetic predicate over a finite set V of variables is a
propositional formula φ built from (i) atomic formulae of
the form e on e′ where e, e′ are arithmetic expressions and
on∈ {<,≤, >,≥}, and (ii) propositional connectives such as
∨,∧,¬. The satisfaction relation |= between a valuation ν and
a propositional arithmetic predicate φ is defined through eval-
uation and standard semantics of propositional connectives,
e.g. (i) ν |= e on e′ iff e on e′ holds when the variables in e, e′

are substituted by their values in ν, (ii) ν |= ¬φ iff ν 6|= φ and
(iii) ν |= φ1 ∧ φ2 (resp. ν |= φ1 ∨ φ2) iff ν |= φ1 and (resp.
or) ν |= φ2.
THE SYNTAX. Our syntax is illustrated by the grammar in
Figure 1. Below, we explain the grammar.
• Variables. Expressions 〈pvar〉 (resp. 〈rvar〉) range over

program (resp. sampling) variables.
• Arithmetic Expressions. Expressions 〈expr〉 (resp.
〈pexpr〉) range over arithmetic expressions over all
program and sampling variables (resp. all program
variables).

• Boolean Expressions. Expressions 〈bexpr〉 range over
propositional arithmetic predicates over program vari-
ables.

• Programs. A program can either be a single assignment
statement (indicated by ‘:=’), or ‘skip’ which is the

〈prog〉 ::= ‘skip’
| 〈pvar〉 ‘:=’ 〈expr〉
| 〈prog〉 ‘;’〈prog〉
| ‘if’ 〈bexpr〉 ‘then’ 〈prog〉 ‘else’ 〈prog〉 ‘fi’
| ‘if’ ‘?’ ‘then’ 〈prog〉 ‘else’ 〈prog〉 ‘fi’
| ‘if’ ‘prob(p)’ ‘then’ 〈prog〉 ‘else’ 〈prog〉 ‘fi’
| ‘while’ 〈bexpr〉 ‘do’ 〈prog〉 ‘od’

〈literal〉 ::= 〈pexpr〉 ‘≤’ 〈pexpr〉 | 〈pexpr〉 ‘≥’ 〈pexpr〉
〈bexpr〉 ::= 〈literal〉 | ¬〈bexpr〉 | 〈bexpr〉 ‘or’ 〈bexpr〉

| 〈bexpr〉 ‘and’ 〈bexpr〉

Fig. 1: The Syntax of Probabilistic Programs

special statement that does nothing, or a conditional
branch (indicated by ‘if 〈bexpr〉’), or a non-deterministic
branch (indicated by ‘if ?’), or a probabilistic branch
(indicated by ‘if prob(p)’, where p ∈ [0, 1] is the
probability of executing the then branch and 1 − p that
of the else branch), or a while-loop (indicated by the
keyword ‘while’), or a sequential composition of two sub-
programs (indicated by semicolon).

PROGRAM COUNTERS. We assign a program counter to each
assignment statement, skip, if branch and while-loop. Intu-
itively, the counter specifies the current point in the execution
of a program. We also refer to program counters as labels.

C. Semantics
To specify the semantics of our probabilistic programs, we

follow previous approaches, such as [5], [9], [7], and use
Control Flow Graphs (CFGs) and Markov Decision Processes
(MDPs) (see [2, Chapter 10]). Informally, a CFG describes
how the program counter and valuations over program vari-
ables change along an execution of a program. Then, based on
the CFG, one can construct an MDP as the semantical model
of the probabilistic program.

Definition 1 (Control Flow Graphs). A Control Flow Graph
(CFG) is a tuple

G = (L, (Vp, Vr),→)

with the following components:
• L is a finite set of labels, which is partitioned into the set
Lb of conditional-branch labels, the set La of assignment
labels, the set Lp of probabilistic labels and the set Ld

of nondeterministic-branch labels;
• Vp and Vr are disjoint finite sets of program and sampling

variables, respectively;
• → is a transition relation in which every member (called

a transition) is a tuple of the form (`, α, `′) for which (i)
` (resp. `′) is the source label (resp. target label) in L
and (ii) α is either a propositional arithmetic predicate if
` ∈ Lb, or an update function u : ValVp ×ValVr → ValVp

if ` ∈ La, or p ∈ [0, 1] if ` ∈ Lp or ? if ` ∈ Ld.
We always specify an initial label `in ∈ L representing the
starting point of the program, and a terminal label `out ∈ L
that represents termination and has no outgoing transitions.

1 : whi le x ≥ 1 do
2 : z := y ;
3 : whi le z ≥ 0 do
4 : i f x < 2 then
5 : x := x+ r

e l s e
6 : sk ip

f i ;
7 : z := z − 1

od ;
8 : y := 4× y ;
9 : x := x− 1

od
1 0 :

Fig. 2: A Probabilistic Program and its Labels

INTUITION FOR CFGS. Informally, a control flow graph speci-
fies how the program counter and values for program variables
change in a program. We have three types of labels, namely
branching, assignment and nondeterministic. The initial label
`in corresponds to the initial statement of the program. A con-
ditional branch label corresponds to a conditional-branching
statement indicated by ‘if φ’ or ‘while φ’ , and leads to the
next label determined by φ without changing the valuation.
An assignment label corresponds to an assignment statement
indicated by ‘:=’ or skip, and leads to the next label right
after the statement and an update to the value of the variable
in the left-hand-side of ‘:=’ that is specified by its right-hand
side. This update can be seen as a function that gives the
next valuation over program variables based on the current
valuation and the sampled values. The statement ‘skip’ is
treated as an assignment statement that does not change values.
A probabilistic branch label corresponds to a probabilistic-
branching statement indicated by ‘if prob(p)’, and leads to
the label of ‘then’ (resp. ‘else’) branch with probability p
(resp. 1−p). A nondeterministic branch labels corresponds to
nondeterministic choice statement indicated by ‘if ?’, and has
transitions to the two labels corresponding to the ‘then’ and
‘else’ branches.

By standard constructions, one can transform any proba-
bilistic program into an equivalent CFG. We refer to [5], [9],
[7] for details.

Example 1. Consider the probabilistic program in Figure 2.
Its CFG is given in Figure 3. In this program, x, y and z are
program variables, and r is a sampling variable that observes
the probability distribution P(r = 1) = P(r = −1) = 0.5. The
numbers 1–10 are the program counters (labels). In particular,
1 is the initial label and 10 is the terminal label. The arcs
represent transitions in the CFG. For example, the arc from 5
to 7 specifies the transition from label 5 to label 7 with the
update function x 7→ x + r that assigns to program variable
x, the value of the expression x + r, obtained by adding the
value of x to a sampled value for the sampling variable r.

THE SEMANTICS. Based on CFGs, we define the semantics of
probabilistic programs through the standard notion of Markov
decision processes. Below, we fix a probabilistic program P

1

x < 2

z ≥ 0

z 7→ y

3

x ≥ 1

2

z < 0

y 7→ 4× y

x 7→ x− 1

z 7→ z − 1

4

5

x 7→ x+ r

x 7→ x

⊥
x < 1

7

8

9

10
x < 1

6

x ≥ 2

Fig. 3: The CFG of the Program in Figure 2

with its CFG in form (1). We define the notion of configura-
tions such that a configuration is a pair (`, ν), where ` is a label
(that represents the current program counter) and ν ∈ ValVp

is
a valuation (that represents the current valuation for program
variables). We also fix a sampling function Υ which assigns to
every sampling variable r ∈ Vr, a discrete probability distri-
bution over Z. Then, the joint discrete probability distribution
Υ over ValVr

is defined as Υ(µ) :=
∏
r∈Vr

(Υ(r)) (µ(r)) for
all valuations µ over sampling variables.

The semantics is described by a Markov decision process
(MDP). Intuitively, the MDP models the stochastic transi-
tions, i.e. how the current configuration jumps to the next
configuration. The state space of the MDP is the set of all
configurations. The actions are τ , th and el and correspond to
the absence of nondeterminism, taking the then-branch of a
nondeterministic-branch label, and taking the else-branch of a
nondeterministic-branch label, respectively. The MDP transi-
tion probabilities are determined by the current configuration,
the action chosen for the configuration and the statement at
the current configuration.

To resolve nondeterminism in MDPs, we use schedulers. A
scheduler σ is a function which maps every history, i.e. all
information up to the current execution point, to a probability
distribution over the actions available at the current state.
Informally, it resolves nondeterminism at nondeterministic-
branch labels by discrete probability distributions over actions
that specify the probability of taking each action.

From the MDP semantics, the behaviour of a probabilistic
program P with its CFG in the form (1) is described as
follows: Consider an arbitrary scheduler σ. The program starts
in an initial configuration (`0, ν0) where `0 = `in. Then in each
step i (i ≥ 0), given the current configuration (`i, νi), the next
configuration (`i+1, νi+1) is determined as follows:

1) a valuation µi of the sampling variables is sampled
according to the joint distribution Υ;

2) if `i ∈ La and (`i, u, `
′) is the transition in→ with source

label `i and update function u, then (`i+1, νi+1) is set to
be (`′, u(νi, µi));

3) if `i ∈ Lb and (`i, φ, `
′), (`i,¬φ, `′′) are the two transi-

tions in→ with source label `i, then (`i+1, νi+1) is set to
be either (i) (`′, νi) if νi |= φ, or (ii) (`′′, νi) if νi |= ¬φ;

4) if `i ∈ Ld and (`i, ?, `
′), (`i, ?, `

′′) are the two transitions
in → with source label `i, then (`i+1, νi+1) is set to be
(`′′′, νi), where the label `′′′ is chosen from `′, `′′ using
the scheduler σ.

5) if `i ∈ Lp and (`i, p, `
′), (`i, 1 − p, `′′) are the two

transitions in → with source label `i, then (`i+1, νi+1)
is set to be either (i) (`′, νi) with probability p, or (ii)
(`′′, νi) with probability 1− p;

6) if there is no transition in → emitting from `i (i.e. if
`i = `out), then (`i+1, νi+1) is set to be (`i, νi).

For a detailed construction of the MDP, see Appendix A.
RUNS AND THE PROBABILITY SPACE. A run is an infinite
sequence of configurations. Informally, a run {(`n, νn)}n∈N0

specifies that the configuration at the n-th step of a program
execution is (`n, νn), i.e. the program counter (resp. the valua-
tion for program variables) at the n-th step is `n (resp. νn). By
construction, with an initial configuration c (as the initial state
of the MDP) and a scheduler σ, the Markov decision process
for a probabilistic program induces a unique probability space
over the runs (see [2, Chapter 10] for details). In the rest of
the paper, we denote by Pσc the probability measure under the
initial configuration c and the scheduler σ, and by Eσc (−) the
corresponding expectation operator.

III. PROBLEM STATEMENT

In this section, we define the compositional verification
problem of almost-sure termination over probabilistic pro-
grams. Below, we fix a probabilistic program P with its CFG
in the form (1). We first define the notion of almost-sure
termination. Informally, the property of almost-sure termina-
tion requires that a program terminates with probability 1. We
follow the definitions in [5], [15], [9].

Definition 2 (Almost-sure Termination). A run ω =
{(`n, νn)}n∈N0

of a program P is terminating if `n = `out
for some n ∈ N0. We define the termination time as a random
variable T such that for a run ω = {(`n, νn)}n∈N0 , T (ω) is
the smallest n such that `n = `out if such an n exists (this case
corresponds to program termination), and ∞ otherwise (this
corresponds to non-termination). The program P is said to be
almost-surely (a.s.) terminating under initial configurations c
if Pσc (T <∞) = 1 for all schedulers σ.

Lemma 1. Let the program P be the sequential (resp. con-
ditional) composition of two other programs P1 and P2,
i.e. P := P1;P2 (resp. P := if − then P1 else P2 fi),
and assume that both P1 and P2 are a.s. terminating for any
initial value. Then, P is also a.s. terminating for any initial
value. See Appendix B for a detailed proof.

Remark 1. The lemma above shows that a.s. termination is
closed under branching and sequential composition. Hence,
in this paper, we only consider the major problem of compo-
sitional verification for a.s. termination of nested while loops.

We now define the problem of compositional verification of
a.s. termination.

Definition 3 (Compositional Properties). We first describe
the notion of compositionality in general. Consider a com-

positional operator op (e.g. sequential composition or loop
nesting) over general objects. We say that a property φ is op-
compositional under a side condition ψ if we have

(ψ(O,O′) ∧ φ(O) ∧ φ(O′))⇒ φ(op(O,O′))

holds for all objects O,O′. In other words, the property φ
is op-compositional if the following assertion holds: for all
objects O,O′, if the side condition ψ and the property φ
hold for O,O′, then the property also holds on the (bigger)
composed object op(O,O′).

COMPOSITIONAL VERIFICATION. A compositional property
φ can be proven by a natural divide-and-conquer approach:
to prove φ for op(O,O′), we first prove the same prop-
erty on the (smaller) objects O and O′ and then prove a
side condition ψ(O,O′). Using compositional properties is
an effective method for mitigating the state-space explosion
problem usually arising in real-world verification problems.
THE ALMOST-SURE TERMINATION PROPERTY. In this paper,
we are concerned with a.s. termination of while-loops. Our aim
is to prove this based on the assumption that the loop body is
a.s. terminating for every initial value. We consider TM(P) to
be the target property expressing that the probabilistic program
P is a.s. terminating for every initial value, and we consider
the compositional operator to be the while-loop operator
while, i.e. given a probabilistic program P and a propositional
arithmetic predicate G (as the loop guard), the probabilistic
program while(G,P) is defined as while G do P od. Since
P might itself be another while-loop, our setting encompasses
probabilistic nested loops of any depth.

We focus on the compositional verification of TM(−) under
the while-loop operator and solve the problem in the following
steps: First, we establish a sufficient side condition ψ so that
the assertion

(ψ(G,P) ∧ TM(P))⇒ TM(while(G,P)) (1)

holds for all probabilistic programs P and propositional arith-
metic predicates G1. Second, based on the proposed side
conditions, we explore possible algorithmic approaches.

IV. PREVIOUS APPROACHES

In this section, we describe previous approaches for com-
positional verification of the (a.s.) termination property for
(probabilistic) while-loops. We first present the variant rule
from the Floyd-Hoare logic [16], [29] that is sound for non-
probabilistic programs. Then we describe the probabilistic
extension proposed in [15].

A. Classical Approach for Non-probabilistic Programs

Consider a non-probabilistic while-loop

P = while G do P1; . . . ;Pn od

where the programs P1, . . . , Pn may contain nested while-
loops and are assumed to be terminating. The fundamental

1Note that we do not define or consider any assertion of the form TM(G),
because checking the condition G always takes finite time.

approach for compositional analysis is the following classical
variant rule (V-rule) from the Floyd-Hoare logic [16], [29]:

V-RULE

∀k : Pk terminates and {R = z}Pk{R � z}
∃k {R = z}Pk{R ≺ z}

while G do P1; . . . ;Pn od terminates

In the V-rule above, R is an arithmetic expression over
program variables that acts as a ranking function. The relation
≺ represents a well-founded relation when restricted to the
loop guard G, while the relation � is the “non-strict” version
of ≺ such that (i) a ≺ b ∧ b � c ⇒ a ≺ c and (ii)
a � b ∧ b ≺ c ⇒ a ≺ c. Then, the premise of the rule
says that (i) for all Pk, the value of R after the execution of
Pk does not increase in comparison with its initial value z
before the execution, and (ii) there is some k such that the
execution of Pk leads to a decrease in the value of R. If
{R = z}Pk{R � z} holds, then Pk is said to be unaffecting
for R. Similarly, if {R = z}Pk{R ≺ z} holds, then Pk is
ranking for R. Informally, the variant rule says that if all Pk’s
are unaffecting and there is at least one Pk that is ranking,
then P terminates.

The variant rule is sound for proving termination of non-
probabilistic programs, because the value of R cannot be
decremented infinitely many times, given that the relation ≺
is well-founded when restricted to the loop guard G.

B. A Previous Approach for Probabilistic Programs

Fioriti and Hermanns’s approach in [15] can be viewed as
an extension of the abstract V-rule, which is a proof system
for a.s. terminating property. We call this abstract rule the
FHV-rule:

FHV-RULE

∀k : Pk terminates and {R = z}Pk{R � z}
∃k {R = z}Pk{R ≺ z}

while G do P1; . . . ;Pn od terminates

Note that while the FHV-rule looks identical to the V-rule,
semantics of the Hoare triple in the FHV-rule are different
from that of the V-rule.

The FHV-rule is a direct probabilistic extension of the V-
rule through the notion of ranking supermartingales (RSMs,
see [5], [9], [7]). RSMs are discrete-time stochastic processes
that satisfy the following conditions: (i) their values are
always non-negative; and (ii) at each step of the process,
the conditional expectation of the value is decreased by at
least a positive constant ε. The decreasing and non-negative
nature of RSMs ensures that with probability 1 and in finite
expected number of steps, the value of any RSM hits zero.
When embedded into programs through the notion of RSM-
maps (see e.g. [5], [9]), RSMs serve as a sound approach
for proving termination of probabilistic programs within finite
expected time, which implies a.s. termination as well.

In [15], the R in the FHV-rule is a propositionally linear
expression that represents an RSM, while ≺ is the well-
founded relation on non-negative real numbers such that x ≺ y
iff x ≤ y − ε for some fixed positive constant ε and � is
interpreted simply as ≤. Unaffecting and ranking conditions
are extended to the probabilistic setting through conditional
expectation (see Dec≤(−,−), Dec<(−,−) on [15, Page 9]).

Concretely, we say that (i) Pk is unaffecting if the expected
value of R after the execution of Pk is no greater than its
initial value before the execution; and (ii) Pk is ranking if the
expected value of R after the execution of Pk is decreased by
at least ε compared with its initial value before the execution.
Note that in [15], R is also called a compositional RSM.

Crucial Issue 1 (Difference-boundedness and Integrability).
The authors of [15] accurately observed that simply extend-
ing the variant rule with expectation is not enough. They
provided a counterexample in [15, Section 7.2] that is not
a.s. terminating but has a compositional RSM. The problem
is that random variables may not be integrable after the
execution of a probabilistic while-loop. In order to resolve this
integrability issue, they introduced the difference-boundedness
condition (see Section II) for conditional expectation. Then,
using the Optional Sampling/Stopping Theorem, they proved
that, under the difference-boundedness condition, the random
variables are integrable after the execution of while-loops.
To ensure the difference-bounded condition, they established
sound inference rules (see [15, Table 2 and Theorem 7.6]).
With the integrability issue resolved, [15] finally claims that
compositional ranking supermartingales provide a sound ap-
proach for proving a.s. termination of probabilistic while-loops
(see [15, Theorem 7.7]).

V. A COUNTEREXAMPLE TO THE FHV-RULE

Although [15] takes care of the integrability issue, we show
that, unfortunately, the FHV-rule is still not sound. We present
an explicit counterexample on which the FHV-rule proves a.s.
termination, while the program is actually not a.s. terminating.

Example 2 (The Counterexample). Consider the probabilistic
program in Figure 2 (Page 3). We will show that this program
is not a.s. terminating. Recall that x, y, z are program variables
and r is a sampling variable that observes P(r = 1) =
P(r = −1) = 0.5. Intuitively, the program variable x models
a random walk with one absorbing barrier at x = 2 in the
inner loop, as indicated by the loop guard x < 2. By the
structure of the outer loop, the program does not terminate
only if, after a finite number of executions of the inner loop,
the random walk stops at the absorbing barrier for every next
iteration of the inner loop. Note that after each execution of
the inner loop, the value of x does not increase in expectation.
Furthermore, the value of x is decreased by one at the end of
the loop body of the outer loop. Thus, the expected value of
x decreases by 1 after each outer-loop iteration. As the outer
loop guard is x ≥ 1, this suggests that the program should be
a.s. terminating. In contrast, we show that this program is not
a.s. terminating (see Proposition 1 below).

Proposition 1. The probabilistic program in Example 2 (Fig-
ure 2, Page 3) is not a.s. terminating. Specifically, it does
not terminate with probability 1 when the initial value for the
program variable x is 1 and the initial value for the program
variable y is sufficiently large.

Proof. The program does not terminate only if the value of x
in label 9 is 2 after every execution of the inner loop. The key
point is to prove that in the inner loop, the value of the program

variable x will be 2 with higher and higher probability when
the value of y increases. Consider the random walk in the inner
loop. We abstract the values of x as three states ‘≤ 0’,‘1’ and
‘2’. From the structure of the program, we have that if we
start with the state ‘1’, then after the inner loop, the successor
state may transit to either ‘≤ 0’, ‘1’ or ‘2’. If the successor
state is either ‘≤ 0’ or ‘1’, then the outer-loop will terminate
immediately. However, there is a positive probability that the
successor state is ‘2’ and the outer-loop does not terminate in
this loop iteration (as the value of x will be set back to 1).
This probability depends on the steps of the random walk in
the inner loop (determined by the value of y), and we show
that it is higher and higher when the value of y increases.
Thus, after more and more executions of the outer loop, the
value of y continues to increase exponentially, and with higher
and higher probability the program would be not terminating
in the current execution of the loop body.

The detailed demonstration is as follows: W.l.o.g, we as-
sume that x = 1 at every beginning of the inner loop. The
values of x at label 9 are the results of the execution of inner
loop with the same initial value, hence they are independent
mutually. We now temporarily fix the value ŷ for y at the
beginning of the outer-loop body and consider the probability
that the value of x in label 9 is not 2. We use the random
variable X̄ŷ to describe the value of x at label 9 and analyze
the situation X̄ŷ 6= 2 after the (ŷ loop iterations of) the
inner loop. Suppose that the ŷ sampled values for r during
the execution of the inner loop consist of m instances of
−1 and (ŷ − m) instances of 1. Since X̄ŷ 6= 2, we have
m ≥ ŷ

2 . Then, there are
(
ŷ
m

)
−
(

ŷ
m+1

)
different possible

paths that avoid being absorbed by the barrier. The reason
is that the only way to avoid absorption is to always have
more −1’s than 1’s in any prefix of the path. Hence, the
number of possible paths is the Catalan number. so we have
P(X̄ŷ = 2) = 1− 1

2ŷ

∑
ŷ
2≤m≤ŷ

(
(
ŷ
m

)
−
(

ŷ
m+1

)
) = 1− 1

2ŷ

(ŷ

d ŷ2 e

)
.

Since
√

2πnn+
1
2 e−n ≤ n! ≤ enn+

1
2 e−n for n ≥ 1 (ap-

plying Stirling’s approximation), we have 1 − 1
2ŷ

(ŷ

d ŷ2 e

)
=

1 − ŷ!

2ŷ(ŷ2 !)
2
≥ 1 − eŷŷ+

1
2 e−ŷ

2ŷ(
√
2π ŷ2

ŷ
2
+ 1

2 e−
ŷ
2)2

= 1 − e
π
√
ŷ

for every

even ŷ. Note that P(T = ∞) =
∏
i∈N0

P(X̄ŷi = 2), where
ŷi is the value of y at the i-th arrival to the label 9 and
recall that ŷ0 is sufficiently large. Furthermore, from the
program we have ŷi = 4i · ŷ0. Letting d := e

π
√
ŷ0

, we
obtain that P(T = ∞) =

∏
i∈N0

P(X̄ŷi = 2) =
∏
i∈N0

(1 −
1

2ŷi

(ŷi

d ŷi2 e

)
) ≥

∏
i∈N0

(1 − d√
4i

). A well-known convergence
criterion for infinite products is that

∏
i∈N0

(1− qn) converges
to a non-zero number if and only if

∑
i∈N0

qn converges for
0 ≤ qn < 1. Since

∑
i∈N0

d
2i converges, we have the infinite

product
∏
i∈N0

(1− d
2i) converges to a non-zero number. Thus,

P(T =∞) > 0.

We now show that, using the FHV-rule proposed in [15],
one can deduce that the probabilistic program in Example 2
is a.s. terminating.

Proposition 2. The FHV-rule in [15] derives that the proba-
bilistic program in Example 2 is a.s. terminating.

Proof. To see that the FHV-rule derives a.s. termination on
this example, we show that the expression x is a compo-
sitional RSM that satisfies the integrability and difference-
boundedness conditions. First, we can show that the program
variable x is integrable and difference-bounded at every label.
For example, for assignment statements at labels 2, 5, 7, 8 and
9 in Figure 2, the expression x is integrable and difference-
bounded after these statements simply because either they do
not involve x at the left-hand-side or the assignment changes
the value of x by 1 unit. Similarly, within the nested loop, the
loop body (from label 4 to label 7) causes bounded change to
the value of x, so the expression x is integrable after the inner
loop (using the while-rule in [15, Table 2]). Second, it is easy
to see that the expression x is a compositional RSM as from
[15, Definition 7.1] we have the following:
• The value of x does not increase after the assignment

statements z := y and y := 4× y;
• In the loop body of the nested loop, the expected value

of x does not increase, given that it does not increase in
any of the conditional branches;

• By definition of Dec≤(−,−), the expected value of x
does not increase after the inner loop;

• The value of x is decreased by 1 after the last assignment
statement x := x− 1.

Thus, by applying [15]’s main theorem for compositionality
([15, Theorem 7.7]), we can conclude that the program should
be a.s. terminating.

From Proposition 1 and Proposition 2, we establish the main
theorem of this section, i.e. that the FHV-rule is not sound.
For a detailed explanation of the unsoundness of the FHV-rule,
see Appendix C.

Theorem 1. The FHV-rule, i.e. the probabilistic extension of
the V-rule as proposed in [15], is not sound for a.s. termination
of probabilistic programs, even if we require the compositional
RSM R to be difference-bounded and integrable.

Note that integrability is a very natural requirement in
probability theory. Hence, Theorem 1 states that a natural
probabilistic extension of the variant rule is not sufficient for
proving a.s. termination of probabilistic programs.

VI. OUR COMPOSITIONAL APPROACH

In the previous section, we showed that the FHV-rule is not
sound for proving a.s. termination of probabilistic programs.
In this section, we show how the FHV-rule can be strengthened
to a sound approach.

Crucial Issue 2 (Non-negativity of RSMs). The reason why
the approach of [15] is not sound lies in the fact that
ranking supermartingales (RSMs) are required to be non-
negative stochastic processes (see e.g. [24, Example 3] for
a counterexample, showing that the non-negativity condition
is necessary). In the classical V-rule for non-probabilistic
programs, non-negativity is not required, given that negative
values in a non-probabilistic setting simply mean that R is
negative. However, in the presence of probability, negative
values only mean that the expected value of the expression
R is negative. Thus, it is possible that the expected value of

R decreases and becomes arbitrarily negative, tending to −∞,
while simultaneously the value of R increases with higher and
higher probability. In our counterexample (Example 2), the
expected value of x decreases after each outer-loop iteration,
however the probability that the value of x remains the same
increases with the value of y. More specifically, the expected-
value decrease results from the fact that after the inner loop,
the value of x may get arbitrarily negative towards −∞.

The general idea of our approach is to require the expected
value of the expression R in the variant rule to always
decrease by at least a positive amount ε. We call this the
strict decrease condition. This condition is in contrast with
the FHV-rule that allows the value of R at certain statements
to remain the same (in expectation). We show that after this
strengthening, the resulting rule is sound for compositional
verification of a.s. termination over probabilistic programs.
Our main mathematical tools are the concentration inequalities
(e.g. [31]) that give tight upper bounds on the probability that
a stochastic process deviates from its mean value.

Instead of following an inference-rule-based method, we
present our approach using martingales. This is because
martingale-based approaches often lead to completely auto-
mated methods (e.g. [5], [9], [7]), while rule-based approaches
mostly result in semi-automatic methods that require the use
of interactive theorem provers (e.g. [28], [36], [34]). To clarify
that our approach is indeed a strengthening of the FHV-rule
in [15], we first write the rule-based approach of [15] in an
equivalent martingale-based format.

Below, we fix a probabilistic program P ′ and a loop guard
G and let P := while(G,P ′). For the purpose of compo-
sitional verification, we assume that P ′ is a.s. terminating.
We recall that T is the termination-time random variable
(see Definition 2) and Υ is the joint discrete probability
distribution for sampling variables. We also use the standard
notion of invariants, which are over-approximations of the set
of reachable configurations at every label.

INVARIANTS. An invariant is a function I : L → 2ValVp ,
such that for each label ` ∈ L, the set I(`) at least contains all
valuations ν of program variables for which the configuration
(`, ν) can be visited in some run of the program. An invariant
I is linear if every I(`) is a finite union of polyhedra.

We can now describe the FHV-rule approach in [15] using
V-rule supermartingale maps. A V-rule supermartingale map
w.r.t an invariant I is a function R : ValVp

→ R satisfying the
following conditions:
• Non-increasing property. The value of R does not in-

crease in expectation after the execution of any of the
statements in the outer-loop body. For example, the non-
increasing condition for an assignment statement ` ∈ La

with (`, u, `′) ∈ → (recall that u is the update function)
is equivalent to

∑
µ∈ValVr Υ(µ) ·R(u(ν, µ)) ≤ R(ν) for

all ν ∈ I(`). This condition can be similarly derived for
other types of labels.

• Decrease property. There exists a statement that will
definitely be executed in every loop iteration and will
cause R to decrease (in expectation). For example, the
condition for strict decrease at an assignment statement

` ∈ La with (`, u, `′) ∈ → says that for all ν ∈ I(`) we
have

∑
µ∈ValVr Υ(µ) · R(u(ν, µ)) ≤ R(ν) − ε, where ε

is a fixed positive constant.
• Well-foundedness. The values of R should be bounded

from below when restricted to the loop guard. Formally,
this condition requires that for a fixed constant c and all
ν ∈ I(`) such that ν |= G, we have R(ν) ≥ c.

• Conditional difference-boundedness. The conditional ex-
pected change in the value of R after the execution of
each statement is bounded. For example, at an assignment
statement ` ∈ La with (`, u, `′) ∈ →, this condition
says that there exists a fixed positive bound d, such that∑
µ∈ValVr Υ(µ)·|R(u(ν, µ))−R(ν)| ≤ d for all ν ∈ I(`).

The purpose of this condition is to ensure the integrability
of R (see [15, Lemma 7.4]).

We strengthen the FHV-rule of [15] in two ways. First,
as the major strengthening, we require that the expression R
should strictly decrease in expectation at every statement, as
opposed to [15] where the value of R is only required to
decrease at some statement. Second, we slightly extend the
conditional difference-boundedness condition and require that
the difference caused in the value of R after the execution
of each statement should always be bounded, i.e. we require
difference-boundedness not only in expectation, but in every
run of the program.

The core notion in our strengthened approach is that of
descent supermartingale maps (DSM-maps). A DSM-map is
a function representing a decreasing amount (in expectation)
at each step of the execution of the program.

Definition 4 (Descent Supermartingale Maps). A descent
supermartingale map (DSM-map) w.r.t real numbers ε > 0,
c ∈ R, a non-empty interval [a, b] ⊆ R and an invariant I
is a function η : L × ValVp

→ R satisfying the following
conditions:
(D1) For each ` ∈ La with (`, u, `′) ∈ → , it holds that

– a ≤ η(`′, u(ν, µ)) − η(`, ν) ≤ b for all ν ∈ I(`) and
µ ∈ ValVr ;

–
∑
µ∈ValVr Υ(µ) · η(`′, u(ν, µ)) ≤ η(`, ν) − ε for all

ν ∈ I(`);
(D2) For each ` ∈ Lb and (`, φ, `′) ∈ →, it holds that a ≤

η(`′, ν)−η(`, ν) ≤ min{−ε, b} for all ν ∈ I(`) such that
ν |= φ;

(D3) For each ` ∈ Ld and (`, ?, `′) ∈ →, it holds that a ≤
η(`′, ν)− η(`, ν) ≤ min{−ε, b} for all ν ∈ I(`);

(D4) For each ` ∈ Lp with (`, p, `′), (`, 1 − p, `′′) ∈ →, it
holds that
– a ≤ η(`′, ν)− η(`, ν) ≤ b for all ν ∈ I(`),
– a ≤ η(`′′, ν)− η(`, ν) ≤ b for all ν ∈ I(`),
– p · η(`′, ν) + (1 − p) · η(`′′, ν) ≤ η(`, ν) − ε for all
ν ∈ I(`);

(D5) For all ν ∈ I(`in) such that ν |= G (recall that G is the
loop guard), it holds that η(`in, ν) ≥ c.

Informally, R is a DSM-map if:
(D1)–(D4) Its value decreases in expectation by at least ε

after the execution of each statement (the strict decrease
condition), and its change of value before and after

each statement falls in [a, b] (the strengthened difference-
boundedness condition);

(D5) Its value is bounded from below by c at every entry into
the loop body (the well-foundedness condition).

By the decreasing nature of DSM-maps, it is intuitively true
that the existence of a DSM-map implies a.s. termination.
However, this point is non-trivial as counterexamples will
arise if we drop the difference-boundedness condition and only
require the strict decrease condition (see e.g. [24, Example 3]).
In the following, we use the difference-boundedness condition
to derive a concentration property on the termination time
(see [9]). Under this concentration property, we prove that
DSM-maps are sound for proving a.s. termination.

We first present a well-known concentration inequality
called Hoeffding’s Inequality.

Theorem (Hoeffding’s Inequality [23], [9]). Let {Xn}n∈N0

be a supermartingale w.r.t some filtration {Fn}n∈N and
{[an, bn]}n∈N be a sequence of intervals with positive length
in R. If X0 is a constant random variable and Xn+1 −Xn ∈
[an, bn] a.s. for all n ∈ N0, then

P(Xn −X0 ≥ λ) ≤ exp(− 2λ2∑n
k=1(bk − ak)2

)

for all n ∈ N0 and λ > 0.

Hoeffding’s Inequality states that for any difference-
bounded supermartingale, it is unlikely that its value Xn at
the n-th step exceeds its initial value X0 by much (measured
by λ).

Using Hoeffding’s Inequality, we prove the following
lemma.

Lemma 2. Let {Xn}n∈N0
be a supermartingale w.r.t some

filtration {Fn}n∈N and [a, b] be an interval with positive length
in R. If X0 is a constant random variable, it holds that
E(Xn+1|Fn) ≤ Xn−ε for some ε > 0 and Xn+1−Xn ∈ [a, b]
a.s. for all n ∈ N0, then for any λ ∈ R,

P(Xn −X0 ≥ λ) ≤ exp(−2(λ+ n · ε)2

n(b− a)2
)

for all sufficiently large n.

Proof. Let Yn = Xn + n · ε, then a + ε ≤ Yn+1 − Yn =
Xn+1 −Xn + ε ≤ b+ ε. Given that

E(Yn+1|Fn) = E(Xn+1|Fn) + (n+ 1) · ε
≤ Xn + n · ε
= Yn,

we conclude that {Yn}n∈N0
is a supermartingale. Now we

apply Hoeffding’s Inequality for all n such that λ+ n · ε > 0,
and we get

P(Xn −X0 ≥ λ) = P(Yn − Y0 ≥ λ+ n · ε)

≤ exp(−2(λ+ n · ε)2

n(b− a)2
)

Thus, we have the following corollary by calculation.

Corollary 1. Let {Xn}n∈N0
be a supermartingale satisfying

the conditions of Lemma 2. Then, limn→+∞
∑+∞
k=n P(Xk −

X0 ≥ λ) = 0.

We are now ready to prove the soundness of DSM-maps.

Theorem 2 (Soundness of DSM-maps). If there exists a
DSM-map η for P , then for any initial valuation ν∗ ∈ ValVp

and for all schedulers σ, we have Pσν∗(T <∞) = 1.

Proof Sketch. Let ε, c, a, b be as defined in Definition 4. For a
given program P with its DSM-map η, we define the stochastic
process {Xn = η(`n, νn)}n∈N0 where (`n, νn) is the pair
of random variables that represents the configuration at the
n-th step of a run. We also define the stochastic process
{Bn}n∈N0

in which each Bn represents the number of steps
in the execution of P until the n-th arrival at the initial
label `in. Then, XBn is the random variable representing
the value of η at the n-th arrival at `in. Recall that, by
condition (D5) in the definition of DSM-maps, the program
stops if XBn < c. We now prove the crucial property that
P(T ′ < ∞) ≥ 1 − limn→∞ P(XBn ≥ c) = 1, where T ′

is the random variable that measures the number of outer-
loop iterations in a run. We want to estimate the probability
of P(XBn ≥ c) which is bounded by

∑+∞
k=n P(Xk ≥ c).

Note that Xn satisfies the conditions of Lemma 2. We use
Corollary 1 to bound the probability. Since P(T < ∞) = 1
iff P(T ′ < ∞) = 1 (as P ′ is a.s. terminating), we obtain
that P(T < ∞) = 1. For a more detailed proof, see
Appendix D.

We illustrate an example application of Theorem 2.

Example 3. Consider the following probabilistic while-loop.

1 : whi le x ≥ 1 do
2 : y := r;
3 : whi le y ≥ 1 do
4 : i f ? then
5 : i f prob (6 / 1 3) then
6 : x := x+ 1

e l s e
7 : x := x− 1

f i
e l s e

8 : i f prob (4 / 1 3) then
9 : x := x+ 2

e l s e
10 : x := x− 1

f i
f i ;

11 : y := y − 1
od

od
12 :

where the probability distribution for the sampling variable r
is given by P(r = k) = 1/9 for k = 1, 2, . . . , 9.

The while-loop models a variant of gambler’s ruin based
on the mini-roulette game with 13 slots [8]. Initially, the
gambler has x units of money and he continues betting until
he has no money. At the start of each outer-loop iteration, the
number of gambling rounds is chosen uniformly at random

from 1, 2, . . . , 9 (i.e. the program variable y is the number of
gambling rounds in this iteration). Then, at each round, the
gambler takes one unit of money, and either chooses an even-
money bet that bets the ball to stop at even numbers between
1 and 13, which has a probability of 6

13 to win one unit of
money (see the nondeterministic branch from label 5 to label
7), or a 2-to-1 bet that bets the ball to stop at 4 selected
slots and wins two units of money with probability 4

13 (see
the branch from label 8 to label 10). During each outer-loop
iteration, it is possible that the gambler runs out of money
temporarily, but the gambler is allowed to continue gambling
in the current loop iteration, and the program terminates only
if he depletes his money when the program is back to the start
of the outer-loop.

An invariant I for the program is as follows:

I(`) :=


true if ` = 1

x ≥ 1 if ` = 2

x ≥ −8 ∧ 0 ≤ y ≤ 9 if ` = 3

x ≥ −7 ∧ 1 ≤ y ≤ 9 if 4 ≤ ` ≤ 11

.

For this program, we can define a DSM-map η as follows:

η(`, (x, y)) :=



x if ` = 1

x− 4/299 if ` = 2, 12

x− 3/299 · y + 7/299 if ` = 3

x− 3/299 · y + 3/299 if ` = 4

x− 3/299 · y − 1/299 if ` = 5, 8

x− 3/299 · y + 317/299 if ` = 6

x− 3/299 · y − 281/299 if ` = 7, 10

x− 3/299 · y + 616/299 if ` = 9

x− 3/299 · y + 14/299 if ` = 11

where the ‘x’ (resp. ‘y’) represents the value for the program
variable x (resp. y). One can verify that η is a DSM-map
by choosing ε = 4/299, a = −280/299, b = 617/299 and
c = 1. The minimal and maximal one-step differences of η
are met in the transitions from labels 9 and 10 to label 11.
Thus, the differences are in the interval [−1 + 19/299, 2 +
19/299] = [a, b], and the expected value of η decreases by
at least 4/299 = ε in each step. Also, if the outer loop is
not stopped, then x ≥ 1 = c at the initial label. The other
conditions can be similarly checked. Thus, η is a DSM-map
for P . By applying Theorem 2, we conclude that the program
terminates a.s. under any initial valuation.

We now compare the notion of DSM-maps with
RSMs/RSM-maps [5], [9], [7] that have been successfully ap-
plied to prove finite expected termination time of probabilistic
programs.

Remark 2 (Comparison with RSMs). Our notion of DSM-
maps is slightly (but crucially) different from RSMs [5], [9],
[7]. The difference is that a DSM-map does not require a
global lower bound on its values, but instead requires the
difference-boundedness condition, while an RSM requires its
values to be non-negative, but has no difference-boundedness
condition. As demonstrated in Theorem 2 and the previous
section, this crucial difference leads to the fact that DSM-maps

rather than RSMs serve as a sound approach for compositional
verification of a.s. termination over probabilistic programs.

Remark 3 (Comparison with [15]). We remark the reason why
the approach in [15] is not sound while ours is. This has to do
with Crucial Issue 2 (Page 7). The approach in [15] neglects
the fact that RSMs have to be non-negative and is therefore not
sound. In contrast, our approach uses DSM-maps which are
not restricted to be non-negative and are sound for proving a.s.
termination of probabilistic programs. As we have described
previously, our approach of DSM-maps mainly strengthens the
approach in [15] with the strict decrease condition at every
statement. In our approach of DSM-maps, this situation is
avoided through concentration inequalities, which guarantee
that the probability of the value of R tending unboundedly to
−∞ is exponentially decreasing (see Lemma 2).

Remark 4 (Real-valued Variables). Although we illustrate our
approach on integer-valued variables, we show that it also
works for real-valued variables. First, we directly extend the
notion of DSM-maps to real-valued variables, where we only
replace the discrete summation

∑
µ∈ValVr Υ(µ) ·η(`′, u(ν, µ))

to an integral. Then we can prove the soundness of DSM-maps
and construct the synthesis algorithm in the same way as for
the integer case.

PROOF SYSTEM FOR DSM. We construct a proof system D,
in the style of Hoare logic, for the DSM approach. Let R
and R′ be arithmetic expressions over program variables. The
Hoare triple {R}P{R′} indicates that for the program P , there
exists a DSM η such that η(`Pin, ¯

) = R and η(`Pout, ¯
) = R′.

We have axioms for empty statement and assignments, rule of
sequential composition, rule of conditional composition and
the rule of while-loop composition in the proof system. We
show the inference rule for while-loop composition here:

DSM WHILE RULE

{R}P{R′}, G→ R′ ≥ c,
G→ a ≤ R−R′ ≤ −ε,

and ¬G→ a ≤ R′′ −R′ ≤ −ε
{R′} while G do P od {R′′}

Theorem 3. The proof system D is sound for a.s. termination
of probabilistic programs.

Proof. We only consider the DSM while rule. Let Q =
while G do P od . Suppose that {R}P{R′} and the DSM of
P is η, then we construct a DSM η′ by defining η′(`Qin, ¯

) :=
R′, η′(`Qout, ¯

) := R′′ and η′(`,
¯
) := η(`,

¯
) for all labels ` in

the loop body. It is easy to check that η′ is a valid DSM, and
we have {R′}Q{R′′}. By Theorem 2, we have the soundness
of proof system D. For the complete proof system and a more
detailed proof, see Appendix E

We argue that the approach of DSM-maps is a compositional
approach for proving a.s. termination.

Remark 5 (Compositionality of the DSM approach). As
shown in the proof above, in the DSM while rule, the existence
of the expressions R, R′ and R′′ implies the existence of the
DSM-map η′. Hence, DSM-maps can be used as side condi-
tions of a compositional approach for proving a.s. termination,

in the sense that the existence of the DSM-map η′ serves as
the ψ in (1). Notice that the proof system D alone cannot be
used as a tool to prove the a.s. termination property, since the
goal is the existence of the DSM-map rather than a concrete
DSM-map.

VII. ALGORITHMIC METHODS

In this section, we provide an algorithm for synthesizing
linear DSM-maps. Recall that the existence of DSM-maps
leads to the compositionality of a.s. termination over prob-
abilistic while-loops. Since DSM-maps are similar to RSM-
maps [5], [9], [7], we can directly extend previous algorithms
for synthesizing linear/polynomial RSM-maps [5], [9], [7] to
linear DSM-maps. The key mathematical tool used in our
algorithm is the well-known Farkas’ Lemma.

Theorem (Farkas’ Lemma [14], [39]). Let A ∈ Rm×n, b ∈
Rm, c ∈ Rn and d ∈ R. Assume that {x ∈ Rn | Ax ≤ b} 6=
∅. Then

{x ∈ Rn | Ax ≤ b} ⊆ {x ∈ Rn | cTx ≤ d}

iff there exists y ∈ Rm such that y ≥ 0, ATy = c and
bTy ≤ d.

THE FARKAS’ LINEAR ASSERTIONS Φ. Farkas’ Lemma
transforms the inclusion testing of systems of linear in-
equalities into an emptiness problem. Given a polyhedron
H = {x ∈ Rn | Ax ≤ b} as in the statement of Farkas’
Lemma (Theorem VII), we define the predicate Φ[H, c, d](ξ)
(which is called a Farkas’ linear assertion) for Farkas’ Lemma
by

Φ[H, c, d](ξ) := (ξ ≥ 0) ∧
(
ATξ = c

)
∧
(
bTξ ≤ d

)
where ξ is a variable representing a column vector of dimen-
sion m.

Below, we fix an input probabilistic while-loop P with a
linear invariant I . We assume that P is affine, i.e. (i) every
assignment statement in P has an affine expression at its
right-hand side; and (ii) the loop guards of the conditional
branches of P are in disjunctive normal form and each atomic
proposition is a comparison between affine expressions.
The Synthesis Algorithm for DSM-maps. Our algorithm for
synthesizing DSM-maps is consists of the following four steps:

1) Template. The algorithm establishes a template η for a
DSM-map by setting η(`,x) := (α`)

Tx + β` for each
` ∈ L and x ∈ Z|Vp|, where α` is a vector of scalar
variables and β` is a scalar variable, both representing
unknown coefficients.

2) Variables for Parameters in a DSM-map. The algorithm
sets up a scalar variable ε, two scalar variables a, b and a
scalar variable c. These variables directly correspond to
the parameters for a DSM-map (see Definition 4).

3) Farkas’ Linear Assertions. From the template, we estab-
lish Farkas’ linear assertions from the conditions (D1)–
(D4). For example, the condition (D1) at a label ` requires
that for the template η, it holds that

∑
µ∈ValVr Υ(µ) ·

η(`′, u(ν, µ)) ≤ η(`, ν) − ε for all ν ∈ I(`). Since the
template η is linear and we have affine assignments, the

inequality
∑
µ∈ValVr Υ(µ) · η(`′, u(ν, µ)) ≤ η(`, ν) − ε

would also be linear. Then (D1) is essentially an in-
clusion of the set I(`) in the halfspace represented by∑
µ∈ValVr Ῡ(µ) · η(`′, u(ν, µ)) ≤ η(`, ν)− ε, and can be

equivalently transformed into a group of Farkas’ linear
assertions, given that I(`) is a finite union of polyhedra.

4) Solution through Linear Programming. We group the con-
structed Farkas’ linear assertions together in a conjunctive
manner so that we have a system of linear inequalities
over scalar variables (including template variables, pa-
rameter variables and fresh variables from Farkas’ linear
assertions). Then, we solve for the variables through
linear programming. If we can get a solution for the
scalar variables, then we get a DSM-map that witnesses
the a.s. termination of the input program; otherwise, the
algorithm cannot prove the a.s. termination property and
outputs “fail”.

Theorem 4. Linear DSM-maps can be computed in polyno-
mial time.

Proof. It is straightforward to check that Steps (1)–(3) of
the Synthesis algorithm have polynomial runtime. Hence,
the resulting LP, which should be solved in Step (4), has
polynomial size. It is well-known that LPs can be solved in
polynomial time.

Example 4. We now illustrate an application of our synthesis
algorithm on the program in Example 3.
• First, we set the template function η(`,x) = (α`)

Tx+β`
for every label `, where x = (x, y)T is the vector of
program variables and the scalar variable β` together with
the coordinate variables in the vector α` are unknown
coefficients at a label `.

• Second, we set up the parameters ε, a, b, c ∈ R as in
the definition of DSM-maps. The unknown coefficients
in α`, β` and the parameters are what we want to solve
for, in order to obtain a concrete DSM-map.

• In the third step, we establish Farkas’ linear assertions.
Below we illustrate an example on the construction of
Farkas’ linear assertions. Consider the condition (D4) at
the label 5. The linear invariant at the label 5 is x ≥
−7 ∧ 1 ≤ y ≤ 9 that represents the polyhedron H ={
x |
(−1 0

0 1
0 −1

)
x ≤

(7
9
−1

)}
. To satisfy (D4), we have to

ensure that the following conditions hold for every x:
a ≤ η(6,x)− η(5,x) ≤ b, a ≤ η(7,x)− η(5,x) ≤ b and
6
13η(6,x)+ 7

13η(7,x) ≤ η(5,x)−ε. We first rewrite them
into

(
α5 − α6

)T
x ≤ −a + β6 − β5 , (−α5 + α6)Tx ≤

b−β6 +β5 and (6
13α6 + 7

13α7−α5)Tx ≤ −ε . Let d :=
−a+ β6 − β5, d′ := b− β6 + β5. Then we construct the
Farkas’ linear assertions Φ[H,α5−α6, d](ξ), Φ[H,−α5+
α6, d

′](ξ′) and Φ[H, 6
13α6 + 7

13α7 − α5, ε](ξ
′′).

• Finally, in the fourth step we group all generated Farkas’
linear assertions together in a conjunctive manner and
solve for the unknown coefficients, together with the
parameters and the fresh variables from Farkas’ linear
assertions, using an LP-solver. If we can get a solution
for the unknown coefficients, then the algorithm confirms

that the input program is a.s. terminating (Theorem 2).
Otherwise, the algorithm outputs “fail”. In this case, our
algorithm is able to synthesize a linear DSM-map (see
Section VIII).

VIII. EXPERIMENTAL RESULTS

In this section, we present experimental results obtained by
an implementation of our algorithm for synthesizing linear
DSM-maps. Note that our algorithm has very few dependen-
cies, all of which are standard operations (e.g. linear invariant
generation and linear programming).

EXPERIMENTAL BENCHMARKS. We consider the program
of Figure 2 (i.e. the counterexample to the FHV-rule), the
Mini-roulette program of Example 3, and three other classical
examples of probabilistic programs that exhibit various types
of nested while-loops (Figure 4). Program 1 is a simple nested
while-loop, in which the outer loop control variable is updated
in the inner loop. Program 2 is a nested while-loop with two
sequentially-composed inner loops, in which the outer loop
control variables are each updated in one of these inner loops.
Program 3 is a three-level nested while-loop.

INVARIANTS. Our approach is able to synthesize DSMs using
very simple invariants obtained from the loop guards. See
Appendix F for a complete list of invariants used in the
experiments. Note that in all cases, the invariants we use
are strictly weaker than, and can be replaced by, invariants
generated by standard tools such as [12] and [38]. However,
we use weaker invariants to demonstrate the power of our
algorithm.

DISTRIBUTIONS. In the experiments, we assume that each
sampling variable r in Programs 1, 2 and 3 is sampled accord-
ing to the distribution P(r = 1) = 0.25,P(r = −1) = 0.75.
This choice is arbitrary and our approach can synthesize linear
DSMs for any distribution, as long as such a DSM exists.

EXPERIMENTAL RESULTS. Table I summarizes our experi-
mental results over the five benchmark programs. Note that
the counterexample program does not terminate almost surely.
Therefore, any sound approach is expected to fail in obtain-
ing a linear DSM map. In all other cases, our approach is
extremely efficient and synthesizes a linear DSM map in less
than half a second. In all cases, the DSM parameters ε and c
are synthesized as 1 and 0, respectively. See Appendix G for
details of the synthesized DSM maps.

IMPLEMENTATION AND EXPERIMENT MACHINE. We imple-
mented our approach in Java. The implementation is pub-
licly available at https://ist.ac.at/~akafshda/DSM. We used lp-
solve [3] and JavaILP [30] for solving the linear programming
instances. The results were obtained on a Windows 10 machine
with a 2.5 GHz Intel Core i5-2520M processor and 8 GB of
RAM.

IX. RELATED WORKS

We compare our results with the most related works on
termination verification of probabilistic programs. We discuss
two main classes of approaches: supermartingale-based and
proof-rule-based.

Program 1 Program 2 Program 3

1 :whi le x ≥ 1 do
2 : z := y ;
3 : whi le z ≥ 0 do
4 : z := z − 1 ;
5 : x := x+ r

od ;
6 : y := 2× y ;
7 : x := x− 1

od
8 :

1 : whi le x+ y ≥ 1 do
2 : a := z ;
3 : b := z ;
4 : whi le a ≥ 0 do
5 : a := a− 1 ;
6 : x := x+ r1

od ;
7 : whi le b ≥ 0 do
8 : b := b− 1 ;
9 : y := y + r2

od ;
1 0 : z := 2× z ;
1 1 : x := x− 1

od
1 2 :

1 : whi le x ≥ 1 do
2 : a := z ;
3 : whi le a ≥ 0 do
4 : a := a− 1 ;
5 : b := z ;
6 : whi le b ≥ 0 do
7 : b := b− 1 ;
8 : x := x+ r
od ;
9 : x := x+ r
od ;
1 0 : z := 2× z ;
1 1 : x := x− 1

od
1 2 :

Fig. 4: Our benchmark programs. These programs exhibit different types of nested while-loops.

Example Result Runtime (s) η(`in) [a, b]

Counterexample Fail 0.305 – –
Example 3 Success 0.338 75.4 · x [−70.6, 155.6]
Program 1 Success 0.234 6 · x+ 5 [−4, 8]
Program 2 Success 0.430 7 · x+ 7 · y + 6 [−5, 9.5]
Program 3 Success 0.376 8 · x+ 7 [−5, 11]

TABLE I: Experimental Results

Supermartingale-based approaches. The most relevant works
related to supermartingale-based approach include [6], [32],
[33], [5], [4], [7], [9], [10], [34]. Compared to these results,
the most significant difference is that our result considers com-
positional verification of the termination property, while most
previous approaches tackle the termination problem directly on
the whole program. First, we have compared our approach with
the most relevant result [15], and shown that their approach is
not sound. We have also presented the required strengthening
and proven that our new approach is sound for compositionally
proving a.s. termination of probabilistic programs. Second,
another related result in [1] considers lexicographic RSMs that
are sound for a.s. termination of probabilistic programs. While
lexicographic RSMs have some flavor of compositionality
(such as decomposing based on lexicographic order), they do
not have the compositional property as in Definition 3.

Proof-rule-based approaches. In this work, we considered the
supermartingale-based approach for probabilistic programs.
An alternative approach for termination analysis is based
on the notion of proof rules [28], [22], [25], [36], [34].
For example, [28] presents a proof-rule-based approach for
proving finite expected termination time of probabilistic while
loops, and [36] presents sound proof rules for probabilistic
programs with recursion. Most results on proof rules focus on
specifying local logical properties at every program counter in
order to ensure a global logical property, and do not consider
compositional proof rules. In contrast, our supermartingale-
based approach acts as an automated proof rule that proves
the almost-sure termination property. The most relevant result
is given in [35] that presents a compositional approach for

deriving resource bounds of probabilistic programs. Compared
with our result, their result focuses on resource bounds and can
only handle programs with finite expected resource consump-
tion, whereas our result focuses on termination properties and
can handle programs with infinite expected termination time.

X. CONCLUSION

In this paper, we first proved that a natural probabilistic
extension of the variant rule in the Floyd-Hoare logic is
not sound for compositional verification of almost-sure ter-
mination of probabilistic programs and identified the flaw in
the previous related work [15]. Then, we proposed a sound
strengthening of the approach in [15], and demonstrated an
algorithmic implementation of our strengthened approach. An
important future direction is to investigate different rules and
sound approaches for compositional verification of probabilis-
tic termination.

REFERENCES

[1] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexico-
graphic ranking supermartingales: an efficient approach to termination
of probabilistic programs. PACMPL, 2(POPL):34:1–34:32, 2018.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

[3] Michel Berkelaar, Kjell Eikland, Peter Notebaert, et al. lpsolve: Open
source (mixed-integer) linear programming system. Eindhoven U. of
Technology, 2004.

[4] Olivier Bournez and Florent Garnier. Proving positive almost-sure
termination. In RTA, pages 323–337, 2005.

[5] Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic pro-
gram analysis with martingales. In CAV, pages 511–526, 2013.

[6] Krishnendu Chatterjee and Hongfei Fu. Termination of nondeterministic
recursive probabilistic programs. In VMCAI, 2019.

[7] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady.
Termination analysis of probabilistic programs through positivstellen-
satz’s. In CAV, pages 3–22, 2016.

[8] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and
Nastaran Okati. Computational approaches for stochastic shortest path
on succinct mdps. In IJCAI 2018, pages 4700–4707, 2018.

[9] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh
Hasheminezhad. Algorithmic analysis of qualitative and quantitative
termination problems for affine probabilistic programs. In POPL, pages
327–342, 2016.

[10] Krishnendu Chatterjee, Petr Novotný, and Ðord̄e Žikelić. Stochastic
invariants for probabilistic termination. In POPL, pages 145–160, 2017.

[11] Guillaume Claret, Sriram K Rajamani, Aditya V Nori, Andrew D
Gordon, and Johannes Borgström. Bayesian inference using data flow
analysis. In Joint Meeting on Foundations of Software Engineering,
pages 92–102. ACM, 2013.

[12] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear
invariant generation using non-linear constraint solving. In CAV, pages
420–432, 2003.

[13] Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Proving termination
of probabilistic programs using patterns. In CAV, pages 123–138, 2012.

[14] Julius Farkas. A fourier-féle mechanikai elv alkalmazásai (Hungarian).
Mathematikaiés Természettudományi Értesitö, 12:457–472, 1894.

[15] Luis María Ferrer Fioriti and Holger Hermanns. Probabilistic termina-
tion: Soundness, completeness, and compositionality. In POPL, pages
489–501, 2015.

[16] Robert W. Floyd. Assigning meanings to programs. Mathematical
Aspects of Computer Science, 19:19–33, 1967.

[17] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. Probabilistic NetKAT. In ESOP, pages 282–309.
Springer, 2016.

[18] Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz,
and Joshua B Tenenbaum. Church: a language for generative models.
In UAI, pages 220–229. AUAI Press, 2008.

[19] Noah D Goodman and Andreas Stuhlmüller. The Design and Implemen-
tation of Probabilistic Programming Languages. http://dippl.org, 2014.

[20] Andrew D Gordon, Mihhail Aizatulin, Johannes Borgstrom, Guillaume
Claret, Thore Graepel, Aditya V Nori, Sriram K Rajamani, and Claudio
Russo. A model-learner pattern for bayesian reasoning. In ACM
SIGPLAN Notices, volume 48, pages 403–416. ACM, 2013.

[21] Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K
Rajamani. Probabilistic programming. In Proceedings of the on Future
of Software Engineering, pages 167–181. ACM, 2014.

[22] Wim H. Hesselink. Proof rules for recursive procedures. Formal Asp.
Comput., 5(6):554–570, 1993.

[23] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–
30, 1963.

[24] Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. New
approaches for almost-sure termination of probabilistic programs. In
APLAS, pages 181–201, 2018.

[25] Claire Jones. Probabilistic Non-Determinism. PhD thesis, The Univer-
sity of Edinburgh, 1989.

[26] David M. Kahn. Undecidable problems for probabilistic network
programming. In MFCS, pages 68:1–68:17, 2017.

[27] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
On the hardness of analyzing probabilistic programs. Acta Informatica,
pages 1–31, 2018.

[28] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and
Federico Olmedo. Weakest precondition reasoning for expected run-
times of probabilistic programs. In ESOP, pages 364–389, 2016.

[29] Shmuel Katz and Zohar Manna. A closer look at termination. Acta Inf.,
5:333–352, 1975.

[30] Martin Lukasiewycz. JavaILP - java interface to ILP solvers,
http://javailp.sourceforge.net/, 2008.

[31] Colin McDiarmid. Concentration. In Probabilistic Methods for Algo-
rithmic Discrete Mathematics, pages 195–248. 1998.

[32] Annabelle McIver and Carroll Morgan. Developing and reasoning about
probabilistic programs in pGCL. In PSSE, pages 123–155, 2004.

[33] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Monographs in Computer Science.
Springer, 2005.

[34] Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and
Joost-Pieter Katoen. A new proof rule for almost-sure termination.
PACMPL, 2(POPL):33:1–33:28, 2018.

[35] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded
expectations: resource analysis for probabilistic programs. In PLDI,
pages 496–512, 2018.

[36] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. Reasoning about recursive probabilistic programs.
In LICS, pages 672–681, 2016.

[37] DM Roy, VK Mansinghka, ND Goodman, and JB Tenenbaum. A
stochastic programming perspective on nonparametric bayes. In Non-
parametric Bayesian Workshop, Int. Conf. on Machine Learning, vol-
ume 22, page 26, 2008.

[38] Sriram Sankaranarayanan, Henny B Sipma, and Zohar Manna.
Constraint-based linear-relations analysis. In SAS 2004, pages 53–68.
Springer, 2004.

[39] Alexander Schrijver. Combinatorial Optimization - Polyhedra and
Efficiency. Springer, 2003.

[40] Adam Ścibior, Zoubin Ghahramani, and Andrew D Gordon. Practical
probabilistic programming with monads. In ACM SIGPLAN Notices,
volume 50, pages 165–176. ACM, 2015.

[41] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexan-
dra Silva. Cantor meets Scott: semantic foundations for probabilistic
networks. In POPL, pages 557–571, 2017.

[42] Sebastian Thrun. Probabilistic algorithms in robotics. Ai Magazine,
21(4):93, 2000.

[43] Sebastian Thrun. Probabilistic robotics. Communications of the ACM,
45(3):52–57, 2002.

[44] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank
Wood. Design and implementation of probabilistic programming lan-
guage anglican. In IFL, pages 6:1–6:12. ACM, 2016.

[45] Di Wang, Jan Hoffmann, and Thomas W. Reps. PMAF: an algebraic
framework for static analysis of probabilistic programs. In PLDI, pages
513–528, 2018.

[46] David Williams. Probability with Martingales. Cambridge University
Press, 1991.

APPENDIX

A. The Detailed Semantics

The behavior of a probabilistic program P accompanied
with its CFG G = (L, (Vp, Vr),→) under a scheduler σ is
described as follows. The program starts in the initial config-
uration (`0, ν0). Then in each step i (i ∈ N0), given the current
configuration (`i, νi), the next configuration (`i+1, νi+1) is
determined by the following procedure:

1) a valuation µi of the sampling variables is sampled
according to the joint distribution of the cumulative
distributions {Υr}r∈Vr

and independent of all previously-
traversed configurations (including (`i, νi)), all previous
samplings on Vr and previous executions of probabilistic
branches;

2) if `i ∈ La and (`i, u, `
′) is the only transition in

→ with source label `i, then (`i+1, νi+1) is set to be
(`′, u(νi, µri)).

3) if `i ∈ Lb and (`i, φ, `1), (`i,¬φ, `2) are namely the two
transitions in → with source label `i, then (`i+1, νi+1) is
set to be (i) (`1, νi) when νi |= φ and (ii) (`2, νi) when
νi |= ¬φ;

4) if `i ∈ Lp and (`i, p, `1), (`i, 1 − p, `2) are namely
the two transitions in → with source label `i, then
with a Bernoulli experiment independent of all previous
samplings, probabilistic branches and traversed configura-
tions, (`i+1, νi+1) is set to be (i) (`1, νi) with probability
p and (ii) (`2, νi) with probability 1− p;

5) if `i ∈ Ld and c0, . . . , ci is the finite path traversed so far
(i.e., c0 = (`0, ν0) and ci = (`i, νi)) with σ(c0, . . . , ci) =
(`i, ?, `

′), then (`i+1, νi+1) is set to be (`′, νi);
6) if there is no transition in → emitting from `i (i.e., `i =

`out), then (`i+1, νi+1) is set to be (`i, νi).
We define the semantics of probabilistic programs using
Markov decision processes.

Definition 5 (The Semantics). The Markov decision process
MW = (SW ,Act,PW) (for the probabilistic program W) is
defined as follows.
• The state space SW is the configuration set (L×ValVp).
• The action set Act is {τ, th, el}. Intuitively, τ refers to

absence of nondeterminism and th (resp. el) refers to the
then- (resp. else-) branch of a nondeterministic label.

• The probability transition function PW : SW × SW →
[0, 1] is given as follows.
For all configurations (`, ν), we have:
– Assignment: if ` ∈ La is an assignment label and

(`, u, `′) is the only triple in → with source label `
and update function u, then

PW ((`, ν) , τ, (`′, ν′)) :=
∑
µ∈U Υ(µ)

where U = {µ | ν′ = u(ν, µ)};

– Branching: if ` ∈ Lb and (`, φ, `1), (`,¬φ, `2) are the
two triples in → with source label ` and propositional

arithmetic predicate φ, then

PW ((`, ν), τ, (`′, ν)) :=


1 if ν |= φ, `′ = `1
1 if ν 6|= φ, `′ = `2
0 otherwise

;

– Probabilistic: If ` ∈ Lp and (`, p, `1), (`, 1− p, `2) are
namely two triples in → with source label `, then

PW ((`, ν), τ, (`′, ν)) :=


p if `′ = `1
1− p if `′ = `2
0 otherwise

– Nondeterminism: If ` ∈ Ld and (`, ?, `1), (`, ?, `2) are
namely two triples in → with source label ` such that
`1 (resp. `2) refers to the then-(resp. else-) branch, then

PW ((`, ν), th, (`′, ν)) :=

{
1 if `′ = `1
0 otherwise

and

PW ((`, ν), el, (`′, ν)) :=

{
1 if `′ = `2
0 otherwise

– Terminal label: if there is no transition in → emitting
from `i (i.e., `i = `out), then PW ((`, ν), τ, (`, ν)) :=
1;

– for other cases, PW ((`, ν), a, (`′, ν′)) := 0.

B. Proof of Lemma 1
Lemma 1. Let the program P be the sequential (resp. con-
ditional) composition of two other programs P1 and P2,
i.e. P := P1;P2 (resp. P := if − then P1 else P2 fi),
and assume that both P1 and P2 are a.s. terminating. Then, P
is also a.s. terminating.

Proof. We first prove the sequential case. Let Vp =
{x1, x2, . . . , xm} be the set of program variables in P and
T, T1, T2 be the termination time random variables of P , P1

and P2, respectively. Define the vector F1 of random variables
as follows: if ω = {(`j , νj)}j∈N0 is a terminating run of
P1 with T1(ω) = n, i.e. if ω terminates at (`n, νn), then
F1(ω) = νn. Intuitively, (F1(ω))i is the random variable that
models the value of the i-th program variable at termination
time of P1. Then, we have:

Pσc (T <∞) =
∑

ν∈ValVp

Pσc (T1 <∞ ∧ F1 = ν)·Pσν (T2 <∞).

Informally, P terminates if and only if P1 terminates and then
P2, run with the initial valuation obtained from the last step of
P1, terminates as well. However, P2 is a.s. terminating, hence
Pσν (T2 <∞) = 1 for all ν. Therefore,

Pσc (T <∞) =
∑

ν∈ValVp

Pσc (T1 <∞ ∧ F1 = ν)

= Pσc (T1 <∞)

= 1,

so P is also a.s. terminating.

For the conditional case, note that if P does not terminate,
then at least one of P1 and P2 does not terminate as well.
Formally, Pσc (T <∞) ≥ Pσc (T1 <∞)·Pσc (T2 <∞) = 1.

C. Flaw in the Proof of FHV-rule

Below we clarify the critical point on where the flaw in [15]
lies. The flaw lies in the point that RSMs should be non-
negative. In the following, we define an extra technical notion.

CHARACTERISTIC RANDOM VARIABLES. Given random
variables X0, . . . , Xn and a predicate Φ, we denote by
1φ(X0,...,Xn) the random variable such that

1φ(X0,...,Xn)(ω) =

{
1 if φ (X0(ω), . . . , Xn(ω)) holds
0 otherwise

By definition, E
(
1φ(X0,...,Xn)

)
= P (φ(X0, . . . , Xn)). Note

that if φ does not involve any random variable, then 1φ can
be deemed as a constant whose value depends only on whether
φ holds or not.

This point can also be observed from the counterexample
(Figure 2) that the value of the program variable x may
grow unboundedly below zero due to increasing values of y,
breaking the non-negativity. In detail, the flaw lies in their
proof of Theorem 7.7 at the claim that the stochastic process
satisfying

E
(
RTk+1

|FTk
)
≤ RTk − ε · 1G0∩...∩GT

k

is an RSM. However, due to the lack of guarantee on the
non-negativity of RTk+1

, we cannot say that this is an RSM,
although its conditional expected value decreases in each step.
The rest of their proof tries to remedy this issue by enforcing
the stochastic process to be non-negative. In detail, their proof
constructs the stochastic process RTk · 1RTk>0 which is non-
negative, but then this process may not satisfy the decreasing
condition of RSMs. Thus, no valid RSMs are constructed in
their proof, implying that the proof is invalid.

D. Proof of Theorem 2

Theorem 2. If there exists a DSM-map η for P , then for any
initial valuation ν∗ ∈ ValVp and for all schedulers σ, we have
Pσ(`in,ν∗)(T <∞) = 1.

Proof. Let η be any DSM-map for a program P , ν0 ∈ ValVp

be any initial valuation and a, b, c, ε be the parameters in
Definition 4.

We define the stochastic process {Xn = η(`n, νn)}n∈N0

adapted to {Fn}n∈N0 representing the evaluation of P ac-
cording to the semantics. If P evaluates to a label ` with no
out transition, then η(`, ν) is a constant c by definition.

Informally, Xn is a ranking supermartingale. If {Xn}n∈N0

decreases for sufficiently many times, it will be less than c at
`in which implies termination. We have XBn ≥ c for every
n ∈ N0, where Bn is the stochastic process representing the
number of steps of P ’s n-th arrival to the label `in. We suppose

that the program Q is terminating for any initial valuation, and
thus we have Bn is well defined.

P(XBn ≥ c) =

+∞∑
k=n

P(Xk ≥ c ∧Bn = k)

≤
+∞∑
k=n

P(Xk ≥ c)

Let Yn = Xn+n·ε, then a+ε ≤ Yn+1−Yn = Xn+1−Xn+ε ≤
b+ ε.

E(Yn+1|Fn) = E(Xn+1|Fn) + (n+ 1) · ε
= 1(`n,u,`′)∈→ ·

∑
µ∈ValVr

Ῡ(µ) · η(`′, u(ν, µ))

+1(`n,φ,`′)∈→∧νn|=φ · η(`′, νn)

+1(`n,?,`′)∈→ · η(`′, νn)

+1(`n,p,`′),(`n,1−p,`′′)∈→ ·
(pη(`′, νn) + (1− p)η(`′′, νn))

+(n+ 1) · ε
≤ η(`n, νn)− ε+ (n+ 1) · ε
= Xn + n · ε
= Yn

Thus {Yn}n∈N0
is a supermartingale satisfying the condition

of Hoeffding inequality and we have

+∞∑
k=n

P(Xk ≥ c) =

+∞∑
k=n

P(Yk − Y0 ≥ c−X0 + k · ε)

≤
+∞∑
k=n

e
− 2(c−X0+k·ε)2

k(b−a)2

≤
+∞∑
k=n

e
− 2ε2

(b−a)2
k− 4(c−X0)ε

(b−a)2

The above term → 0 when n→ +∞, And we have

P(TP <∞) ≥ 1− lim
n→+∞

P(XBn ≥ c) = 1

E. Proof System for DSM

We construct a proof system D for the DSM approach in the
style of Hoare logic. Let R and R′ be arithmetic expressions
over program variables. The Hoare triple {R}P{R′} indicates
that for the program P , there exists a DSM η such that
η(`Pin, ¯

) = R and η(`Pout, ¯
) = R′.

We have following axiom schema and rules.
1) Empty statement axiom schema:

a ≤ R′ −R ≤ −ε
{R} skip {R′}

2) Assignment axiom schema:

a ≤ R′ −R ≤ −ε
{R}x := 〈expr〉{R′}

3) Sequential composition rule:

{R}P1{R′}, {R′}P2{R′′}
{R}P ;Q{R′′}

4) Conditional branch rule:

{R1}P1{R′}, {R2}P2{R′},
G→ a ≤ R1 −R ≤ −ε,

and ¬G→ a ≤ R2 −R ≤ −ε
{R} if G then P1 else P2{R′}

5) Non-deterministic branch rule:

{R1}P1{R′}, {R2}P2{R′},
a ≤ R1 −R ≤ −ε,

and a ≤ R2 −R ≤ −ε
{R} if ? then P1 else P2{R′}

6) Probabilistic branch rule:

{R1}P1{R′}, {R2}P2{R′},
a ≤ R1 −R ≤ b,
a ≤ R2 −R ≤ b

and p ·R1 + (1− p) ·R2 ≤ R− ε
{R} if prob(p) then P1 else P2{R′}

7) While rule:

{R}P{R′}, G→ R′ ≥ c,
G→ a ≤ R−R′ ≤ −ε,

and ¬G→ a ≤ R′′ −R′ ≤ −ε
{R′} while G do P od {R′′}

Theorem 3. The proof system D is sound for a.s. termination
of probabilistic programs.

Proof. We prove every rule is sound. We can find the corre-
spondence between the rules and Definition 4.
• Empty statement axiom schema and Assignment axiom

schema:
The premise is difference boundedness and decreasing.

• Sequential composition rule:
We just combine the two DSM-maps.

• Conditional branch rule:
The premise corresponds to (D2). Let η1 be DSM-map
for P1 and η2 be DSM-map for P2. We define the DSM-
map η′ for the program Q = if G then P1 else P2 by
η′(`Qin, ¯

) := R, η′(`Qout, ¯
) := R′ and η′(`,

¯
) := η(`,

¯
)

for other ` in P1 and P2

• Non-deterministic branch rule:
The premise corresponds to (D3)

• Probabilistic branch rule:
The premise corresponds to (D4)

• While rule: Suppose that {R}P{R′} and the DSM of P
is η, then we construct a DSM η′ by defining η′(`Qin, ¯

) :=
R′, η′(`Qout, ¯

) := R′′ and η′(`,
¯
) := η(`,

¯
) for all labels

` in the loop body.
It is straightforward to verify that every η′ is a valid DSM.
By Theorem 2, we have the soundness of the proof system
D.

F. Invariants Used in the Experiments
The following invariants were used for obtaining experi-

mental results over the benchmark programs:
Counterexample:
I(1) :=true
I(2) := x ≥ 1
I(3) := x ≥ 0 ∧ z ≤ y
I(4) := z ≥ 0 ∧ z ≤ y
I(5) := x ≤ 1 ∧ z ≥ 0 ∧ z ≤ y
I(6) := x ≥ 2 ∧ z ≥ 0 ∧ z ≤ y
I(7) := z ≥ 0 ∧ z ≤ y
I(8) := z ≤ −1 ∧ z ≤ y
I(9) := z ≤ −1 ∧ z ≤ 0.25 · y

Program 1:
I(1) :=true
I(2) := x ≥ 1
I(3) := z ≤ y
I(4) := z ≥ 0 ∧ z ≤ y
I(5) := z ≥ −1 ∧ z ≤ y − 1
I(6) := z ≤ −1 ∧ z ≤ y
I(7) := z ≤ −1

Program 2:
I(1) :=true
I(2) := x+ y ≥ 1
I(3) := x+ y ≥ 1 ∧ a = z
I(4) := a ≤ z ∧ b = z
I(5) := a ≥ 0 ∧ a ≤ z ∧ b = z
I(6) := a ≥ −1 ∧ a ≤ z − 1 ∧ b = z
I(7) := a ≤ −1 ∧ a ≤ z ∧ b ≤ z
I(8) := a ≤ −1 ∧ a ≤ z ∧ b ≥ 0 ∧ b ≤ z
I(9) := a ≤ −1 ∧ a ≤ z ∧ b ≥ −1 ∧ b ≤ z − 1
I(10) := a ≤ −1 ∧ a ≤ z ∧ b ≤ −1 ∧ b ≤ z
I(11) := a ≤ −1 ∧ a ≤ 0.5 · z ∧ b ≤ −1 ∧ b ≤ 0.5 · z

Program 3:
I(1) :=true
I(2) := x ≥ 1
I(3) := a ≤ z
I(4) := a ≥ 0 ∧ a ≤ z
I(5) := a ≥ −1 ∧ a ≤ z − 1
I(6) := a ≥ −1 ∧ a ≤ z − 1 ∧ b ≤ z
I(7) := a ≥ −1 ∧ a ≤ z − 1 ∧ b ≥ 0 ∧ b ≤ z
I(8) := a ≥ −1 ∧ a ≤ z − 1 ∧ b ≥ −1 ∧ b ≤ z − 1
I(9) := a ≥ −1 ∧ a ≤ z − 1 ∧ b ≤ −1 ∧ b ≤ z
I(10) := a ≤ −1 ∧ a ≤ z
I(11) := a ≤ −1 ∧ a ≤ 0.5 · z

G. Details of the Synthesized DSM-maps
Our implementation produced the following DSM-maps for

the benchmark programs:

ε = 1, c = 0, [a, b] = [−70.6, 155.6]
` η(`, ν)

1 75.4 · x
2 75.4 · x− 1
3 75.4 · x− 0.8 · y + 2
4 75.4 · x− 0.8 · y + 1
5 75.4 · x− 0.8 · y
6 75.4 · x− 0.8 · y + 80.2
7 75.4 · x− 0.8 · y − 70.6
8 75.4 · x− 0.8 · y
9 75.4 · x− 0.8 · y + 155.6
10 75.4 · x− 0.8 · y − 70.6
11 75.4 · x− 0.8 · y + 3.8

TABLE II: The Synthesized DSM-map for Example 3

ε = 1, c = 0, [a, b] = [−4, 8]
` η(`, ν)

1 6 · x+ 5
2 6 · x+ 4
3 6 · x+ 2
4 6 · x+ 1
5 6 · x
6 6 · x+ 1
7 6 · x

TABLE III: The Synthesized DSM-map for Program 1

ε = 1, c = 0, [a, b] = [−5, 9.5]
` η(`, ν)

1 7 · x+ 7 · y + 6
2 7 · x+ 7 · y + 5
3 7 · x+ 7 · y + 4
4 7 · x+ 7 · y + 3
5 7 · x+ 7 · y + 1.5
6 7 · x+ 7 · y + 0.5
7 7 · x+ 7 · y + 2
8 7 · x+ 7 · y + 1
9 7 · x+ 7 · y
10 7 · x+ 7 · y + 1
11 7 · x+ 7 · y

TABLE IV: The Synthesized DSM-map for Program 2

ε = 1, c = 0, [a, b] = [−5, 11]
` η(`, ν)

1 8 · x+ 7
2 8 · x+ 3
3 8 · x+ 2
4 8 · x+ 1
5 8 · x
6 −b+ 8 · x+ z − 1
7 −b+ 8 · x+ z − 2
8 −b+ 8 · x+ z − 4
9 8 · x− 1
10 8 · x+ 1
11 8 · x

TABLE V: The Synthesized DSM-map for Program 3

