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The Facet Finite Element Method (FFEM) requires a source field solution that is commonly obtained by the Biot-Savart equation
that can be time-consuming. The subproblem modeling (SPM) is applied to the FFEM in order to minimize the computational effort
and time necessary to obtain the solution. The volume sources, which allow solving the Biot-Savart equation only along the active
regions, is presented, as well as the Biot-Savart boundary condition correction.

Index Terms—Reluctance Network Method (RNM), Facet Finite Element Method (FFEM), Magnetic Devices, Three-Dimensional,
Magnetostatics

I. INTRODUCTION

The Facet Finite Element Method (FFEM) has been pre-
sented as an alternative to reduce the computational time
and resources when modeling magnetostatic fields in electro-
magnetic devices [1]–[3], because it allows an easy coupling
with external magnetic networks, i.e., the Reluctance Network
Method (RNM), and does not require any additional attention
to deal with multiply-connected domains as in the classical
magnetic scalar potential formulation.

However, the FFEM magnetostatic formulation does not
take into account an electrical current source, requiring some
additional computations when the discretized domains contain
windings. In [4] and [5] the sources are computed considering
the windings as current loops. A methodology using the
electric vector potential T0 is presented in [6].

Considering all the complexities of calculating these
sources, a possible solution could be to take advantage of
subproblem method (SPM), which has been applied to model
electromagnetic problems in a progressive way [7], allowing
to benefit from a previous solution, instead of starting a
new complete one for any physical variation, e.g., material
properties or geometric.

This methodology has been applied to model non-
destructive testing [8], to take into account the effects of air
gaps [9] and in general magnetodynamics applications [10]–
[15] applying the A or the A−V formulation. It was also used
to model MEMS through an electrostatic formulation, where
an unperturbed electric field is obtained and then a conductive
domain is inserted as a perturbation [16].

Thus, considering that i) normally the authors start from
an unperturbed solution and then apply all the perturbations
necessary to take into account the physical phenomena and/or
geometric characteristics in interest, ii) the source field needed
in the FFEM magnetostatic formulation can be obtained with
the Biot-Savart equation which can be interpreted as an unper-
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turbed solution, and iii) all these SPM magnetic applications
above cited are using A based formulations, this paper aims to
present the SPM applied to the FFEM B-formulation, reducing
the effort required to obtain the source field solution.

This is accomplished by considering the Biot-Savart solu-
tion as a first subproblem, i.e., the unperturbed one. Then, the
active parts (µr > 1) are added into the domain and a reaction
field solution is obtained with the FFEM considering the Biot-
Savart source field only inside these ferromagnetic regions.
The total solution is the sum of both problems (unperturbed
+ perturbation). This is the key point of this work, since it
allows reducing the source field calculation to the active parts
only, decreasing the computational time and effort.

Furthermore, it is presented how to correct the bound-
ary condition difference between the FFEM and Biot-Savart,
which allows a direct superposition of the results.

In order to validate the obtained results, two test cases are
arranged. The first one is a simple limit case built based on a
2-D mesh, which was extruded creating the 3-D domain. The
second test case is a representative 3-D magnetic device that
is modeled using the proposed methodology. Finally, FFEM +
RNM coupling [3] and the SPM are applied in this model
at the same time, benefiting from the advantages of both
methodologies.

Considering that this work deals with magnetostatic fields,
the results obtained are compared with those calculated us-
ing the classical FEM A-formulation or with the FFEM B-
formulation.

II. MAGNETOSTATIC FFEM FORMULATION AND ITS
BOUNDARY CONDITIONS

The magnetostatic problem is defined along a bounded
Euclidean domain Ω with its boundary Γ = ΓH∪ΓB (Fig. 1a).
Ωa can represent a perfect conductor (σ → ∞) Ωpc, i.e.,
a domain where internal magnetic field is zero and results
in a zero skin depth [14], [17], or a magnetic material with
finite permeability Ωm. Ωs is a stranded conductor in which
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the current density Js is imposed. The interface between two
different media in Ω is denoted by γ (Fig. 1b).

ΓHΓB

Ωa Ωs

(a) Domain Ω defined by its boundary
Γ = ΓH ∪ ΓB .

Ω1

Ω2

γ

n

(b) Interface γ between two me-
dia.

Fig. 1. Domain Ω and the interface γ.

The Ampère and Gauss equations, together with the mag-
netic constitutive relation for linear and isotropic materials, are
expressed as

curlH = Js (1)

divB = 0 (2)

B = µH + Br (3)

or
H = νB + Hc (4)

where H is the magnetic field, B is the flux density, µ is the
magnetic permeability, ν is the magnetic reluctivity, Br is the
remnant flux density and Hc is the coercive field. In the SPM,
the Br or Hc can also be used as volume sources, expressing
changes in the permeability.

The boundary conditions are

n×H|ΓH
= 0 (5)

n ·B|ΓB
= 0 (6)

where n is the unit normal vector.
The interface conditions between two media in Ω, γ in

Fig. 1b, are

n× (H1 −H2) |γH = Jf (7)

n · (B1 −B2) |γB = 0 (8)

which can be expressed through the following notation

[n×H]γH = Jf (9)

[n ·B]γB = 0 (10)

where Jf is the surface current density. γH and γB are inter-
faces between two media considering the interface conditions
for H and B fields.

A. FFEM formulation

As previously cited, this work’s goal is to apply the SPM in
a FFEM magnetostatic formulation, it is briefly summarized
here. The details of this formulation can be found in [3].

It is established writing the total magnetic field H in terms
of source and reaction fields, Hs and Hr respectively,

H = Hs + Hr (11)

with

curlHs = Js (12)

and

Hr = −gradψ (13)

where ψ is the reduced (single valued) magnetic scalar poten-
tial. The source field Hs (12) is calculated by applying the
Biot-Savart equation, which can be a time consuming task.

So, applying (11) and (13) in (3) leads to the strong
formulation of the magnetic constitutive relation based on B,

1

µ
B + gradψ = Hs +

1

µ
Br (14)

The weak form of (14) is

nf∑
i=1

∫
Ω

1

µ
B′
j ·B′

i dΩ

Φi + ψa − ψb =

∫
Ω

Hs ·B′ dΩ +

∫
Ω

1

µ
Br ·B′ dΩ

(15)

with its boundary condition

n ·B|ΓB
= 0 (16)

where B′ ∈W 2 are the facet shape functions [18], [19]. ψa
and ψb are the magnetic potentials at two adjacent elements a
and b.

These basis functions have some important properties, for
instance, its normal component is constant along the first order
element faces. Furthermore, its flux is equal to 1 for a given
face i

B′
i · ni =

1

Si
(17)

and zero along the other faces. Si is the surface area of face i.
Another important aspect is that its divergence in an element
is equal to the inverse of the volume Ve of this element (for
first order elements):

div B′
i =

1

Ve
(18)

Thus, the final matrix system

[<] [Φ]− [ψm] = [ψ0] + [Br] (19)

is composed by the terms of (15): the FFEM stiffness matrix,
[<], physically known as a reluctance matrix; the unknown
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magnetic flux vector, [Φ]; the averaged magnetic potential
between each reluctance, [ψm]; the vector with all the magne-
tomotive force (mmf ) sources, [ψ0], obtained considering the
magnetic field Hs calculated using Biot-Savart; and the vector
which takes into account any remnant induction, [Br] .

Since the matrix system is stated without taking into account
(2), the zero divergence of B is enforced by (19) as a circuit
system, where the Kirchhoff’s current law is imposed. It
suggests that the solution can be obtained by the use of a
0D circuit solver, as presented in [4], [20], [21].

As aforementioned, this formulation is detailed in [3].

B. The n×H|ΓH
= 0 boundary condition

Going a step forward in the boundary conditions analysis,
besides the n ·B|ΓB

= 0 (16), it is also possible to apply
n×H|ΓH

= 0. Considering that (19) is solved in the light
of the circuit formalism, n×H|ΓH

= 0 is achieved by
connecting all the elements along ΓH with an external node
P (Fig. 2), which consists in imposing a constant magnetic
scalar potential on ΓH , as

n×H|ΓH
= −n× grad ψ|ΓH

= 0 (20)

ΓH

P

Fig. 2. Boundary condition n×H|ΓH
= 0.

If node P is not connected to any other external branch,
like presented in (Fig. 2), it implies a zero total magnetic
flux along this surface.

This condition was discussed in our previous paper [3],
but this connection is also used to impose one external flux
density in the model, i.e., n ·B|ΓB

.

C. Normal flux density (n ·B|ΓB
) source

Considering the FFEM circuit formalism, this source can
be implemented defining flux sources along each face i along
ΓB , i.e., one flux source at each branch connecting the face i
to the node P shown in Fig. 2. The flux values are given by

Φi =

∫
Γi

n ·Bi dΓi (i = 1..., nfΓ) (21)

where nfΓ is the number of element faces along Γ and Bi

is the flux density field along each face.
This is not a time-consuming process, since the integration

given in (21) is based on the Gauss points of those 2-D
elements along Γ.

III. DEFINITION OF THE SUBPROBLEMS

Once the key concepts necessary to define the SPM in the
light of the FFEM (circuit formalism) are above presented, it
is possible to describe the SPM chain.

It is based on a sequence of subproblems, considering the
idea of the source and reaction fields, but only calculating the
source field along specific parts of the domain.

In this case, a sequence of two problems, p and q, is
presented. In problem p an unperturbed field is obtained with
Biot-Savart. In problem q, the source field is obtained, also
with Biot-Savart, and the reaction field is solved with the
FFEM. Then, both results are simply superposed, resulting
in the total solution (p + q). Depending on the case, the first
and consequently the sequence of the problems can vary. Here
problem p is always the Biot-Savart solution and problem q
can differ depending on the application.

A. Inductor alone

The Biot-Savart field calculation in subproblem p is ob-
tained in Ω considering only the conductors, Ωs,p, where
Q ∈ Ωp is the calculation point, P ∈ Ωs,p is the integration
point and rPQ is the position vector, with the current density
Js (Fig. 3).

H(Q)

rPQ
Q

Jsdv, Idl, Jds
P

Ωsv

Ωss
Ωsl

Fig. 3. Integration domain for the Biot-Savart equation.

For 3-D cases, the source field can be obtained through

H(Q) =
1

4π

∫
Ωsv

J(P ) × rPQ

|rPQ|3
dΩsv (22)

Moreover, for some specific cases where the aspect ratio
between the entire domain and conductor cross-section di-
mensions is high, Ωs,p can be simplified by its average line,
not requiring a 3-D but an 1-D mesh which could represent
computational advantages. In this case, the source field is
obtained using

H(Q) =
I

4π

∫
Ωsl

dl(P ) × rPQ

|rPQ|3
dΩsl (23)

In case of 2-D symmetries, (22) can be re-written as

H(Q) =
J

2π

∫
Ωss

ds(P ) × rPQ

|rPQ|2
dΩss (24)

The integration process of (22), (23) or (24) along Ωs,p can
be done based on a non-conforming mesh in Ω, allowing the
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utilization of higher order isoparametric elements, for instance,
increasing the accuracy of the source field, mainly when Ωs,p
contains curved regions.

The source field can be calculated normalizing the current in
the conductors as 1A, for instance, and multiplying the field
by the real currents afterwards. Also, as the conductors are
immersed in a region with µr = 1, it is possible to explore
symmetries, which can be lost in the complete problem [13].

B. Correction of the boundary condition not imposed by the
Biot-Savart equation

The Biot-Savart solution, Section III-A, does not impose
the boundary condition n ·B|ΓB

= 0 along the boundaries
as the FFEM does. So, a simple superposition of results, i.e.,
problem p (Biot-savart) + problem q (FFEM), might cause
some differences in the total solution. This problem is also
verified when using the classical FEM with A formulation,
because it also imposes n ·B|ΓB

= 0, meaning that this
correction has to be applied there, as well.

It can be solved canceling the component n · Bp along the
outer surface of Ω, Γ, using the n ·B|ΓB

surface sources
presented in Section II-C, with n · Bq|Γ = −n · Bp|Γ. As
mentioned in Section II-C, it is a light process since it
depends on a 2-D integration along those element faces which
comprise the surface. In addition, this step can be included in
a subsequent problem, q.

C. Perfect conductor boundary condition

Other application of the methodology explained in Section
III-B, i.e., the implementation of n · Bq|Γ = −n · Bp|Γ, is the
limit case of a perfect conductor. Furthermore, it is a limit case
that, in the light of the FFEM, applies a n · B|Γ field along
the boundary as described in Section II-C. So, it appears as
an interesting case to be analyzed.

The internal magnetic field of a perfect conductor, denoted
by Ωpc ∈ Ω and its boundary γpc, is zero and results in a zero
skin depth. This behavior is treated removing Ωpc from Ω and
fixing a zero total magnetic flux along its boundaries, γpc. So,
assuming that there is no discontinuity along γpc in the total
solution, as in (10), it is possible to perturb the problem p,
solved with Biot-Savart (Section III-A), defining a problem q
as

[n ·Bq]γpc,q = Bf,q (25)

where Bf is a surface field that defines the flux density
discontinuity. But, as stated in (11), the total solution has no
Bf ,

Bf = Bf,p +Bf,q = 0 so, Bf,q = −Bf,p (26)

consequently,

Bf,q = −[n ·Bp]γpc,p (27)

As the internal field of Ωpc is null, this discontinuity is
treated as a boundary condition,

n ·Bq|γpc = −n ·Bp|γpc (28)

As the field Bp is only necessary along γpc, the Biot-
Savart field is only solved along this boundary in problem p,
reducing the computational time of the entire problem. The
total solution, p + q, can also be interpreted as the Dirichlet
boundary condition, i.e., n ·B|γpc = 0, which imposes a zero
normal component on the fields, offering a solution for further
comparisons.

D. Volume source

As previously mentioned, the aim of this work is to take
advantage of the SPM in order to reduce the domain where
the Biot-Savart field is obtained and this is achieved by
considering volume sources only along the active parts of this
domain.

So, given a first problem p, with its constitutive relation and
Maxwell equations,

Hp =
1

µp
Bp (29)

rot Hp = J (30)

div Bp = 0 (31)

it is possible to perturb this problem changing the magnetic
permeability of a certain region, from µp to µq , where q is
a subsequent problem, resulting in a new constitutive relation
for the total problem p+ q,

Hp + Hq =
1

µq
(Bp + Bq) (32)

The difference between the solutions (29) and (32) gives

Hq =

(
1

µq
− 1

µp

)
Bp +

1

µq
Bq (33)

and suggests that problem q depends on the solution of
problem p only along those perturbed regions, from µp to
µq , i.e., the active regions. Moreover, the total solution should
satisfy the Ampère equation,

rot (Hp + Hq) = J (34)

where it is possible to observe that Hq is curl-free. Applying
the Gauss equation,

div (Bp + Bq) = 0 (35)

one can see that Bq is divergence-free. This means that the
field Hq has the same behavior of the field generated by a
permanent magnet, Hc in (4), and allows to take it into account
in the Br term of the FFEM magnetostatic formulation given
in (15), thanks to (3) and (4).

Finally, re-writing (33) and defining the total field of the
second problem in terms of the source and reaction fields,
Hq = Hqs+Hqr (11), one obtains an equation with the same
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shape of (14), which consequently can be solved through the
FFEM,

1

µq
Bq + gradψq = Hqs −

(
1

µq
− 1

µp

)
µ0Hp (36)

and contains the volume source term,

VS = −
(

1

µq
− 1

µp

)
µ0Hp (37)

The field Hqs is zero because this problem does not
consider the source field but only the volume sources.

As the perturbation regards the change from µp to µq ,
there would have no problem to consider non-linear magnetic
materials, once µq can be considered as element based.

If the model contains external reluctances with mmf
sources, simplifying possible windings, they are not taken into
account in the discretized domain. These mmf sources need
to be corrected using the factor given in (37).

Reference [22] presents a way to correct problem q for
higher values of µq , i.e., Hp approaches to −Hq . This cor-
rection is important in the case of projections of curl A [23]
between different meshes and that is not the case here because
the Hp field is calculated directly along the mesh used to solve
problem q.

IV. APPLICATIONS

In order to validate the proposed methodology, some test
cases are presented following the order of complexity. First,
the correction for the Biot-Savart boundary condition is solved
together with a perfect conductor simplification on a simple
geometry. Then, one 3-D magnetic device is completely solved
using this proposed methodology. Finally, this device is sim-
plified using the FFEM+RNM coupling, as proposed in [3],
and solved considering the subproblem technique.

The geometries and meshes are generated with the Gmsh
program [24] and the A-formulation is solved using the
program GetDP, which abbreviation means a ”General Envi-
ronment for the Treatment of Discrete Problems” [25]–[27].

A. Correction of the boundary condition not imposed by
Biot-Savart

These preliminary test cases are based on a 3-D geometry
obtained by the extrusion of a 2-D model, composed of two
conductors and a magnetic core, as depicted in Fig. 4a. The
top view of the 3-D mesh generated is shown in Fig. 4b. One
horizontal probe line placed in the center of the model is used
to compare the results locally.

Probe line

Air region

Magnetic core

Conductors

(a) 2-D geometry (extruded to build a 3-D
mesh).

(b) Top view of the 3-D mesh.

Fig. 4. Geometry and mesh of the extruded domain.

In order to show the correction effect solely, the normal
component of the magnetic field is obtained along the external
surface with Biot-Savart, (Fig. 5), and the relative permeability
of the magnetic core is set as unitary.

Fig. 5. Magnetic field obtained with Biot-Savart along the Γ.

The problem is solved considering the correction presented
in Section III-B and the correction field obtained is shown in
Fig. 6. The color scale is set as logarithmic in order to show
a wider range of field magnitudes.
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Fig. 6. Flux density distribution along Ω.

As defined in Section III-B, the direction of the fields H,
Fig. 5, and B, Fig. 6, have opposite directions along the outer
surface Γ, where the correction is applied.

B. Perfect conductor boundary condition

The magnetic core is now considered as a perfect conductor,
Ωpc, and the correction presented in Section III-C is applied
along its boundary. The Biot-Savart correction is also consid-
ered.

The correction field is shown in Fig. 7 and the comparison
with the classical FEM along the probe line is presented in
Fig. 8, where Bp(BS) is the source field obtained with Biot-
Savart, Bq is the correction field and Bq + Bp is the sum of
both quantities.

Fig. 7. Flux density distribution - problem q.

(    )

Fig. 8. Field By along the probe line.

Fig. 9 shows a close view of By.

(    )

Fig. 9. Field By along the probe line - zoom.

One can observe that the field obtained from Biot-Savart,
Bp(BS), is a continuous solution and when it is summed up
to the one obtained with a first order FFEM, the total solution,
i.e., Bq + Bp becomes more continuous. Since this is not the
case for the FFEM solution, this fact can be interpreted as a
gain of accuracy of the proposed method.

C. Volume sources

Now, a more realistic magnetic device is simulated. As
this work is a sequence of [3], to make the computational
time comparison based on the conventional FFEM easier and
clearer, the magnetic device presented in [3] is utilized here
as well. Furthermore, its vertical windings close to the air
gaps generate higher magnetic fields along these regions,
consequently, increasing the problem p contribution in the total
solution, which is an important aspect due to the different
behaviors of both solutions.

It is composed by two windings fed in opposite directions by
a current density of 2.73 107A/m2 and two magnetic regions,
with µ = 2000µ0, separated by an air gap, as shown in Fig.
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10. The depth of the magnetic parts, air gap regions, and the
outer air domain are 20, 50 and 60 mm, respectively.

36
32
2020 60 20 20

5

20

5

22

5

20

5

3

Windings
Magnetic parts

Air gap regions

All dimensions are in mm.
Probe line

X
Z

Fig. 10. Geometry of the 3-D device.

A tetrahedral mesh of the active parts and windings is shown
in Fig. 11.

Fig. 11. 3-D mesh of the device.

This magnetic device is completely solved using the vol-
ume source described in Section III-D, and the Biot-Savart
correction defined in Section III-B.

The field Hp presented in Fig. 12 was obtained by Biot-
Savart only along the active parts, reducing the computational
time to 34% compared to the computational time of the
classical solution, where Biot-Savart field is needed along the
entire domain.

Fig. 12. Source field Hp obtained only along the active parts.

Then, the problem q solution is obtained solving (36) with
FFEM (19), considering the source field Hp given in Fig. 12
as a volume source, (37).

Even if not necessary to calculate the p problem solution
along the entire domain, but only along the interest regions,
it is shown in Fig. 13a as a post-processing task. Therefore,
the total (p+ q) solution of this problem is represented by the
sum of these fields (Fig. 13a + 13b), where Fig. 13b shows
the solution of problem q.

(a) Magnetic field Hp obtained with BS. Bp =
µ0Hp.

(b) Flux density Bq obtained with FFEM.

Fig. 13. Field maps representing the solutions of the problems p and q for
the complete model.
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A comparison between the total solution, Bp + Bq , and the
results obtained with the classical FFEM along the probe line
is given in Fig. 14. It is important to mention that the problem
p consists of calculating the Biot-Savart field along this line,
as a post-processing operation.

Fig. 14. Field Bz along the air region.

D. Volume sources + Coupling (FFEM+RNM)

The model presented in Fig. 10 is simplified as shown in
Fig. 15, where half of the windings are inside the meshed do-
mains and the other halves of the Ampere-turns are considered
as mmf sources in the external circuit.

<3
mmf

<2

mmf

<1

Fig. 15. Coupling between FFEM and RNM.

The source field, Hp, is obtained considering the Biot-Savart
integration along the complete windings only along the active
parts of the meshed domain, reducing the computational time
needed for the source field calculation to about 12% of the
computational time of the classical method.

Finally, the volume source (37) is used as a source term
in the FFEM system and its correction is also applied in the
external mmf sources. So, this coupled problem is solved
using also the subproblem technique and the flux density
distribution obtained is presented in Fig. 16b. The problem
p solution is shown in Fig. 16a, only with the visualization
purpose as already mentioned, composing the total solution
(Fig. 16a + Fig. 16b).

(a) Magnetic field Hp obtained with Biot-Savart. Bp = µ0Hp.

(b) Flux density Bq obtained with FFEM.

Fig. 16. Field maps representing the solutions of the problems p and q for
the reduced model.

Then, this coupled model is also solved using the classical
coupling [3] and the comparison along the probe line is
presented in Fig. 17.

60 40 20 0 20 40 60
Position along the probe line [mm]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

B
z 

[T
]

FFEM coupled - Ref.
Bp +Bq coupled

Fig. 17. Field Bz along the probe line.

E. Time comparison of the source field calculation

In reference [3], the source field is computed along the
entire domains, but in this work it is calculated only along
the ferromagnetic parts. As the test cases are the same for
both works, it is possible to compare the simulation time
necessary to obtain the source field in all those test cases.
The comparison is presented in Table I, where the percentage
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values refer to the computational time necessary to obtain the
source field along the complete model (indicated with ”Ref.”
in Table I) presented in [3].

TABLE I
COMPARISON OF THE SIMULATION TIME IN RELATION WITH THE

COMPLETE MODEL SOLVED WITHOUT THE SPM.

Model Without the SPM With the SPM
(From reference [3]) (Proposed method)

Complete Ref. 33.6%
Coupled (FFEM+RNM) 52.2% 12.1%

Notwithstanding the coupling FFEM+RNM can save com-
putational effort and time, the results obtained in this work
make evident how the subproblem technique can represent an
important speedup.

V. CONCLUSION

The proposed methodology allowed to reduce the compu-
tational time to obtain the source field required in the Facet
Finite Element Method by applying subproblem technique. It
was based on the application of the volume source together
with a correction for the boundary condition not imposed by
Biot-Savart but imposed by the FEM technique, allowing a
direct superposition of those two problems, p and q. Compu-
tationally speaking, it was possible to find that this correction
is not a time consuming task. However, it can represent a
significant impact on the accuracy of solution, mainly near
the outer surfaces of the domain.

The solutions were presented in the order of complexity,
showing the different approaches independently, which can be
helpful to apply in others situations. The results obtained for
one simple and other complex cases were compared with the
results calculated through the classical FEM (A-formulation)
and FFEM, presenting an acceptable accuracy.

For the real case studied, it was possible to reduce the
Biot-Savart computational time to 12% if compared with the
classical method. As this factor is directly dependent on the
volume ratio between the magnetic and non-magnetic regions
in the domain, it can vary considerably. Nonetheless, normally
the 3-D cases demands a considerable large air regions due to
the imposition of the n ·B|ΓB

= 0 boundary condition, this
factor tends to be small in the majority of practical cases.
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L. Krähenbühl, “Perturbation finite element method for magnetic model
refinement of air gaps and leakage fluxes,” IEEE Transactions on
Magnetics, vol. 45, no. 3, pp. 1400–1403, 2009.

[10] P. Dular, R. V. Sabariego, J. Gyselinck, and L. Krähenbühl, “Subdomain
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