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Abstract— Laser feedback based self-mixing interferometry 

(SMI) has been demonstrated for diverse metric sensing 

applications. Typically, SMI sensors are based on such laser 

diodes (LDs) which provide mono-modal emission resulting in 

SMI signals in which each interferometric fringe occurs due to 

change in optical path length of λ/2, where λ is emission 

wavelength. However, in case multiple laser modes undergo SMI, 

then each mode contributes its own set of fringes. As LDs can 

emit multiple modes under variable operating conditions, so, 

non-detection of multiple SMI modes can cause drastic increase 

in measurement error due to wrong interpretation of fringes. 

Previously, detection of multiple laser modes undergoing SMI 

was achieved by adding spectroscopic instruments to the SMI set-

up. This, however, compromises the inherent simplicity of SMI 

sensing. In this work, an automatic SMI based multi-modality 

detection method is proposed which is able to detect if multiple 

modes of deployed LD are undergoing SMI and are contributing 

additional fringes within the SMI signal under variable sensing 

conditions. Such detection enables correct interpretation of SMI 

fringe count and can be used to signal occurrence of mode-

hopping or secondary mode excitation. The method uses an 

artificial neural network, able to automatically identify uni-, bi-, 

or tri-modal SMI signals. Two different LDs (emitting at 637 nm 

and 650 nm) were used to acquire 131 experimental uni-, bi-, and 

tri-modal SMI signals for variable operating conditions and 

target vibration amplitude. The proposed system has achieved 

modality detection accuracy of 98.57% on 70 unseen 

experimental SMI signals.   

 

 
Index Terms— Self-mixing Interferometry, Optical Feedback 

Interferometry, Vibration Measurement, Laser Sensors, Neural 

Networks, Laser modes, Laser feedback. 

I. INTRODUCTION 

elf-mixing interferometry (SMI) or optical feedback 

interferometry [1, 2] based laser sensors have been 

demonstrated for diverse sensing applications such as 
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displacement [3, 4], distance [5], vibration [6, 7], velocity [8], 

refractive index [9], range finding [10], flow [11], strain [12], 

and imaging [13] etc.  

Traditionally, mono-modal laser diodes (LD) are used for 

SM sensing and each interferometric SM fringe is assumed to 

occur for a remote target motion of /2, where  is the LD 

wavelength. /2 is thus considered the basic resolution of SM 

sensors. However, in case of change in LD modality (e.g. 

switching from mono-modal to bi-, or even tri-modal 

emission), different individual modes [14] under SM are 

incoherently superimposed and a corresponding sub-

periodicity appears in the SM signal [15, 16]. As a result, 

fringes within the multimodal SM signal need to be interpreted 

differently. Thus, if the LD under optical feedback exhibits 

multi-modal behavior during the course of continuous sensing 

of a remote target then the corresponding multiplicity of SMI 

fringes needs to be appropriately detected and classified in 

order to correctly retrieve the target displacement with 

potentially improved  SMI sensor resolution [15, 17]. This 

multiplicity of SMI fringes, however, turns into a source of 

drastic increase in measurement error [16] in case failure 

occurs in detecting the change in multiplicity of SMI fringes. 

Thus, any change from uni-modal to multi-modal SMI signal 

(or vice-versa) needs to be automatically detected followed by 

appropriate fringe count interpretation. Otherwise, even 

advanced SMI displacement/vibration retrieval algorithms 

yielding high accuracy (for uni-modal SMI) [18-28] will 

provide erroneous measurements.  

Variation can occur in LD modality [14, 17] due to change  

in laser diode’ operating current [14] or temperature [15] 

while change in length of external cavity also influences the 

modality of the laser under optical feedback [16]. Currently, 

change in modality cannot be detected without introducing 

optical components and spectroscopic instruments into the SM 

sensor set-up [15]. Such introduction of additional optical 

components, however, compromises the inherent simplicity 

(see Fig. 1) of SM sensing for real-world applications.  

To the best of authors’ knowledge, no previous method 

exists for automatic detection of changes in SMI signal’s 

modality. In this work, an artificial neural network (NN) based 

system has been designed to achieve automatic detection and 

classification of multi-modality of optical feedback based SMI 

signals for sensing purposes using two different laser diodes. 
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As a result, SM fringe count can now be correctly and 

automatically interpreted even if the SMI signal changes from 

uni-modal to multi-modal operation. Such a detection 

potentially allows the use of multi-modal lasers for sensing 

purposes as well, thus extending the choices in an area 

previously dominated by mono-modal lasers. Similarly, it 

enables monitoring and SMI based use of such uni-modal laser 

diodes which are prone to switch to multimode operation e.g. 

due to change in operating conditions. 

As another potential use, the automatic multi-modality 

detection provided by the NN can also be used in a feedback 

loop so that either LD operating current [17] and/or the 

focusing lens position be electronically controlled (e.g. as 

already demonstrated for the robust stabilization of optical 

feedback regime of SMI sensor using electronically controlled 

liquid lens [21]) so that LD based SMI sensor is stabilized to 

operate with a specific uni-/multi-modal behaviour. 

 NNs have been regularly used to improve the performance 

and selectivity of various sensors such as surface acoustic 

wave sensor array [29], gas-mixture sensors [30], optical-fiber 

based sensor [31], and chemical sensors [32] etc. Likewise, 

NNs have also been used for SMI based sensing. For example, 

an SMI  sensor, using NN for the data processing, was 

designed to classify the surface of the remote moving target 

[33]. The results presented better than 92% correct 

classification for eight different surfaces involving different 

materials, manufacturing methods, and roughness levels. The 

NN used statistics of mean speckle amplitude, mean speckle 

frequency, and speckle contrast [33]. Similarly, NN was used  

to eliminate the noise associated with the uni-modal SMI 

signals belonging to weak and moderate optical feedback 

regimes [34]. It eliminated noise by means of NN curve fitting 

technique. Simulations revealed a measuring accuracy of λ/25 

for weak optical feedback and λ/20 for moderate optical 

feedback regime SMI signals [34]. 

The paper is organized as follows: Section II discusses the 

broad principles of SMI and the deployed experimental set-up 

for acquisition of multi-modal SMI signals. NN based 

classification methodology and detection results are described 

in Section III followed by Discussion and Conclusion. 

II. SELF-MIXING INTERFEROMETRY 

SMI is a very attractive sensing scheme in the way that it 

allows a simple laser diode (LD) package (containing its built-

in photodiode) to be simultaneously used as a laser source, a 

micro-interferometer, and a detector. This thus allows a 

compact, miniaturized, low-cost, and self-aligned sensor 

capable of nanometric measurement accuracy [1-2]. An SMI 

system is much simpler than conventional interferometers 

because many optical elements such as beam splitters, 

reference mirror, and external photo-detector are not required. 

Thus, with a simply constructed optoelectronic system, smart 

laser sensors have been developed using SMI.  

SMI signals are observed when a part of the back-reflected 

laser beam illuminating a remote target re-enters into the 

active optical cavity. This then causes a mixing of generated 

and back-reflected optical fields within the laser cavity. The 

said mixing or interference affects the properties of laser 

including modulation of its wavelength [14] and optical output 

power (OOP) of the laser as a function of changes in the 

optical path length  [13]. The variation in the OOP of the laser 

diode P(t) caused by this optical feedback can be written as 

[1]: 

𝑃(𝑡) = 𝑃0[1 + 𝑚𝑐𝑜𝑠[𝛷𝐹(𝑡)]]                   (1) 

where P0 is the emitted power under free running 

conditions, m is the modulation index and ΦF(t) is the laser 

output phase in the presence of feedback, given by [1]:   

𝛷𝐹(𝑡) = 2𝜋
𝐷(𝑡)

𝜆𝐹(𝑡) 2⁄
                  (2) 

where D(t) is the target displacement. The emission 

wavelength subject to feedback λF(t) is provided by the well-

known excess phase equation [1]: 

𝛷0(𝑡) =  𝛷𝐹(𝑡) + 𝐶𝑠𝑖𝑛[𝛷𝐹(𝑡) + arctan(𝛼)]       (3) 

where Φ0(t) is the laser output phase in the absence of 

feedback, given by:   

 𝛷0(𝑡) = 2𝜋
𝐷(𝑡)

𝜆0(𝑡) 2⁄
          (4) 

where λ0 is the emission wavelength under free running 

conditions, and α is the line width enhancement factor, also 

known as Henry’s factor [35]. The feedback coupling factor C, 

also known as Acket’s parameter [36], is usually used to 

identify the SM operating regime such as weak- (C < 1), 

moderate-(1 < C < 4.6), or strong- (C > 4.6) optical feedback 

regime [1, 2].  

A. Self-Mixing Sensing Set-up 

Fig. 1 schematizes a basic arrangement for studying the SM 

effect. The arrangement consists of a laser diode biased with a 

constant current while the built-in monitor photodiode, 

receiving light from the back facet of the laser diode, is used 

to measure the optical output power emitted by the laser.  

 The so-called external cavity is created between the front 

facet of LD and moving target, which may be cooperative (i.e. 

mirror) or non-cooperative (i.e. diffuse surface). For a given 

target surface, the focusing lens placed in the external cavity 

and the sensor-to-remote-target distance determine the amount 

of optical feedback coupling into the LD.   

 
Fig. 1.  Schematic diagram of SMI sensing set-up based on a laser diode 

package including the built-in monitor photodiode. Remote vibrating 

target causes variation in optical output power P(t) which is detected by 

the monitor photodiode and amplified by a trans-impedance amplifier 

(TIA). 
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B. Experimental Set-up 

The basic SM interferometer was implemented by using the 

experimental set up shown in Fig. 2. The vibrating target was 

a polished metallic ring mounted on a mechanical shaker 

(model SF-9324 by PASCO having operating frequency range 

of about 0.1Hz to 5 kHz). The function generator (model 

AFG-2225 by GW Instek) provided sinusoidal input vibration 

of 100 Hz frequency to the wave driver. The digital 

oscilloscope (model GDS-2204E by GW Instek) was used to 

observe and to acquire the SMI signals. 

The experimental setup was tested using two different LDs 

i.e. L637P5 and HL6501MG. L637P5 LD has threshold 

current Ith of 20mA, a slope efficiency η of 1mW/mA and λ0 of 

637nm at 25˚C, providing 5 mW of optical power. 

HL6501MG LD has Ith of 75mA, η of 0.75mW/mA and λ0 of 

650 nm at 25˚C providing 35 mW of optical power.  

The collimation tube (model LT110P-B by ThorLabs) with 

focusing lens of 6.24 mm focal length was used to house the 

laser diode and to focus the laser beam onto the vibrating 

target. A custom-made circuit board was used to drive the LD 

with adjustable operating current. It also includes a trans-

impedance amplifier (TIA) to amplify the photodiode signal.       

C. Experimental Observations 

The laser diode L637P5 was biased with constant current of 

23mA and the external cavity length Lext was about 10 cm. The 

lens of collimation tube was initially set to the defocus 

position thus small amount of optical feedback occurred 

resulting in a mono-modal SMI signal as shown in Fig. 3(b). 

When the amount of optical feedback was increased by 

focusing the lens, other modes of LD also entered SM and a 

sub-periodicity appeared in the optical output power, resulting 

in a bi-modal SM signal, as seen in Fig. 3(c). When the 

amount of optical feedback was increased further, tri-modal 

SMI signal appeared, as seen in Fig. 3(d). 

Similar results were obtained by using HL6501MG with 

operating current of 78mA, as shown in Fig. 4. 

It was also observed that the shape of a given multi-modal 

(e.g. tri-modal) SM signal significantly varied as Lext  was 

varied while the focus remained the same (see Fig. 5 and Fig. 

6). This may be due to different gain and phase shifts 

encountered by individual modes making up the tri-modal 

signal which are incoherently superimposed [15, 16]. 

“Previous research [15] measured the optical spectra 

corresponding to multiple modes undergoing optical feedback. 

The number of modes undergoing SM was controlled by 

varying the amount of optical feedback (which in their 

experimental setup was controlled through a variable optical 

attenuator). Importantly, it was also experimentally observed 

that a normally mono-modal laser diode (such as Mitsubishi 

ML1412 LD with Ith of 43 mA, η of 0.75 mW/mA, and λ0 of 

680 nm at 25 °C) can be subject to mode hopping under 

optical feedback [15]. Specifically, when ML1412 LD was 

biased at 50 mA then it presented a mono-modal optical 

 
Fig. 3. Experimentally acquired SMI signals using L637P5 laser diode 

with operating current of 23mA. (a) driving voltage provided to the 

vibrating mechanical shaker acting as target, (b) mono-modal SMI signal, 

(c) bi-modal SMI signal, and (d) tri-modal SMI signal. Note the 

characteristic sub-periodicity in SMI fringes indicative of multi-modality. 

 
Fig. 4. Experimentally acquired SMI signals using HL6501MG laser 

diode with operating current of 78mA. (a) driving voltage provided to the 

vibrating mechanical shaker acting as target, (b) mono-modal SMI signal, 

(c) bi-modal SMI signal, and (d) tri-modal SMI signal. 

 

 
Fig. 2.  (a) Experimental set-up for acquiring uni- and multi- modal self-

mixing interferometric signals using two different laser diodes, (b) close-

up. 
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emission spectrum. However, under specific amount of optical 

feedback resulting in a bi-modal SM signal, the corresponding 

optical spectrum showed that optical intensity of the second 

mode was approximately 80% with respect to the primary 

mode. Likewise, in the case of tri-modal SM signal, optical 

intensity of second (third) mode was approximately 75% 

(55%) with respect to the primary mode [15].” 

A variety of SMI signals were thus observed and acquired 

under different optical feedback and Lext conditions. Weak 

feedback regime signals are identified by quasi-sinusoidal 

fringes devoid of discontinuity (e.g. see Fig. 3 (b) and Fig. 4 

(b)). Moderate feedback regime signals are characterized by 

presence of sharp discontinuity at each fringe as well as 

hysteresis [1,2]. Certain acquired SM signals belong to 

moderate feedback regime (e.g., see Fig. 3 (c-d). Strong 

feedback regime SM signals are usually avoided due to fringe-

loss and chaos [1, 2]. No such signals were observed during 

signal acquisition for the present work. 

Having discussed how different mono- and multi-modal 

SMI signals were experimentally acquired, methodology of 

their automatic classification and detection is discussed next. 

III. CLASSIFICATION OF MODALITY 

Schematic block diagram of the proposed classification and 

detection of mono- and multi-modal SMI signals for vibration 

sensing is shown in Fig. 7. It is composed of four sub-blocks: 

1) SMI Data-set, 2) Pre-processing, 3) Feature Extraction, and 

4) Classification, as detailed below.                    

A. SMI Data-set 

As previously mentioned, various mono-, bi-, and tri-modal 

experimental SMI signals were acquired using two different 

LDs by varying the optical feedback through variation of Lext 

(from 15 cm to 60 cm approximately) and lens’ focus. The 

peak to peak amplitude of target vibration was also varied 

(from 0.7 µm to 3 µm approximately) resulting in change in 

the number of fringes per vibration cycle in SMI signal 

(varying from 2, 4, or 6 fringes to 9, 18, or 27 fringes for uni-, 

bi-, or tri-modal operation respectively). Thus, multiple mono-

modal, bi-modal, and tri-modal SMI acquisitions were 

obtained to form a data-set. Specifically, this data-set is 

composed of 131 SMI signals with 42 uni-modal (32.1%), 42 

bi-modal (32.1%), and 47 tri-modal (35.8%) SMI signals.                                                                                          

B. Pre-processing 

Different SMI signals are made comparable by removing 

any dc offset followed by normalization of SMI signal 

amplitude within the range [1 -1]. Likewise, for correct 

classification, it is important to enhance the quality of the 

input experimental SMI signals by using filtering to reduce 

noise. Lastly, it is important to take such steps (e.g. 

differentiation) so that subsequent features can be extracted 

(see Fig. 8). 

1) DC Offset Removal 

2) SMI Signal Normalization 

3) Low Pass Filtering 

The normalized SMI signal is passed through a low pass 

filter. This improves the overall signal to noise ratio of 

experimentally acquired SMI signals and makes their patterns 

(based on sub-periodicity in case of multi-modality)  become 

more prominent (see Fig. 8 (b)). 

4) Down-sampling 

 
Fig. 7. Schematic block diagram of proposed automatic detection method 

of uni- and multi-modal SMI signals for vibration sensing. 
 

 
Fig. 5. Different tri-modal SMI signals observed using HL6501MG laser 

diode at different external cavity lengths of approx. (a) 10 cm (b) 13 cm 

(c) 15 cm respectively. 

 
Fig. 6.  Magnified portion (0.001s to 0.003s) of Fig.5 showing the 

variation in shape of different tri-modal SMI signals. 
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The process of down-sampling is performed (by a factor of 

3) thereby reducing the total number of samples of raw SMI 

signal which is sampled at a high sampling rate. As a result, 

the slopes of transitions (indicative of fringes) in SM signal 

become steeper and hence can be better localized in 

subsequent steps (see Fig. 8(c)). Note that all subsequent steps 

are carried out on this filtered and down-sampled SMI signal, 

denoted as SMd. 

5) Differentiation 

The pattern of transitions (indicative of location of 

individual fringes) in multi-modal SMI signals is an important 

feature for classification of SMI multi-modality as this pattern 

is indicative of individual modes contributing in a multi-modal 

SMI signal. By performing differentiation of SMd, each 

transition (fringe) within the SMI signal appears as local peak 

in differentiated SMI signal (see Fig. 8(d)). Thus, these 

transitions (indicative of individual fringes) can be localized 

and the associated pattern can be identified and later used as a 

part of other features indicative of modality.                                                                                        

C. Feature Extraction 

As experimental SMI signals can be composed of hundreds 

of thousands of samples per second due to high sampling rate 

requirements of typical SMI signals so it is important to 

reduce the dimensionality of the input SM signals while 

preserving their significant features (whose values are 

different for each class of modality, thus enabling class 

identification). This stage is known as feature extraction. So 

input data is processed in such a way that the useful features 

(providing clues of a certain modality) existing in the SMI 

signal are extracted. The important features include: 

1) Amplitude of peaks of differentiated SMI signal 

The pattern made up by the values of amplitude of peaks in 

differentiated SMI signal is usually different in each case of 

modality of SMI signals (i.e. mono-modal, bi-modal, and tri-

modal SMI signal.) These peaks, shown in Fig. 9(a), need to 

be first detected and then their amplitude values and locations 

(used later on) are saved. Values of six consecutive peaks are 

used later as features. 

2)  Amplitude difference between consecutive peaks 

The peaks of  𝑆𝑀𝑑 signal are identified and the difference of 

amplitude (∆𝑃) between 6 consecutive peaks (resulting in five 

∆𝑃 values) is computed as shown in Fig. 9. The pattern of 

∆𝑃 is usually different in each mode of SMI signal and thus 

can be utilized for modality classification. 

3)  Time difference between consecutive peaks 

The time indices of peaks in 𝑆𝑀𝑑  signal are identified 

(using their location information) and the difference of indices 

(∆𝑡) between 6 consecutive peaks (resulting in five ∆𝑡 values) 

are computed as shown in Fig. 9. The pattern of ∆𝑡 is also 

usually different in each mode of SMI signal which makes it a 

useful feature. 

In order to achieve high accuracy in modality classification, 

following guidelines were followed:  

1) The detected peaks should not include the direction-

reversal segment of SMI signal, as it is devoid of true fringes. 

2) No genuine peak should remain undetected within the 

SMI signal segment used for feature extraction.” 

Thus, each SMI signal is processed so that its corresponding 

feature vector is obtained. The feature vector is then composed 

of 16 total elements in which 6 elements are taken from the 

peak value of differentiated SMI signal, 5 elements from the 

amplitude difference between peaks of SMd, and 5 elements 

from time difference between peaks of SMd. All such feature 

 

 
Fig. 9.  (a) Fringes of a tri-modal SMI signal and corresponding detected 

peaks indicated by black circles. The time difference (∆t) and amplitude 

difference (∆P) between consecutive peaks are also indicated. (b)  Peaks 

of corresponding differentiated SMI signal indicated by black circles.  

 

 
Fig. 8.  Preprocessing steps: (a) raw experimentally acquired SMI signal, 

(b) normalized and low-pass filtered SMI signal, (c) down-sampled SMI 

signal, and (d) differentiated SMI signal. 
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vectors of complete data-set are then passed on to the NN for 

supervised classification, as detailed below. 

D. Classification  

1) Supervised learning 

For supervised learning, the training data is provided to the 

classifier. The training data is composed of extracted feature 

vectors of different uni-, and multi-modal SMI signals and the 

corresponding output labels.  The output label represents 

classes of SM signals, i.e. class U, B, or T corresponding to 

uni-, bi-, or tri- modal SMI signal respectively. In our case, 61 

labeled SMI signals out of the 131 total SMI signals have been 

used for training of classifier. 

The neural network pattern recognition MATLAB ® toolbox 

is used as classifier. This classifier not only creates a NN but 

also validates its performance after supervised learning. This 

classifier is using back propagation algorithm for training of 

NN. The architecture of employed NN is shown in Fig. 10 in 

which the input layer is composed of 16 nodes (each receiving 

one input from the SMI feature vector), the output layer has 

three elements (each indicating the detected SMI modality, i.e. 

U (for uni-modal), B (for bi-modal), and T (for tri-modal)) 

while there is one hidden layer comprising of 18 neurons.  

2) Testing of Classification 

After the training of NN, it is used to classify the unseen 

and unlabeled SMI signals into one of three modal classes. 

The unseen and unlabeled SMI signal is passed through 

preprocessing stage and features are extracted from it. The 

feature vector is provided as input to the trained classifier and 

then it makes the decision about its class with a certain 

performance, as detailed below.       
TABLE I 

 DETECTION PERFORMANCE OF NEURAL NETWORK FOR UNSEEN SMI UNI-, BI-, 

AND TRI-MODAL SIGNALS AS A FUNCTION OF NUMBER OF NEURONS  

Number 

of 
Hidden 

Neurons 

Modality Detection Performance for Unseen SM Signals  

Uni-

modal 

signals 

Bi-

modal 

signals 

Tri-

modal 

signals 

Total 

SM 

signals 

Accuracy 
(%) 

16 21/22 21/22 23/26 65/70 92.85 

18 22/22 22/22 25/26 69/70 98.57 

20 22/22 21/22 24/26 67/70 95.71 

22 22/22 22/22 22/26 66/70 94.28 

                          

E. Results 

The performance of proposed NN is quantified by 

computing its accuracy of classification. Here, accuracy is the 

ratio of correctly classified SMI signals to total number of 

SMI signals that are being classified.  

The results of classification are shown in Table I. The 

proposed NN was provided 70 unseen SMI signals (composed 

of 22 uni-modal, 22 bi-modal, and 26 tri-modal SMI signals). 

The NN has provided best results when 18 neurons are used in 

the hidden layer. In this case, the classifier performed correct 

SM modality detection on 69 out of 70 unseen uni-, and multi-

modal SMI signals with 98.57% overall correct detection 

accuracy. 

IV. DISCUSSION 

The number of neurons Nhl in the hidden layer of the neural 

network affects the performance in terms of correct detection 

of modality of SMI signals. As seen in Table I, if Nhl ≤ 16 then 

the performance of NN will comparatively decrease as it will 

not be able to make use of all 16 input features. On the other 

hand, if Nhl > 18, then comparatively poorer performance is 

attained due to data over-fitting problem. So, for the proposed 

scheme, best SM modality classification accuracy of 98.57% 

was obtained when 18 hidden neurons are used inside the NN. 

It is also seen in Table I that the NN is able to successfully 

detect all unseen uni-modal SM signals. Such a result is to be 

expected given the observation that uni-modal SM signals are 

the least diverse in nature as compared to bi-, or tri-modal SM 

signals. Performance of the NN in detecting unseen bi-modal 

signals is also very good due to appropriate choice of features 

and pre-processing.  

Focusing on the incorrect detection by the NN, it can be 

noted in Fig. 11 that such a tri-modal SM signal is quite 

difficult to correctly classify due to very small amplitude of 

the third mode contained in this signal (see very small fringes 

belonging to the third mode (encircled in red) at around -1.3 V 

in Fig. 11). Furthermore, the other two modes of this signal 

(and their derivative peaks) not only have comparable 

amplitudes but are also evenly placed in time. This special 

relationship between the dominant two modes leads to a 

pattern similar to that of typical uni-modal SMI signals (and 

the NN mis-classified this signal as a uni-modal signal). This 

 
Fig. 10.  The architecture of neural network employed for the proposed 

classification of multi-modality in SMI signals for vibration sensing. 

 
Fig. 11.  The only incorrectly classified unseen SM signal is a tri-modal 

SM signal which was classified as a uni-modal SM signal by the NN. 

Very small SMI fringes of the third mode are encircled in red near -1.3 V. 
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signal thus exemplifies the remaining challenges in achieving 

100% multi-modality detection, and is the limiting case of the 

proposed method. 

Previous research on multimodal SMI indicated presence of 

up to three modes [14-17]. In case more than 3 modes undergo 

SMI then the proposed method could be modified to detect 

additional modes as well. However, the total number of input 

features to the NN would need to be increased to capture the 

variations contained in additional mode(s). E.g., if four modes 

undergo SMI then number of input features would need to be 

increased from 16 at present to 22. 

V. CONCLUSION 

Automatic detection and classification of uni-, and multi-

modal self-mixing interferometric vibration sensor signals has 

been achieved by using a NN based method. This has been 

achieved through appropriate feature extraction and training of 

the NN. This technique has successfully processed various 

experimentally acquired noisy SMI signals (acquired using 

two different laser diodes emitting at 637 nm and 650 nm 

respectively) as a function of their multimodality. The three 

classes of multimode SMI signals (uni-modal, bi-modal, and 

tri-modal SMI signal) were classified with 98.57% overall 

correct recognition, with 100 %,  100%, and 96.15%  correct 

detection of uni-, bi-, and tri-modal SMI signals respectively. 

The detection of multimodality of SMI signals is of high 

significance in order to enable the use of multi-modal SM 

signals for metric sensing purposes while such an automated 

detection of SMI multimodality, to the best of our knowledge, 

has not been achieved before.  

This signal processing based automatic identification of 

change in modality of a laser diode operating under different 

optical conditions is a significant challenge and has important 

repercussions on the error performance of the SM sensor. As 

stated previously, this has not been achieved before, thereby, 

1) restricting the use of multimodal lasers (potentially 

providing higher SM sensing resolution [15]) for robust SM 

sensing set-ups or 2) restricting the use of uni-modal laser 

diodes having a risk of switching to multimode operation 

under SM e.g. due to change in operating conditions. The 

number of laser modes of a unimodal or multi-modal laser can 

vary due to operating conditions [16, 17]. Therefore, 

previously, it has been difficult (without adding bulky and 

expensive optical spectroscopic instruments into optical path 

thus destroying the simplicity of SM sensing set-up) to 

ascertain as to how many modes are lasing under SM 

conditions. As each mode would engender its own set of 

interferometric fringes, therefore, an unidentified change in 

modality of SM sensor can greatly affect the total fringe count 

thus greatly undermining the SM sensor performance as each 

interferometric fringe is usually assumed to identify λ/2 

displacement under uni-modal SM sensing. The proposed NN 

based identification of multi-modality can thus potentially 

pave the way for the increased use of multi-modal SM sensors 

under varying operating and optical feedback conditions. 

Likewise, the automatic modality detection  enabled by the 

designed NN can also be used in a feedback loop (involving 

LD current control [17] and/or the focusing lens’ electronic 

control [21]) so that the SMI sensor could be stabilized to 

operate with a specific uni-/multi-modal behaviour. 

Future work would focus on improved detection 

performance by using additional features of multi-modal SM 

signals while real-time implementation involving active 

feedback loop would also be considered. More SM signals 

belonging to diverse laser sources and optical conditions can 

also be added to form a bigger data bank to improve the 

reliability of NN based modality detection over time. 
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