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Abstract—In today’s programmable blockchains, smart con-
tracts are limited to being deterministic and non-probabilistic. 
This lack of randomness is a consequential limitation, given that 
a wide variety of real-world financial contracts, such as casino 
games and lotteries, depend entirely on randomness. As a result, 
several ad-hoc random number generation approaches have been 
developed to be used in smart contracts. These include ideas such 
as using an oracle or relying on the block hash. However, these 
approaches are manipulatable, i.e. their output can be tampered 
with by parties who might not be neutral, such as the owner of 
the oracle or the miners.  

We propose a novel game-theoretic approach for generating 
provably unmanipulatable pseudorandom numbers on the block-
chain. Our approach allows smart contracts to access a 
trustworthy source of randomness that does not rely on poten-
tially compromised miners or oracles, hence enabling the 
creation of a new generation of smart contracts that are not lim-
ited to being non-probabilistic and can be drawn from the much 
more general class of probabilistic programs. 

Keywords—smart contracts, randomization, probabilistic pro-
grams, blockchain theory, random number generation 

I. INTRODUCTION 

Smart Contracts. Smart contracts are programs that formalize 
and secure relationships between parties that communicate 
over a public network. Smart contracts were first introduced by 
Nick Szabo in 1997 [1], much before the advent of  cryptocur-
rencies. However, their popularity is due to their applicability 
in modern cryptocurrencies, such as Ethereum [2]. 
Blockchain. The blockchain protocol was invented by Satoshi 
Nakamoto as a means of ensuring consensus about transaction 
results and ownership of funds in Bitcoin [3]. Nevertheless, 
this protocol is capable of inducing consensus about the results 
of any well-defined deterministic process. Notably, Bitcoin 
transactions contain scripts [3, 4] that serve as conditions for 
using the funds in the transaction. 
Cryptocurrency Smart Contracts. While Bitcoin scripts are 
useful, they are limited to a few basic operations. Several new-
er cryptocurrencies allow programs of arbitrary (Turing-
complete) complexity, which can be used to implement more 
complex financial contracts [5-7]. These programs can receive, 
hold and transfer money in form of cryptocurrency units. 
Therefore, they are also called smart contracts. Currently, the 
most widely-used platform for smart contracts is Ethereum [2], 
which is also the second largest cryptocurrency by market cap 
[8]. In the sequel, we use the terms “program”, “smart con-
tract” and “contract” interchangeably. We also use the term 

“random” to mean pseudorandom and assume that every node 
of the network can generate local pseudorandom numbers. 
Determinism. For smart contracts to be enforceable, the entire 
cryptocurrency network should reach a consensus about their 
state of execution and the resulting monetary transactions. Ba-
sically, if every node of the network has the same 
understanding about program semantics, then when a function 
call (change) to the program is added to the blockchain, the 
node runs the program and computes its resulting state and 
transactions, which must be the same as those computed by any 
other node of the network. Ethereum and other programmable 
cryptocurrencies ensure this property by disallowing non-
determinism and randomness in their smart contracts [2]. 
Randomness. While on today’s platforms, smart contracts 
must be non-probabilistic, it is well-known that probabilistic 
programs are a much richer class than simple non-probabilistic 
programs [9]. Moreover, there are many real-world financial 
contracts in which randomness plays a vital role, e.g. casino 
games and proof-of-stake protocols. See Section III for a dis-
cussion of motivating examples. Hence, the lack of probability 
is a significant limitation for smart contracts. 
Previous Approaches. Given the necessity of randomization in 
many real-world applications, several workarounds have been 
developed for generating pseudorandom numbers to be used in 
smart contracts. These include using the hash of the current 
block as a seed, relying on an external provider through an 
oracle, or creating a smart contract in which anyone can submit 
randomly-generated numbers and other smart contracts can 
rely on as a library. See Section IV for more details. However, 
these approaches suffer from security and incentive issues and 
cannot be trusted for generating random numbers with possibly 
enormous financial consequences. 
Security Issues. Most of the previous approaches give unfair 
advantages to either the miners or the owners of an oracle. In 
the worst case, this can lead to a complete centralization of the 
process of “random” number generation. In other cases, these 
vulnerabilities allow specific parties to manipulate the process. 
Hence, a smart contract using these approaches as its source of 
randomness is automatically trusting either the miners, or the 
owners of an oracle/other smart contract; both of whom are 
often anonymous entities. 
Incentive Issues. Several of the previous approaches rely on 
random input from multiple participants in order to generate 
random numbers for use on the blockchain. While these ap-
proaches provide participation incentives, they fail to create an 
incentive for the participants to submit random numbers. A 
participant can get the same rewards by submitting a constant 



number, e.g. 0, every time. Hence, they rely on participants’ 
honesty, i.e. the assumption that a majority or at least some of 
the participants are truly submitting random inputs. This is 
much less secure than relying on incentives, i.e. ensuring that it 
is in everyone’s best interest to submit random inputs, especial-
ly given that generating random inputs is a (slightly) more 
expensive task than reusing a constant. 
Our Contribution and Novelty. In this paper, our contributions 
are as follows: 

 We study several previous approaches and show that all 
of them suffer from either security vulnerabilities, or in-
centive issues, or both. 

 In order to enable a rigorous theoretical treatment, we 
provide a formalization of the requirements for secure 
random number generation on the blockchain.  

 We provide the first secure and well-incentivized ap-
proach for generating random numbers on the 
blockchain. We do this by defining a game on the 
blockchain that incentivizes its players to play random-
ly. This is the first approach that relies on incentives, 
and does not make any assumption about participants’ 
honesty. We prove that our approach satisfies the for-
mal requirements for security, functionality and 
incentives. 

 Finally, we provide an implementation of our approach 
as an Ethereum smart contract, showing its applicability 
to real-world blockchains. 

II. PRELIMINARIES 

We now review and define some necessary concepts in 
blockchain theory, probabilistic programs, and game theory. 
Our treatment of the blockchain protocol is high-level. See [2, 
3, 10] for a more formal discussion. 
Transactions. The atomic unit of communication in a crypto-
currency network is a transaction [3]. A transaction can 
transfer money or invoke other well-defined behavior [11].  
Blockchain [3]. A blockchain is a distributed ledger of blocks, 
each containing several transactions. It starts from a prede-
fined initial block and each block in the chain must have a 
pointer to its predecessor. Hence, the blockchain is essentially 
a singly-linked list of blocks. Each node of the network keeps 
a local copy of the blockchain. A transaction is considered to 
be executed/approved iff it appears in some block of the 
blockchain. To ensure a consensus about the contents of the 
blockchain, a node cannot simply add a new block. Instead, 
blocks must be mined. 
Mining and Proof-of-Work. Mining is the process by which a 
unique node of the network is chosen and given the permis-
sion to add a new block to the blockchain [3]. The most 
common protocol for mining is proof-of-work [12], in which a 
hard computational puzzle is set and the first person to solve it 
gets the right to add a new block. Network nodes who take 
part in solving the puzzle are called miners. If several miners 
find solutions at approximately the same time, then a fork 
happens in the blockchain, i.e. a situation in which there are 
more than one valid chains. In these cases, the protocol dic-
tates that the longest chain is the consensus chain. Due to the 

probabilistic nature of mining, one chain will eventually be-
come longer and hence consensus will be reached. 
Mining Incentives. Proof-of-work mining needs considerable 
computational resources and electricity. Hence, miners should 
be incentivized to perform it. There are two incentives for 
mining [3]: (i) each miner receives a fixed block reward in 
form of cryptocurrency units, for each block she adds, and (ii) 
transactions can include transaction fees that are paid to the 
miner who adds them to the blockchain. Incentive (i) also 
serves as the mechanism for creating new currency units. 
Programmable Blockchains [2, 13]. In a programmable 
blockchain, transactions can do more than simple money 
transfers. Specifically, there is a special type of transaction 
that creates a smart contract, which is a program consisting of 
several functions and its own dedicated memory (storage).  
When a smart contract is created, i.e. when its code is stored 
on the blockchain, it can receive, manage and transfer money 
in form of cryptocurrency units. However, the smart contract 
code remains unchangeable and one can only interact with it 
by calling its functions. Calling functions is also considered a 
special type of transaction. Smart contracts can also interact 
with each other, i.e. a smart contract that is called by a net-
work node can itself create or call functions from another 
contract. Intuitively, when a function call transaction is added 
to the blockchain, all the nodes of the network execute the 
relevant smart contract using the parameters provided in the 
transaction and reach a consensus about its results. 
Ethereum [2]. Ethereum was the first cryptocurrency to allow 
Turing-complete smart contracts. It is also the most widely-
used platform for smart contracts. 
Ethereum Virtual Machine [10]. For Ethereum contracts to be 
well-defined, they must be written in a specific bytecode for-
mat that can be executed on the Ethereum Virtual Machine, 
which is a stack machine designed to ensure that all nodes of 
the network agree on the execution results. However, there are 
many languages for writing Ethereum contracts, most notably 
Solidity [14]. Contracts written in these languages are first 
compiled into bytecode and then published on the blockchain. 
Determinism and Lack of Randomness [2, 10, 15, 16]. To 
ensure that all nodes can reach a consensus about the results of 
function calls to contracts, Ethereum bytecode does not have 
any support for non-determinism or randomness.  
Probabilistic Programs [9]. Extending imperative programs 
with randomization, i.e. allowing them to access a source for 
random number generation, leads to the much richer class of 
probabilistic programs. Probabilistic programs are very widely 
studied (e.g. see [9, 17-21]) and have many applications in 
different fields, such as machine learning [22-25], randomized 
algorithms [26], and analyzing stochastic networks [27-29]. 
Probability vs Non-determinism. In programming languages 
theory, probability and non-determinism are two different and 
often orthogonal concepts [30]. The prerequisite for consensus 
in contracts is that they cannot be non-deterministic. As we 
show in this work, this does not necessarily mean that they 
should also be non-probabilistic. We propose a game-theoretic 
approach that can provide randomness to smart contracts and 
allow them to be probabilistic programs. 



Value of Contracts. At the time of writing, there are over a 
million contracts on Ethereum alone, holding billions of dol-
lars of funds [31]. Hence, formal verification of smart 
contracts  and blockchain protocols is very important and 
well-studied [32-37]. Similarly, it is vital to ensure that the 
generation of random numbers is secure, given that any attack 
on this process might have huge financial consequences. 
Probability Distributions. Given a finite set 1{ },,, kx xX  a 
probability distribution on X  is a function : [0,1] X  such 

that 1( 1.) ( )   kx x We denote the set of all probability 

distributions on X  by ( ). X  
One-shot Games [38]. A one-shot game with n players is a 
tuple 1 2 1 2( , , , , , , , )  n nG S S S u u u where: 

 Each iS  is a finite set of strategies for player i and 

1 2   nSS SS  is the set of all outcomes; and 

 Each iu  is a utility function of the form :  iu S . 
In a play of the game, each player i chooses one strategy 

.i is S  The choices are simultaneous and independent. Then, 

each player i is paid a utility of 1 2( , , ),i ns s su units.  

Mixed Strategies [38]. A mixed strategy  i  for player i is a 

probability distribution over .iS  Intuitively, a mixed strategy 

 i  is a recipe for player i in order to randomly choose one of 

the strategies in iS  and play it. A mixed strategy profile is a 

tuple 1 2( , , ),     n  consisting of one mixed strategy for 

each player. The expected utility ( )iu  of player i in a mixed 

strategy profile   is defined as 1 2[ , , , ]( ) ( ) i i nu u s ss  

where each is  is sampled according to  i . 

Nash Equilibria [39]. A Nash equilibrium of a game G  is a 
mixed strategy profile , such that no player has an incentive 

to change her mixed strategy , i assuming that she knows the 

mixed strategies of the other players. We define i as a tuple 

consisting of all the mixed strategies in   except . i  Formal-

ly,  is a Nash equilibrium iff for all ( ) i iS we have 

( ) ( , ).   i i i iuu A seminal result by John Nash is that eve-

ry finite game G  has a Nash equilibrium [39]. 
In game theory, Nash equilibria are the standard notion of 

stability and self-enforceability for non-cooperative games 
[38], i.e. games in which each player only aims to maximize 
his own utility. When considering games on the blockchain, 
the players are pseudonymous and their real identities are un-
known. Hence, some players might indeed be the same person 
and hence cooperate. In these cases, the notions of strong and 
quasi-strong Nash equilibria are useful. 
Strong Nash Equilibria [40, 41]. A strong Nash equilibrium is 
a mixed strategy profile in which no group of players have a 
way to cooperate and change their mixed strategies in order to 
increase the utility of every member of the group. Formally, 
 is a strong Nash equilibrium if for any non-empty set P of 
players and any strategy profile P  over ,P  there exist a 

player p P such that ( ) ( , ).   p p P Puu   

When considering strong Nash equilibria, the assumption is 
that the players cannot share or transfer their utilities, so a 
player agrees to the change of strategies only if his own utility 
is strictly increased. However, if the players can share utilities, 
then a group can defect as long as their total utility increases, 
and hence a stronger notion of equilibrium is necessary. 
Quasi-strong Nash Equilibria [42]. A quasi-strong Nash 
equilibrium is a mixed strategy profile  such that for any 
non-empty set P of players and any strategy profile P , it 

holds that ( ) ( , ),   P P P Puu  where Pu is the sum of utili-

ties of all members of .P  
In games that are played on the blockchain, quasi-strong 

equilibria are the right notion for ensuring stability and self-
enforceability, because several players might be controlled by 
the same person and can naturally share their revenues and 
defect as long as their total revenue increases. 
Remark. By definition, every quasi-strong equilibrium is also 
a strong equilibrium, and every strong equilibrium is also a 
Nash equilibrium. Hence, quasi-strong equilibria are the 
strongest notion of stability, i.e. if a game has a quasi-strong 
equilibrium, there are strong guarantees that no group of ra-
tional players would defect from the equilibrium. 

III. MOTIVATING EXAMPLES 

In this section, we provide several motivating examples that 
highlight the need for randomization in smart contracts. 
Lotteries. The global lottery industry sells more than 250 bil-
lion dollars’ worth of tickets each year [43]. Given the huge 
profit margins in most lotteries, the organizers’ revenues are 
high and the returns for participants are much lower than they 
could potentially be if the lotteries were implemented using 
smart contracts instead of trusted third-parties [44]. 

A lottery is a simple probabilistic contract. It consists of two 
phases. In the first phase, anyone can buy a ticket by paying a 
predefined amount p. We assume that n people buy tickets. In 
the second phase, a random number x, between 1 and n, is 
drawn and the entire money is paid to person x. Hence, a lot-
tery can be implemented as shown in Figure 1. Note that the 
randomization line shown in bold is crucial, but not natively 
available to smart contract programmers. 

uint endTime, p; 
mapping (uint => address) participants; 
uint n = 0; 
 

function buyTicket() payable public 
{ 
  if(msg.value==p && block.timestamp<=endTime) 
  { 
    n = n+1; 
    participants[n]=msg.sender; 
  } 
} 
     
function draw() public 
{ 
  if(block.timestamp>endTime) 
  { 
    uint x = random(1,n); 
    address winner = participants[x]; 
    winner.send(this.balance); 
  } 
} 

Figure 1. A Lottery Contract 



Gambling and Casino Games. Lotteries are the simplest form 
of gambling. The global gambling market is expected to reach 
revenues of over 525 billion dollars by 2023 [45]. In modern 
casinos, there are many more complex and interactive gam-
bling games, e.g. roulette [46]. These games can also be 
implemented by probabilistic programs [21]. Given that 
Ethereum is Turing-complete, one can implement any set of 
game rules in its smart contracts. However, random number 
generation is still a necessary step because these games are 
inherently probabilistic.  
Proof-of-stake Mining. Proof-of-work uses considerable elec-
tricity and has a huge carbon footprint [47]. It was reported in 
2014 that Bitcoin mining alone uses more electricity than all 
of Ireland [48]. Hence, several alternative mining protocols 
have been proposed [49-53]. A notable approach is proof-of-
stake and Ethereum is expected to switch to it in near future 
[54]. In proof-of-stake protocols, a member of the network is 
randomly chosen to add the next block to the blockchain and 
one’s chance of being chosen is proportional to the number of 
coins she holds (her stake).  

A method for producing reliable random numbers on the 
blockchain can be applied in proof-of-stake protocols for ran-
domly choosing the miner who gets to add the next block. 
Proof-of-stake DAO’s. Decentralized autonomous organiza-
tions (DAO’s) are organizations whose rules are defined by 
smart contracts and whose shareholders can manage their 
funds and the decisions of the organization by voting in the 
contract [55]. If reliable random numbers are generated on the 
blockchain, then such organizations can use proof-of-stake 
schemes for randomly choosing a subset of members to vote 
every time the organization needs to make a decision. In con-
trast, in current DAO’s the voting procedure takes a long time 
because every action should be put to a vote among all share-
holders [55]. DAO’s also suffer from a lack of participation by 
the shareholders in the voting procedure, given that it takes 
time and energy to vote [56]. 

IV. PREVIOUS APPROACHES 

In this section, we review several previous approaches to ran-
dom number generation and show that they suffer from 
security vulnerabilities and incentive misalignments. 
Using Block Hash or Timestamp. The simplest approach is to 
use one of the attributes of the block containing a transaction, 
e.g. its hash or timestamp, as a seed for generating random 
numbers in that transaction’s execution. In this approach, it is 
assumed that no party can control the hash of a block or the 
exact time in which it is mined, hence the random number 
generation is tamper-proof. This is known to be a very vulner-
able, but unfortunately widely-used, approach [57, 58]. 

One of its vulnerabilities is that it gives undue advantage to 
the miners. Consider the lottery of Figure 1, if the miner who 
mines the block containing the call to the draw function is a 
lottery participant and the block timestamp is used as a seed, 
he can manipulate the timestamp to always win the lottery. If 
the seed is not manipulatable, e.g. the block hash, then if the 
miner realizes that he is going to lose the lottery, he can simp-
ly ignore the block and decide not to publish it on the network. 

By doing so, he loses his block reward, but gains an extra 
chance of winning the lottery. If a huge amount of money is at 
stake, then this strategy is rational. Note that most lotteries 
have millions of participants, so no real-world lottery can be 
securely implemented using this approach. Concretely, if the 
amount of money at stake is more than the block reward, then 
the miners should not be trusted in generating seeds for ran-
dom numbers. A well-known example of such methods is the 
Ethereum Lottery project [59], which was suspended due to 
potential tampering by the miners. 
Oracles [60]. Another approach is to use an Oracle [57, 61]. 
By design, smart contracts can only access data that is written 
on the blockchain [10]. Oracles are third-party services that 
access outside sources and write the obtained data on the 
blockchain so that smart contracts can use it. The data usually 
comes with a signature from the oracle, promising that it was 
collected from a predefined source. To generate random num-
bers, one can create an oracle, e.g. using the oraclize service 
[61], that obtains random numbers from an outside source, e.g. 
random.org [62], and puts them on the blockchain. However, 
this approach requires trusting the oracle owners and gives 
them the power to report any number as the “random” output. 
Hence, it centralizes the random number generation process 
and cannot be considered secure. 
Using Commitment Schemes [57, 63, 64]. In this classical 
approach, all participants of a contract create a random num-
ber together. The approach works in two steps. In the first 
step, each participant generates her own random number x and 
then commits to x by sending the hash of x, together with a 
deposit, to the contract. The first step ends after a predefined 
amount of time. In the second step, each participant must an-
nounce the actual random number she has generated by 
sending it to the contract. The contract checks whether the 
submitted random number has the right hash. If it does not, the 
contract confiscates the deposit and ignores this participant’s 
entry. Assuming hash functions are one-way, no participant 
can change his number after having committed to it. Finally, 
the second step ends after a predetermined time and then the 
contract computes the XOR of all valid entries and uses it as 
the output random number. Note that even if one of the partic-
ipants honestly generates and provides random numbers, the 
final output would be random. 

We now analyze the security of this approach: A malicious 
participant can wait for others to uncover their random num-
bers in the second step. Then, based on other people’s 
numbers, he has the choice of either uncovering his random 
number or not. This gives him an advantage, e.g. in the lottery 
example of Figure 1, he gets an extra chance at winning. 
However, it costs him his deposit and if the deposit is large 
enough, the approach is secure against this attack. On the oth-
er hand, a miner can manipulate the process by not processing 
some participants’ transactions in the second step. To avoid 
this attack, the second step should be made long enough to 
ensure that all participants have a chance to add their uncov-
ered numbers to the blockchain.   

While this approach is secure, it is not desirable for two rea-
sons. First, it requires the participants to consistently interact 



with the contract in order to generate their own random num-
bers. Hence, it cannot be used when the participants are not 
willing or able to follow this protocol, e.g. it is  infeasible for 
most lottery participants [59]. Second, it has incentive issues, 
i.e. it provides no incentives to the participants to submit ran-
dom numbers. A participant can get the same results by 
always submitting a constant, e.g. 0. On the other hand, the 
protocol relies on the assumption that at least one participant 
honestly submits random numbers. 
RANDAO and Quanta. An approach for solving the interac-
tion problem of using commitment schemes is provided by a 
smart contract called RANDAO [65] and is also used on the 
Ethereum-based lottery platform Quanta [44]. The RANDAO 
smart contract acts as a library that provides other contracts 
with random numbers. These are generated by volunteer par-
ticipants who interact with the RANDAO contract in a manner 
similar to the commitment schemes approach. Other contracts 
pay RANDAO for the generated numbers and RANDAO uses 
these payments as participation incentives, i.e. pays the partic-
ipants who submit and uncover inputs correctly. As in the 
previous approach, each participant has to provide a deposit 
which will be confiscated if his number is not uncovered in 
the second step.  

RANDAO does not fix the incentive problem and, quite 
ironically, introduces new security vulnerabilities. First, the 
numbers generated in RANDAO are often reused in several 
client contracts. This is a well-known malpractice and vulner-
ability [66-69]. Second, the confiscated deposits are paid to 
the owner of RANDAO, hence giving him undue advantage. 
The owner can participate in the random number generation 
and decide not to uncover his submission, so as to increase his 
winning odds in client contracts, all without any consequenc-
es. Hence, RANDAO has the same problem as an oracle. It is 
secure only if one trusts its anonymous developers. 

Based on the discussion above, previous approaches for ran-
dom number generation suffer from various security and 
incentive issues. In this work, we present a novel game-
theoretic approach that rectifies these issues. Note that we are 
considering real-world programmable blockchains with de-
terministic non-probabilistic semantics, such as Ethereum, as 
the environment in which random numbers must be generated. 
Proposing alternative mining protocols that support random 
number generation is another active area of research. See [70] 
for a survey of some attempts in this direction. 

V. OUTLINE OF OUR APPROACH 

In the sequel, we provide a novel game-theoretic approach for 
securely generating random numbers on the blockchain. To do 
so, we take the following steps: 
 We first formally define the requirements that should be 

satisfied in order for an approach to be considered func-
tional, safe and unmanipulatable (Section VI). 

 Then, we define a game in which the only quasi-strong 
equilibrium is when every player plays uniformly at 
random (Section VII). Intuitively, one can deploy this 
game on the blockchain and use the strategies played by 
its players to generate randomness, because the only 

stable rational strategy for each player is to play uni-
formly at random. This is a key novelty of our approach 
and ensures that, unlike previous methods, we provide 
economic incentives guaranteeing that honesty is in 
every player’s best interest, instead of assuming that the 
players remain honest due to their goodwill.  

 We use the game above to define a random bit genera-
tion contract, which is the heart of our approach 
(Section VIII) and can be used as a library that provides 
secure randomness to other contracts. 

 We meticulously analyze our approach (Section IX) and 
prove that it satisfies all the formalized requirements. 

 Finally, we provide a proof-of-concept implementation 
of our approach for Ethereum (Section X), showing its 
applicability in real-world programmable blockchains.  

VI. SPECIFICATION OF REQUIREMENTS 

In this section, we formalize the requirements that must be 
satisfied by a blockchain random number generation protocol 
in order to ensure that it is usable, unmanipulatable and se-
cure, and provides the right incentives to all participants. 
Functional Requirements. The protocol must support the fol-
lowing functionalities: 

a) In order to be applicable in real-world blockchains, it 
must be implementable as a smart contract. 

b) Other smart contracts/nodes should be able to use it as a 
library. Concretely, others should be able to request 
random bits from the protocol by paying a fee and spec-
ifying a deadline, as well as an upper bound v on the 
potential economic consequences that might arise if the 
generated random bit is tampered with1.  

c) It may rely on its own participants for generating ran-
dom bits, but it must not rely on the client. 

Security Requirements. The protocol must provide the follow-
ing guarantees: 

a) When a request for a random bit is submitted, the client 
must receive one of the following responses before the 
deadline: 

i) Success: An unmanipulated and untampered random 
bit, which must be generated after the request and not 
be known or predictable at the time of the request; or 

ii) Penalty: A possibly manipulated random bit, also gen-
erated after the request, together with a penalty of at 
least v units (This ensures that if the random bit is ma-
nipulated, its economic consequences can be rectified 
by the v units of penalty that is paid to the client); or 

iii) Failure: A notification of failure to generate a random 
bit2 and a full refund. 

b) Randomness guarantee: The final output bit must be 
uniformly random as long as at least one of the partici-
pants submits a uniformly random input. 

c) Openness: To avoid centralization, anyone should be 
able to join as a participant in the protocol. 

d) Safety against malicious miners: No miner should be 

                                                           
1 Naturally, a more secure random bit is expected to be costlier. 
2 This can happen if the paid fee is too small or the set deadline is too early 
and hence no one participates in the random number generation protocol. 



able to affect the output of the protocol, either by tam-
pering with or withholding the blocks that were used in 
the random bit generation process. 

e) Safety against malicious participants: If the protocol is 
successful, it should be guaranteed that no participant in 
the random number generation process could have tam-
pered with the output. 

f) Avoiding reuse: No generated random bit should ever be 
reused and a new dedicated random bit should be gener-
ated for each request. 

Incentive Requirements. Finally, the protocol must guarantee 
that there are incentives for the participants to act honestly: 

a) No participant should be able to manipulate the output 
without paying at least v units of penalty, or without 
changing the output type from success to penalty. 

b) Participants should be incentivized to submit uniformly 
randomly generated bits as inputs to the protocol, i.e. 
providing random inputs should be a quasi-strong equi-
librium for the participants. 

VII. RANDOM BIT GENERATION GAME (RBG) 

We now define a special game which will be used to ensure 
that our protocol has the right incentive structure. 
RBG. A Random Bit Generation game (RBG) with n players 
is a game G in which: 
 For a player ,i {0, 2}iS if i  is even and {1,3}iS if i  

is odd; 
 At an outcome 1 2( , ), , ns ss s of the game, the utility 

of player i  is defined as , )( () : i j i i ju s f s s  where  
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Intuitively, in an RBG game, all players choose their actions 
simultaneously. Then, for every pair ( , )i j  of players with 

different parity, a minigame is simulated using their chosen 
actions, in which a player wins if and only if her chosen num-
ber is one more than that of her opponent (Figure 2). A win 
leads to 1 point and a loss to −1. A player’s utility in the game 
is defined as the sum of her points in the minigames. 

 
Theorem 1 (Quasi-strong Equilibrium of an RBG.) Let G  be 
an RBG game with at least two players and let   be a mixed 

strategy profile defined by  0.5,0.5 i for all ,i  i.e. the 

mixed strategy profile in which each player i  chooses a strat-
egy in iS  uniformly at random. Then,  is the only quasi-

strong equilibrium of .G  

Proof. Let P  be a subset of players in .G  Then, the overall 
utility of members of P in a strategy profile  is 

(mod2)) .( ( , )      i jiP Pu f i j  Note that if both sides of 

a minigame are in ,P  that minigame only transfers points 
inside P and has no effect on the overall utility of .P  So, 
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For all i and j, we have  ( , ) 0. f i j  Therefore, 

( ) 0 Pu  for all .P  Suppose that the players in P decide to 

defect and use a new strategy profile  P  instead of  P . Since 

every player j P  still follows   and plays uniformly at 

random,  , ( , ) 0,  P P f i j  so ( ) 0 ( ).,   P P P Puu  

Therefore,   is a quasi-strong equilibrium. 
We show that no other quasi-strong equilibrium exists. Note 

that the game G is zero-sum, i.e. utilities of the players always 
sum to zero. Let   be a quasi-strong equilibrium, and e  an 
arbitrary even-numbered player. Also, let R  be the set of all 

remaining players. If 20 ,( ), (0.5,0.5)  e
e

e pp  then e  plays 

one of her actions more often than the other. W.l.o.g. let us 

assume that 20 . eep p Then for every odd-numbered player 

,o R 1 3( , ) (1,0),  o o
o p p because otherwise the players in 

R  can defect by setting (1,0) o  and increase their total 

utility, which is in contradiction with   being a quasi-strong 
equilibrium. So every o  is (1,0).  However, this is a contra-

diction, too, because now e  can profit by defecting and 

changing her strategy to 0 2( , ) (0,1).e ep p This contradiction 

shows that in every quasi-strong equilibrium   we must have 
(0.5,0.5), e  for every even-numbered player .e  A similar 

argument can be applied to odd-numbered players. Therefore, 
the only quasi-strong equilibrium of the game G  is .   ∎ 

Intuitively, this theorem means that if an RBG game is 
played with pseudonymous players on the blockchain, with 
the possibility that some players be controlled by the same 
person, then the only stable rational strategy for each player is 
to play uniformly at random. Hence, an RBG game on the 
blockchain incentivizes rational players to generate uniform 
random bits. Even-numbered players generate random bits by 
playing either 0 or 2 and odd-numbered players generate them 
by playing either 1 or 3.  

VIII. RANDOM BIT GENERATOR CONTRACT (RBGC) 

We now present a novel approach based on RBG games for 
generating tamper-proof pseudorandom numbers on the 
blockchain. Our approach combines the strengths of previous 
approaches, while avoiding their security and incentive vul-
nerabilities. It consists of a single-instance smart contract, 
which is called the Random Bit Generator Contract (RBGC).  

The RBGC accepts requests for random bit generation from 
other contracts or network nodes. After receiving a request, it 

 
Figure 2. An RBG Minigame. An arrow x ⟶ y means a player play-

ing y wins against a player playing x.  



starts the process of generating a dedicated random bit for that 
request. Anyone can participate in this process by first submit-
ting the hash of their chosen random bit, hence committing to 
it, and then revealing it. The participants are rewarded for 
submitting inputs, but the amount of their rewards is deter-
mined through an RBG game which incentivizes them to 
submit uniformly random bits. Moreover, any participant who 
fails to reveal his choice will be penalized by confiscation of 
his deposit. We now formalize these steps3. 
Step 1: Request. The process of random bit generation always 
begins with a request from another contract or node. A request 
is lodged with the RBGC by calling its requestRandom-
Bit function, which receives the following parameters: 
 A fee φ, serving as a payment for generating the random 

bit, whose value is chosen and paid by the client. 
 A timestamp t, also set by the client, that serves as a 

deadline for the random bit generation process.  
 A value estimation v, which is an upper bound on the 

potential economic consequences that might arise for 
the client if the provided bit is manipulated. 

Upon receiving these, the RBGC rejects the request if the 
deadline t is too close, i.e. if the total time available for gener-
ation of the random bit is less than a predefined constant tmin. 
Otherwise, it assigns a request identification number id to the 
request and returns the id to the caller of the requestRan-
domBit function. It also records the values of f, t and v and 
marks id as open for registration in the next treg units of time.  
Step 2: Participant Registration. Whenever there is an open 
call for participation in generating a random bit with a given 
id, anyone on the network can participate in the process by 
registering with the RBGC. To register, a participant p should 
generate a random bit bp, and a nonce np. She should then 
compute the hash value hp = hash(bp, np, p, id) using a prede-
fined hash function. Then, she can call the register 
function of the RBGC with the following parameters: 
 The request identification number id. 
 A deposit of v units. 
 The hash value hp. 
This function registers the values of p and hp in the RBGC. 

We take this to mean that participant p has committed to 
providing a bit and a nonce, whose joint hash value with p and 
the id must be equal to hp. The register function also 
numbers the participants from 1 to n. 
Step 3: Revealing Choices. RBGC enters this step as soon as 
the treg units of time allocated for Step 2 are passed. This step 
continues until the deadline t, set by the client back in Step 1. 

In this step, no new registrations are accepted. Instead, any 
participant who has already registered can reveal their bit bp 
and nonce np by calling the reveal function of the RBGC 
with parameters bp and np. If the parameters are invalid, i.e. if 
hash(bp, np, p, id) is not equal to hp, then the call is ignored. 
Also, reveal keeps track of the following 5 values: 

                                                           
3 Generating a multibit random number is no more complicated than generat-
ing a single random bit, e.g. one can generate random 32-bit integers by 
running 32 parallel instances, i.e. asking each participant to submit a 32-bit 
random number and then running an independent RBG game for each bit.  

n': number of participants p who correctly revealed bp 
n0: number of even-numbered participants p with bp = 0 
n1: number of odd-numbered participants p with bp = 0 
n2: number of even-numbered participants p with bp = 1 
n3: number of odd-numbered participants p with bp = 1 

Intuitively, this construction is similar to the translation be-
tween strategies and bits in an RBG game. 
Step 4: Returning Deposits. After the deadline t, each partici-
pant can call the returnDeposit function of the RBGC. 
This function checks that the participant has revealed her 
choice correctly and in time, and returns the participant’s de-
posit only if the check passes. 
Step 5: The RBG Game. After the deadline t, each participant 
can call the requestReward function of the RBGC. This 
function uses the fee φ, paid by the client, to reward the partic-
ipants for submitting inputs. The amount φ is distributed 
among the participants who have correctly revealed their 
choices in Step 3 as a reward. 

We use an RBG game G with n' players to define each par-
ticipant’s share of the reward. In G, a participant counted in ni 
in Step 3 is assumed to have played the strategy i. We denote 
the resulting outcome of the game by s. Let / ',n   then 

each participant p receives a reward of  '1: ( ) /p pr nu s    

by calling the requestReward function. Intuitively, a par-
ticipants’ reward is directly dependent on her utility in the 
RBG game G and the total reward paid to all participants is 
equal to .  Note that the rewards can be computed using the 

five values tracked in Step 3. In the RBG, a player p who 
played strategy i  has utility 1( (1 mod4) mod 4)( ) .  p i iu s n n   

Step 6: Returning the Output. Finally, the client can request 
her randomly generated bit by calling the getOutput func-
tion of the RBGC after the deadline t. In this case, the output 
random bit and return value are decided as follows: 
 If no one has participated or no participant has revealed 

her bit, a failure result is returned to the client, together 
with a refund of the fee φ.  

 Otherwise, the output random bit that is returned to the 
client is the XOR of all the bits that were correctly re-
vealed by the participants in Step 3. 
o If every participant has revealed her bit correctly, a 

success result will be returned to the client. 
o Otherwise, a penalty result will be returned and the 

confiscated deposits will be paid to the client. 
Note that the RBGC can handle multiple random number 

generation tasks in parallel and these tasks are independent 
and need not be synchronized. 

IX. REQUIREMENTS ANALYSIS 

We now prove that our RBGC approach satisfies all the re-
quirements specified in Section VI and is therefore a secure, 
unmanipulatable, and correctly-incentivized approach for gen-
erating random numbers on the blockchain. 



Lemma 1 (Functional Requirements.) The RBGC approach 
satisfies the Functional Requirements of Section VI. 
Proof. (a) All steps of RBGC are implementable as a smart 
contract in any Turing-complete programmable blockchain. 
We are also providing a proof-of-concept implementation in 
Ethereum (Section X). (b) Other contracts can use it as a li-
brary by calling the requestRandomBit function, and (c) 
reliance on participants is achieved by design.  ∎ 
Lemma 2 (Security Requirements.) The RBGC approach  
satisfies the Security Requirements of Section VI. 
Proof. Requirement (a) is satisfied by Step 6. Note that when a 
penalty result happens, at least one deposit of v units is confis-
cated and paid to the client, and when a failure result happens, 
the fee φ has not been used as a reward and is refunded to the 
client. (b) The final output bit is the XOR of all the bits re-
vealed by the participants, hence even if one of the 
participants submits a uniformly randomly generated bit, the 
overall result is also uniformly random. (c) Openness is 
achieved by design in Step 2. (d) The final result has no de-
pendence on any value that can be controlled by the miners, 
hence they cannot tamper with it. Moreover, if the time allo-
cated for Step 3 is long enough, no miner can bar a participant 
from revealing her choice by dropping a block, because the 
choice can be revealed in the next block by another miner. If 
this period is m blocks long, then a malicious miner, who aims 
to stop the revelation from appearing on the blockchain, must 
mine all the m consecutive blocks of this phase, which is very 
unlikely4. (e) RBGC returns success only if every submitted 
bit was correctly revealed, i.e. only if there was no tampering. 
(f) RBGC generates a new random bit for each request and 
does not reuse the outputs.  ∎ 
Lemma 3 (Incentive Requirements.) The RBGC approach 
satisfies the Incentive Requirements of Section VI. 
Proof. (a) If a participant tries to manipulate the output, i.e. if 
he does not reveal his bit correctly, his deposit of v units will 
be confiscated (Step 4) and the result of the process changes 
from success to penalty (Step 6). (b) Participants’ rewards 
directly correspond to their utilities in an RBG game (Step 5). 
By Theorem 1, the unique quasi-strong equilibrium of an RBG 
is when every player chooses a uniformly random bit5. ∎ 

                                                           
4 A basic assumption in proof-of-work blockchains is that more than half of 
the computational power is controlled by honest miners. Using this assump-
tion, a revelation can be withheld with a probability of at most 2−m. 
5 Note that uniqueness is not part of the requirements. Our approach surpasses 
the requirements by providing this stronger guarantee. 

Theorem 2 (Soundness.) The RBGC approach of Section VIII 
is a correct approach for generating secure unmanipulatable 
random numbers on the blockchain. Moreover, it correctly 
incentivizes the participants to honestly submit random inputs. 
Proof. This is a direct consequence of Lemmas 1-3 above, 
which show that the RBGC approach satisfies all the neces-
sary requirements as formalized in Section VI.  ∎ 

X. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 

Implementation. We implemented the RBGC in Solidity. The 
code is available at ist.ac.at/~akafshda/rbgc. A noteworthy 
point about our implementation is that it is entirely loop-free 
and all of its functions have constant runtime and gas usage.  
Experiment Specifications. We simulated the RBGC in a local 
Ethereum blockchain using Go Ethereum (geth) [71]. In our 
experiments, 256 random bits were requested every second. 
We experimented with different block mining difficulties, 
which led to different rates for the creation of new blocks. 
Specifically, we experimented with the Ethereum difficulty 
(ETH), in which the average block generation time tgen is 
14133 milliseconds, as well as twice, half, one fourth and one 
eighth of the default mining difficulty in Ethereum. In each 
experiment, we set treg (the time for Step 2) to 3 times tgen and 
tmin (the overall time for generating a random bit) to 10 times 
tgen. The results were obtained on an Intel Core i5-2520M du-
al-core (2.5 GHz) machine running Microsoft Windows 10.  
Experimental Results. Figure 3 shows the processing time of 
each request to the RBGC, i.e. the time from Step 1 to the end 
of Step 6, and Figure 4 shows the throughput, i.e. number of 
successfully generated random bits as time goes by. 
Scalability. In general, our approach is very scalable. Our ex-
periments show that on blockchains with the same mining 
difficulty as Ethereum, RBGC has a throughput of 176.8 ran-
dom bits per second. Note that the processing times are 
heavily dependent on block generation times. In contrast, the 
throughput shows much less dependence, because the RBGC 
can efficiently handle many requests in parallel. 

XI. CONCLUSION 

In this work, we formalized the functional and security re-
quirements for random number generation on the blockchain 
and provided the first provably secure, well-incentivized and 
unmanipulatable approach for this problem. We implemented 
our approach in Solidity and, through experimental results, 
showed that it is scalable and has a high throughput.  

 
 Figure 4. Throughput of the RBGC over time. 

 

  
Figure 3. Processing times of Requests to RBGC.  
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