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Abstract 

 

Previous work has suggested that evoked potential analysis might allow the 

detection of subjects with new onset Alzheimer’s Disease, which would be useful 

clinically and personally. Here, it is described how new-onset Alzheimer’s disease 

subjects have been differentiated from healthy, normal subjects to 100% accuracy, 

based on the back-projected independent components (BICs) of the P300 peak at 

the EEG electrodes in the response to an oddball, auditory evoked potential 

paradigm. After artefact removal, clustering, selection, and normalisation processes 

the BICs were classified using a neural network, a Bayes classifier, and a voting 

strategy. The technique is general and might be applied for pre-symptomatic 

detection, and to other conditions and evoked potentials, although further validation 

with more subjects, preferably in multi-centre studies is recommended.  
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Introduction 

 

It is important to be able to diagnose new onset Alzheimer’s Disease (AD) sufferers 

both for their care and their personal planning. Evoked potential analysis might 

provide a relatively inexpensive, quick, and non-invasive technique for this and has 

therefore been investigated. A method of distinguishing with 100% accuracy 

between early-stage AD patients and normal, healthy subjects (normals) based upon 

the non-oscillatory, independent components of the P300 peak in the P300 

waveform elicited by an auditory oddball paradigm is described in this paper. 

Because averaging is not used, potentially significant components, unsynchronised 

to the stimulus, are not reduced, and results may be obtained using fewer trials per 

subject. This method could be a useful tool to aid diagnosis, and the selected 
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independent components may be regarded as biomarkers. The method might also 

be useful for pre-symptomatic testing for Alzheimer’s Disease (AD). 

 

Since the review and description of work previous to 20111, there have been further 

publications on the topic in question. In a review of 2011 2 it was concluded that the 

sensitivities of a number of ERP components have great promise for the detection of 

the stages of Alzheimer’s disease. Another review in 2014 3 was focussed on the 

progression from mild cognitive impairment (MCI) to AD. All the studies quoted 

followed changes in amplitude and latency of the P300 peak, but on an averaged 

basis. In reference4 trial averaging and statistical analysis of the peak ERP 

amplitudes and latencies derived from a three-stimulus auditory oddball paradigm 

showed that the P3a and P3b peaks produced the most sensitive and reliable 

measures of the cognitive deficits associated with early Alzheimer’s disease. None of 

this work 2, 3, 4 addressed the analysis on a single trial basis as described here. 

However, Ouyang et al 5 have analysed single trials by applying the technique of 

residue iteration decomposition (RIDE) to identify the latencies of the different ERP 

peaks in different trials. It seems that this technique, though, does require some 

averaging of trials to obtain the initial most likely latency of the ERP peaks, after 

which the individual latencies are found by an iterative method. No application which 

differentiated between different subject groups was presented. By contrast, in our 

work we derive the individual components of the individual ERP peaks comprising 

each individual single trial using independent components analysis (ICA), and apply 

this knowledge to differentiate between normals and ADs. It seems none of the 

authors 2, 3, 4, 5 were aware of the previous work by both ourselves and those we 

quoted1, although the work of Jung et al using ICA is mentioned in one paper5. In 

another review6 it was concluded that MCI patients had prolonged P300 latencies 

compared to controls, but shortened P300 latencies when compared to AD patients 

meaning that ADs had longer latencies than normals. 

 

Our research was carried out using the data obtained in earlier work, which has been 

thoroughly described in two previous publications1, 7. Thus, only the essentials of that 

work are repeated here. A selective analysis of that data using an artificial neural 

network, the Probabilistic Simplified Fuzzy ARTMAP (PSFAM) 8, and a voting 

strategy is presented. 

 

The undulatory P300 waveform includes a number of positive and negative peaks1. 

By using independent components analysis (ICA) and back-projecting the non-

oscillatory, independent, source signals to the scalp electrodes, it was found that the 

peaks in the P300 waveform consisted of many short duration, randomly occurring, 

and randomly positive or negative half-sinusoidal pulses1. Here, attention is focussed 

upon the positive back-projected independent components (BICs) centred on the 

P300 peak, because the shape of the peak is primarily determined by these, and the 

latency of this peak is delayed in ADs compared to normals1, 6. Therefore, these 



BICs were deemed the most likely to be useful for differentiating between ADs and 

normals. 

 

Theoretical aspects 

 

The voltage measured at each electrode depends upon the contributions there from 

all the independent cortical signal sources. These depend upon the unknown source 

signals and their unknown transmission paths from the sources to the electrodes. 

Fortunately, the individual source signals may be computed from the measured scalp 

voltages using ICA1, where it was explained that if   be a matrix of temporally 

independent source signals and   be the matrix of measured signals at the 

electrodes, which are assumed to consist of linear sums of the source signals   ), 

which have passed through an unknown, linear  transmission system characterised 

by an m x m mixing matrix,   , then we may write 

 

                                                                                              (1) 
 
and 
 

                                                                                             (2) 
 

Thus, the estimated source signals      may be found since     can be found. 

Selected estimated source signals may then be multiplied by the mixing matrix to 

obtain their estimated contributions at the measurement electrodes,   . These are 

referred to as the back-projected independent components (BICs). Thus, 

 

                                                                                                 (3) 
 
The BICs are correct in both magnitude and sign, and so may be compared. 
 
The PSFAM, used to classify the data, consisted of a Simplified Fuzzy ARTMAP 

(SFAM) and a Bayes classifier 8. The latter produced the Bayes posterior probability 

       that the test vector   belonged to the class AD or class normal.  

 

Measurements 

 

Six male and three female normal, healthy subjects and two male and seven female 

newly diagnosed, early stage, mildly cognitively impaired AD subjects participated in 

auditory-evoked oddball P300 recordings as fully detailed previously 1, 7. The ADs 

were under various drug treatments1, where age effects are also discussed. 

 

Scalp voltages were recorded at 27 standard electrode sites (see below). The 

voltage waveforms were sampled at 1024 Hz, the high pass cut-off frequency was 

0.016Hz and the low pass cut-off was at 60Hz. A notch filter eliminated the mains 

frequency of 50 Hz. There were 40 target tones of 2 kHz and 160 non-target tones at 



1 kHz. The inter-stimulus interval was 1.29 s. The subjects had closed eyes, were 

relaxed, and responded to the target tones by button-pressing. For each subject 360 

target stimuli were recorded, with 600 pre-stimulus samples and 700 post-stimulus 

samples. 

 

 Procedures 

 

The following signal processing was performed as fully detailed before1, 7.The 

independent components (ICs) of the P300 waveforms were obtained by applying 

Principal Components Analysis (PCA) first and then Independent Components 

Analysis (ICA)1. These ICs were then back-projected to the measurement electrodes 

as the BICs. These were separated into separate bins centred around the P300 

peaks. The highest variance BICs were selected for further processing. The BICs in 

each bin were clustered in two stages using the k-means clustering algorithm1, 7.  In 

the primary stage clustering was by amplitude and latency; in the secondary stage 

by the scalp topographies1, 7. Noise components were eliminated by filtering out ICs 

according to the number of zero crossings in their waveform and their largest and 

smallest amplitudes1, 7. Within each bin the peak amplitudes, latencies, and the scalp 

topographies of the BICs were saved for analysis1, 7.    

 

In the previous paper1, the BIC results obtained at this stage of processing were 

discussed, and have also been briefly reviewed in the above Introduction. Here we 

describe that data in detail and how it has been processed further to allow 

identification of the individuals with newly diagnosed Alzheimer’s disease. This data 

may be requested from the corresponding author. 

 

The data spreadsheet was 39 columns wide and contained 5,302 rows. The data in 

each row included subject details, subject class (AD or normal), trial number, BIC 

information (which bin, which cluster, positive or negative, amplitude, latency), and 

the voltages of the BICs at the twenty seven measurement electrodes used which 

were Fp1, Fp2, F7, F8, F3, F4, FC5, FC6, FC1, FC2, T7, T8, C3, C4, CP5, CP6, 

CP1, CP2, P7, P8, P3, P4, O1, O2, Fz, Cz, and Pz. These twenty seven BIC 

voltages, taken in the above order, comprise the BIC topology vector. This 

spreadsheet was divided into separate spreadsheets for the AD and normal 

subjects.  

 

Data preparation for PSFAM 

 

It was intended to use the data in the above two spreadsheets to train classifiers to 

distinguish between the AD and normal subjects. These 5,302 x 39 data contained 

some personal details which were irrelevant to this training, and so these columns 

were ultimately deleted. Since it had been established1 that those positive BICs 

associated with the P300 peak, and their latencies, were the most significant in 

distinguishing the two classes, the amount of data could be considerably reduced by 



using only that for positive BICs found close to the P300 peak, i.e. those in bin 5. 

This reduced the data arrays to 520 and 581 rows for the AD and normal subjects 

respectively. Since latency was more important than amplitude, the amplitude 

column was also deleted. The training and test vectors then consisted of the latency 

vector and the topology vector, making a 1 x 28 row vector per trial. 

 

The PSFAM neural network required input data normalised to between 0 and 1. The 

latency column was normalised by dividing all values by the largest. Some of the 

elements of a topology vector could be positive, while others were negative, 

reflecting the scalp voltage topography. A simple formula was applied to convert the 

values over the positive and negative voltage range of the topology vector array to 

values between 0 and 1. A spreadsheet function was used to set all data to 

numerical values, because the classifiers could not accept exponentials. A sample 

section of a resulting data array up to column F4 is shown in Table 1. The values are 

as calculated, but of course were not measured to the accuracy shown. The contents 

of the first column define the bin and cluster numbers of the BIC in a particular row. 

Subj is the subject number. Trial is the trial number for that subject. Latencies are in 

ms, and voltages in mV. Files in training and validation data formats were derived 

from the two data arrays by deleting columns 1 to 3, and replacing column 4 (trial) by 

the subject class; 0 for a normal, and 1 for an AD subject. Test vectors may be 

formed by deleting the first four columns. 

   

 

 

A training file was constructed consisting of the data for the first five normal subjects 

and for the first five AD subjects. A validation file was constructed from the last four 

normal subjects and the last four AD subjects. Thus all the data was used. The 

structures of these two files were identical, and so their training and validation roles 

were reversible. These files contained the data obtained from all 40 trials. In clinical 

practice, where patients may not be sufficiently co-operative, it is necessary to use 

fewer trials. For this reason we also explored the use of just 10 trials and of just five 

trials. We had observed that five trials were necessary to ensure that a BIC was 

found (remember the random nature of the appearance of the BICs). Thus additional 

training and validation files were produced by eliminating the row data for trial 

numbers greater than 11 and greater than 6 using functions of the spreadsheet.  

 

PSFAM procedures and considerations 

 

A number of tests were carried out using the training and validation files to determine 

the optimal values of the PSFAM parameters. These were found to be: vigilance, ρ = 

0.65; global smoothing parameter, σ = 0.02; the remaining parameters set to 1. In 

the training mode the data were presented in random order using the “shuffle” 

button. The normal subjects were assigned to the reference class 0, and the AD 

subjects to class 1. Each subject was represented by several row vectors, which 

Insert Table 1 

 



contained the values calculated for different trials and clusters. The classification of 

an individual row for a given subject could be correct or incorrect. When the overall 

accuracy per subject was investigated the SFAM was found to result in the higher 

accuracy for the normal subjects, but the AD subjects were most accurately 

classified by the Bayes method. The reason for the difference lies in the different 

classification techniques used by these classifiers. In the SFAM the degree of fuzzy 

membership of the test input vector   to the fuzzy power set of the weight vector    

is calculated using the match function          
8 where 

 

         
    

  
                                         (4) 

 

and ˄ is the fuzzy logic operator. Thus, each input vector’s similarity to each weight 

vector is determined and the test input vector is assigned to the class of the weight 

vector for which     , i.e. for which it is acceptably close. In the Bayes classifier 

the summed differences of the test input vector to all the training vectors of the 

normal class is compared to those of the AD class, according to 

 

             
           

      
                  

            
       

                                     

(5) 

 

where     are the numbers of training vectors for the normal and AD subjects 

respectively, the indices      refer to the normal and AD classes,   is the assumed 

normal input test vector, the     and the      are the training vectors,   is the 

smoothing parameter, and   denotes the vector transpose. If the equality is satisfied, 

the test input vector is assigned to the class normal. This difference in the 

classification methods explains why in general the two classifiers do not always 

assign the same class to a test vector. The discrepancies between the two classifiers 

can be expected to be greater when the training and test vectors have more random 

properties as in the case for the BICs of both the normal and the AD subjects 

obtained in this work. Further, it was also suspected that the ADs’ BICs were more 

random than those for the normal subjects. In fact it was found that the SFAM gave 

the higher classification accuracy for the normal subjects, while the Bayes classifier 

gave the higher classification accuracy for the AD subjects. The correct class for a 

subject was indicated by the classifier which classed the most input vectors for that 

subject as being of the same class. The classification of a subject was therefore 

decided by adopting this voting strategy. When the number of test vectors assigned 

to the two classes was equal, they both indicated the correct class. 

 

Another test was undertaken to establish whether fewer, carefully chosen electrodes 

might be used. Thus classification using only columns Lat, Fp1, Fp2, P3, P4, Fz, and 

Pz was attempted, but the results were worse than when all 28 columns were used. 

In another test, the training and validation files were exchanged, when equally good 

results were obtained.  



 

PSFAM results 

 

Forty trials 

 

Table 2 gives the overall percentage classification accuracies for training and testing 

the PSFAM with the full set of data from 40 trials when the training and validation 

files were prepared as described above. It is seen that the higher percentage correct 

classification of normal subjects is achieved by the SFAM (77%:45%), and that of the 

AD subjects by the Bayes classifier (62%:40%). 

 

 

 

 

The percentage classification accuracies of the individual subjects, by their individual 

input test vectors, are shown in Table 3. It is seen that, if the percentage correct in 

the SFAM column is greater than that in the Bayes column, the subject is normal; if 

the converse is true, the subject is in the AD class. This is the basis of the voting 

strategy, which yields 100% correct classification of the newly diagnosed AD 

subjects in this study from the positive BICs at the 27 EEG electrodes centred on the 

P300 peak. Of course, slightly different numerical values are obtained when the 

training is repeated, owing to the shuffling of the training data, but the conclusions 

remain unaltered. 

 

 

 

Ten trials 

 

Similar results were obtained as for the case of the 40 trial data when only the first 

10 trials were used. Table 4 gives the subject classification accuracies. The same 

conclusions apply as for 40 trials, with the addition that in two cases, N14 and AD40, 

the percentage accuracies are the same for both classifiers, but they both predict the 

same correct class. We also see that the accuracy of classification of the normal 

subjects by the SFAM, and that of the AD subjects by the Bayes classifier has 

increased with the reduced number of trials. Some of this may be attributed to the 

shuffling of the input vectors, but it seems more likely it could be owing to a reduction 

in the degree of randomness associated with using fewer vectors.    

  

 

 

Table 5 presents a sample of the numbers of 0s and 1s output by the classifiers to 

represent the classes of the input vectors for the subjects, normal and AD 

respectively, and the classification voted, which is correct in each case. 

 

Insert Table 2 

Insert Table 
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Five trials  

 

Similar results were obtained again in the case of 5 trials as shown in Table 6. Apart 

from subject N15, the classification accuracies were again improved by this further 

reduction in the number of trials included. However, the use of fewer trials still is 

likely to lead to more classification failures when there may be too few input vectors 

for reliable testing or even the absence of any vector.  

 

 

 

Discussion 

 

It has been clearly demonstrated in this research that the positive voltage BICs 

associated with the P300 peak may constitute an excellent biomarker for new onset 

AD, since 100% accurate differentiation between new onset ADs and normals was 

achieved. It is quite possible that they could indicate AD pre-symptomatically. This 

could be tested by making measurements on subjects at-risk of AD, such as carriers 

of the apolipoprotein E4 gene with a family history of AD, or subjects for whom 

synaptic dysfunction has been detected by elevated CSF phosphor-tau2. The 

technique is non-invasive, requires a reduced number of trials, is inexpensive, and 

can be employed in any hospital EEG department. Because of the small sample size 

it is desirable that far more subjects be tested, and preferably in multi-centre studies, 

to validate it, if it be considered useful. The digitised multi-centre recordings could be 

processed centrally to ensure conformity. This validation could take place during the 

clinical studies. Such studies might also be used to investigate the effects of drug 

treatment, the relationship of the results to those of similar studies on subjects with 

other neurological diseases to reduce the risk of misdiagnosis, and the possible 

usefulness of the BICs associated with other peaks in the waveform. Extension to 

other conditions such as Parkinson’s disease and other evoked potentials is also a 

possibility.   

 

Conclusions 

 

New-onset ADs were differentiated from normals to 100% accuracy by classifying 

the positive voltage, back-projected, independent components centred on the P300 

waveform peak response to an oddball task, auditory evoked potential using a 

simplified fuzzy ARTMAP neural network, a Bayes classifier and a voting strategy. It 

may also be possible to detect AD pre-symptomatically, but more, preferably multi-

centre research on more subjects is necessary to validate the technique. Extension 

to other conditions and evoked potentials is a possibility. 

  

Insert Table 5 
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Tables 

 

Bin and         

Cluster   Sex   Subj  trial     latency       Fp1       Fp2          F7         F8          F3        F4 

B5C7  M  5   5  0.98242 0.50569 0.50308 0.50855 0.49351 0.50064 0.51222    0.50796 0.50208 0.50353 0.50208 0.50578 0.50317 0.50211 0.50412 0.50331 0.49643 0.49557 0.50235 0.50582 0.50145 0.50791 0.49901 0.50718 0.50908 

B5C7  M  5 9  0.945306 0.48338 0.48203 0.50514 0.50355 0.50223 0.49200    0.50249 0.50184 0.50455 0.50216 0.50324 0.50476 0.50417 0.50364 0.50407 0.50234 0.49738 0.50329 0.50441 0.50519 0.50415 0.49817 0.50545 0.51430 

B5C4  F  14 6  0.790989 0.52205 0.51503 0.50927 0.51248 0.51003 0.51407    0.51883 0.51757 0.51247 0.51029 0.51259 0.51896 0.52422 0.51772 0.51069 0.56663 0.51254 0.51382 0.51882 0.51459 0.51420 0.52365 0.51889 0.51820 

B5C5  F  14 3  0.84373 0.49514 0.50459 0.49695 0.48690 0.49842 0.50018    0.49480 0.49429 0.49634 0.49571 0.49853 0.50043 0.50409 0.49435 0.49262 0.27101 0.49408 0.48954 0.49078 0.49167 0.49452 0.50131 0.50442 0.49618 

B5C5  F  14 6  0.83201 0.49751 0.49771 0.49366 0.50117 0.49390 0.49727    0.49840 0.49711 0.49861 0.49821 0.50397 0.49811 0.50254 0.49784 0.49653 0.47268 0.49804 0.49642 0.50337 0.49944 0.50045 0.49879 0.50063 0.50265 

B5C5  F  14 8  0.83787 0.51013 0.51636 0.51359 0.52257 0.51380 0.52197    0.52189 0.51833 0.52339 0.51901 0.52952 0.52353 0.52510 0.51905 0.52676 0.51582 0.52239 0.51564 0.52034 0.51399 0.51641 0.51833 0.52398 0.51776 

B5C7  F  14 10  0.958979 0.50815 0.50307 0.50486 0.49801 0.51677 0.50936    0.49858 0.50438 0.50280 0.51285 0.50600 0.51350 0.51399 0.50811 0.50556 0.37638 0.50557 0.50564 0.50039 0.49960 0.49851 0.51099 0.50504 0.50153 

B5C2  F  15 8  0.61128 0.50710 0.51153 0.51494 0.50784 0.50121 0.50973    0.52205 0.50900 0.51380 0.49744 0.51079 0.49792 0.51257 0.50882 0.51441 0.47870 0.51803 0.50682 0.50812 0.51128 0.51307 0.50578 0.50306 0.50526 

B5C2  F  15 9  0.595653 0.51948 0.51007 0.52694 0.48678 0.52015 0.51536    0.51599 0.52450 0.52902 0.51835 0.52044 0.52037 0.52479 0.52267 0.52022 0.57733 0.52177 0.52950 0.53548 0.52628 0.52754 0.51913 0.52488 0.53054 

B5C4  F  15 3  0.800756 0.51126 0.51315 0.50458 0.50959 0.51277 0.51684    0.51003 0.49749 0.49893 0.51095 0.51065 0.51245 0.50990 0.50397 0.51164 0.46683 0.50045 0.50009 0.49788 0.49755 0.49925 0.51322 0.50576 0.50226 

B5C4  F  15 6  0.763642 0.48685 0.48498 0.48810 0.49188 0.49468 0.49973    0.49528 0.49259 0.49114 0.49237 0.50235 0.49278 0.50741 0.49346 0.49131 0.35789 0.48598 0.49861 0.49561 0.49671 0.49493 0.49771 0.50656 0.51075 

 

Table 1 Sample section of data array 

 

  

SFAM Bayes 

Normal 
subject 

AD 
subject 

Normal 
subject 

AD 
subject 

77% 40% 45% 62% 

Table 2 Overall percentage classification accuracies by the two classifiers for normal 

and AD subjects. 

 

 

Subject SFAM 
% correct 

Bayes 
% correct 

N14 61 53 

N15 69 41 

N16 75 39 

N20062 84 41 

AD36 52 90 

AD38 39 86 

AD40 34 82 

AD43 43 77 

Table 3 Percentage classification accuracies for individual test subjects based on 

their test vectors using 40 trials. 

 

 

 

 

 

 

 



 

 

 
 

SFAM 
% correct 

Bayes 
% correct 

N14 80 80 

N15 100 44 

N16 67 50 

N20062 81 57 

AD36 54 100 

AD38 50 88 

AD40 53 53 

AD43 50 57 

Table 4 Percentage classification accuracies for individual test subjects based on 

their test vectors using 10 trials. 

 

 

  SFAM Bayes  

Subject Number 
of  vectors 

Number 
of 0s 

Number 
of 1s 

Number 
of 0s 

Number 
of 1s 

Class by 
voting 

N14 5 4 1 4 1 N 

AD40 19 9 10 9 10 AD 

AD43 14 7 7 6 8 AD 

N20062 16 13 3 9 7 N 

Table 5 Numbers of vectors per subject classified as 0 or 1 and the class of the 

subject by voting. 

 

 

Subject SFAM 
% correct 

Bayes 
% correct 

N14 100 100 

N15 50 25 

N16 86 57 

N20062 89 64 

AD36 57 100 

AD38 71 100 

AD40 30 60 

AD43 80 80 

Table 6 Percentage classification accuracies for individual test subjects based on 

their test vectors using 5 trials. 

 

 


