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Surrender triggers in Life Insurance: what main features affect the
surrender behavior in a classical economic context?

X. Milhaud } S. Loisel and V. Maume-Deschamps
Universite de Lyon, Universite Lyon 1, ISFA, Laboratoire SAF

Abstract - This paper shows that some policy features are cru-
cial to explain the decision of the policyholder to surrender her
contract. We point it out by applying two segmentation models
to endowment policies from a life insurance portfolio: the Logis-
tic Regression model and the Classification And Regression Trees
model. First we present the models and discuss their assumptions
and limits. Then we test different policy features and policyholder’s
characteristics to be lapse triggers so as to segment the portfolio
in classes regarding the surrender risk. Results make it explicit
that duration and profit benefit option are essential. Finally, we
explore and discuss the main differences of both models in terms

of operational results.

Résumé - Certaines caractéristiques jouent un réle majeur dans la
décision de l’assuré de racheter son contrat d’assurance. Ses condi-
tions de souscription, son age, sa profession ainsi que d’autres fac-
teurs propres a sa situation influencent ses décisions. Deux modeles
de segmentation nous ont permis de développer ces idées sur les
contrats mixtes d’un portefeuille d’Assurance-Vie : les arbres de
classification et de régression, et la régression logistique. Nous
présentons dans un premier temps les fondamentaux de chacun des
modeles ainsi que leurs hypotheses et limites. Puis nous testons
différents facteurs comme possibles déclencheurs du rachat, dans le
but de segmenter le portefeuille en classe de risque : I'ancienneté
fiscale et la la garantie de participation au bénéfice apparaissent
comme des éléments essentiels. En derniére partie, nous discutons
des différences entre les deux modélisations en termes de résultats

numériques et d’un point de vue opérationnel.

I Introduction

Understanding the dynamics of surrender (sometimes
lapse) rates is a crucial point for insurance companies,
who may look towards several problems. First, policy
lapse might make the insurer unable to fully recover her
initial expenses due to costs of procuring, underwriting,
and issuing new business. Actually the insurer pays ex-
penses at or before the contract issue date but earns prof-
its over its life, so that she might incur losses from early
lapsed policies. Indeed, the time profile is very important
because the costs of a surrender change over it. Second,
policyholders who have adverse health or other insurabil-
ity problems tend not to lapse their policies, causing the
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insurer to experience more claims than expected if the
lapse rate is high: this is the so-called “moral hazard”
and “adverse selection” where there only remain “bad
risks” (Bluhm (1982)). Third, massive early surrenders
or policy lapses pose a liquidity threat to the insurer who
is subjected to interest rate risk (because interest rate is
likely to change over the period of the contract). Imagine
that financial events and a general loss of confidence of
investors provokes a high increase of interest rate, say r;
plus a liquidity premium ;. Borrowing money in order
to pay back the surrender values to policyholders is thus
more expensive for the insurer who could undergo a series
of undesirable effects: no time to recover initial expenses,
obligation to borrow at a high cost and finally necessity
to liquidate assets at the worst moment. However, the
surrenders are not always a bad thing for the insurer be-
cause policyholders renounce to some guarantees, which
makes the insurer earn money.

What causes lapses has attracted certain academic
interest for some time. Originally two main hypothe-
ses have been suggested to explain lapse behavior. On
one hand, the emergency fund hypothesis contends that
policyholders use cash surrender value as emergency fund
when facing personal financial distress. Outreville (1990)
develops an ordinary least square method for short term
dynamics whose testable implication would be an increas-
ing surrender rate during economic recessions. On the
other hand, the interest rate hypothesis conjectures that
the surrender rate rises when the market interest rate
increases: the investor acts as the opportunity cost for
owning insurance contracts. Interest rates rise makes
equilibrium premiums to decrease, so there is definitely
a greater likelihood that a newly acquired contract pro-
vides the same coverage at a lower premium. Indeed
policyholders tend to surrender their policy to exploit
higher yields (or lower premiums) available in the mar-
ket. Engle & Granger (1987) suggest to separate the
potential long-term relationship between lapse rate, in-
terest rate and unemployment rate from their short-term
adjustment mechanisms thanks to the cointegrated vec-
tor autoregression approach. From a financial engineer-
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ing perspective, it may be difficult to accept that kind
of arbitrage opportunities are not used by policyholders.
Even if policyholders are still far from being rational, one
cannot exclude that in the near future, policyholders may
become more rational and may be helped by journalists
or financial analysts to optimize the use of their life in-
surance portfolios.

Modeling precisely lapse behavior is therefore impor-
tant for insurer’s liquidity and profitability. The lapse
rate on life policies is one of the central parameters in
the managerial framework for both term (fixed matu-
rity) and whole life products: assumptions about it have
to be made in Asset and Liability Management, partic-
ularly for projections of the European Embedded Value
(EEV). Product designers generally assume an expected
level of lapsation thanks to data mining techniques. To
fully exploit the information of an insurance company
dataset is typically a hard task for practitioners, who
must deal with various sources of complexity: missing
data, mixture of data types, high dimensionality and het-
erogeneity between policyholders. This complexity often
prevents companies from getting to the maximum pro-
ductivity because they only collect part of the informa-
tion from observations. The challenge is thus to select
salient features of the data and feed back summaries of
the information.

The use of two complementary segmentation mod-
els, the Classification And Regression Trees (CART)
model by Breiman et al. (1984) and the Logistic Regres-
sion (LR) model (see Hilbe (2009)), could give clues to
managers regarding the surrender risk, in order to adapt
product features and penalty fees. In the literature, Ka-
graoka (2005) and Atkins & Gallop (2007) applied respec-
tively the negative binomial and the zero-inflated models
as counting processes, and Kim (2005) applied the logis-
tic regression model with economic variables to explain
the lapses on insurance policies during the economic cri-
sis in Korea. To the best of our knowledge, CART and
LR have not been compared with policy features and
policyholder’s characteristics in this framework.

Our paper aims at i) determining what segmentation
method could be the most appropriated to an insurance
portfolio dataset by looking at the gap in classification
errors between CART and LR, ii) investigating potential
surrender triggers in a classical economic regime. Those
triggers could be very different in a disturbed period (fi-
nancial crisis, reputation issues): we clearly have in mind
that there exists a bias in the segmentation analysis be-
cause we do not consider dates (and thus forget cohort
effects) as well as exogenous factors possibly playing a
(big) role on surrender behaviors (financial indexes for
instance). We go back to this remark and suggest some
extension of the application with external dynamic fac-
tors at the end of the paper to make temporal predictions.
However this is absolutely not our purpose here.

The paper is organized as follows: we first present the-
oretical results about CART method that are useful for
our practical problem in Section II. Section III more
briefly recalls the basics of logistic regression, as it has
been more widely used in many fields. In Section IV, we
compare both approaches on a real-life insurance port-
folio embedding endowment contracts and discuss their
limits. We provide numerical indicators, and determine
the main reasons for a policyholder to surrender in a clas-
sical economic situation as well as predictors of the indi-
vidual surrender probability. Section V finally presents
some possible further extensions.

Il The CART model

The CART method, an iterative and recursive flexi-
ble nonparametric tool, was developed by Breiman et al.
(1984) in order to segment a population by splitting up
the data set step by step thanks to binary rules. In clas-
sification issues, binary trees provide an illuminating way
of looking at data and results. The novelty of CART is in
its algorithm to build the tree: there is no arbitrary rule
to stop its construction, contrary to the previous uses of
decision trees. The two main goals of a classification pro-
cess are basically to uncover the predictive structure of
the data and to produce an accurate classifier. Depend-
ing on the problem, there is usually a trade-off to find
between the predictive power and the fit. The oppor-
tunity to make predictions particularly with regression
trees is also very useful, but CART should not be used
to the exclusion of other methods.

A  The model

We present in this section how to construct the classi-
fication tree: Figure 1 shows the different stages to follow
(the appendix details each of the steps and the underly-
ing concepts which are not developed herein). We find
interesting to provide a clear chronological methodology
when using CART as it is somewhat quite difficult to
get it summarized in the literature.

A.1 Building the classification tree

Notation 1. Let € = (T4, jn)i<n<n be a sample of size
N, where j, are the observations of the outcome variable
Y(YeC={1,2,...J} and xy, = {Zpn,, Ty .., Tny } the
observations of X in X which are the d explanatory vari-
ables (X = H;i:l X; where X; is a set of categorical or
continuous variable). Let

o Vx € X, the classification process class(.,e) classifies
xin a group j € C.

e The prior of group j is defined by m; = % where
Nj = card{jn|jn = j}

o Givent C X (1 finite subset of X), let us denote N(t)
= card{(xy, jn) € €,x, € t}.

o N;(t)=card{(xn, jn) € €, jn=j given that x, € t}.
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Figure 1: Ordered steps of CART procedure

o An estimator by substitution of P(j,t), denoted p(j,t),
. c)y o N()
is given by p(j.t) = 7 Ry -

o An estimator by substitution of P(t), denoted p(t), is
given by p(t) =325, p(j,t).

e P(j| t) is the a-posteriori probability of class j, is
P(jvt) — N](t) _ p(j,t)
p(t) — N(@) — m

estimated by

How to begin? The principle is to divide X into ¢
classes, where ¢ is not given a-priori. The method builds
an increasing sequence of partitions of X; the transfer
from one part to another is given by the use of binary
(or splitting) rules such as:

r et fort CX.

For example, the first partition of X could be the gender.
The policyholder whose characteristic is x is either a fe-
male or male, and ¢ could be the modality “female” (bi-
nary rules specification is provided in Appendix A.I1.1).

Actually we start with X called root which is divided
into two disjoint subsets called nodes denoted by ¢, and
tr. Each node is then divided in the same way (if it has
at least two elements). At the end, we have a partition
of X into ¢ groups called terminal node or leaf.

In the following, we denote by T the set of leaves of the
tree T; T is the set of descendant nodes of the ancestor
node t in the tree T (see illustration in Figure 2).

The quality of the division from a node ¢ to t; and
tr is measured thanks to the impurity criterion. This
concept is explained in more details in Appendix A.I7.2.
In our case, the impurity in T of a node ¢ is the quantity

impur(t) = g(p(1[t), p(2[t), ..., p(J|t)), (1)

where g is the impurity function. By consequence, the
impurity of a tree T is given by

Impur(T) = 3, .7 Impur(t) (2)

where Impur(t) = p(t)impur(t).

A splitting-rule A of node t gives pr=p(tr)/p(t) obser-
vations in t7, and pr=p(tr)/p(t) observations in tg. We
want to maximize the purity variance:

0 impur(A,t) = impur(t) —primpur(tr,) — primpur(tr)

(3)
Each time a split is made, the purity of the tree has to
increase. Then it looks quite natural from this process
to require the following constraint

impur(t) > pr, impur(ty) + pr impur(tg).

Do we always respect it? “Yes” if g is concave. In our
applications and in most of them, we consider the Gini
index of diversity (Appendix A.I1.3), which can be inter-
preted as a probability of misclassification. It is the prob-
ability to assign an observation selected randomly from
the node ¢ to class k, times the estimated probability that
this item is actually in class j. There also exits other im-
purity functions with an easier interpretation (Appendix
A.I1.3), but there is no convincing justification for a par-
ticular choice (they all fulfill the requirements of an im-
purity function). Besides, the properties of the final tree
are usually surprisingly insensitive to the choice of this
impurity function! For further explanations, see Breiman
et al. (1984). Traditionally, the optimal division A} of a
node ¢ stands for

A} = argmax (0 impur(A,t)), (4)
AeD

where argmax (6 impur(A,t)) denotes the splitting rule
A which maximizes ¢ impur(A,t).

At each step, the process is run in order to lower the
impurity as fast as possible. Intuitively, it means that as
many observations as possible should belong to the same
class in a given node. The maximum decrease of impurity
defines what splitting rule must be chosen. Maximizing
the gain in purity (homogeneity) dividing the node ¢ is
the same as maximizing the gain of purity on the overall
tree T. Hence by dividing the parent node ¢ into descen-
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Figure 2: Construction of a binary tree

dant nodes (t1,tr) with the rule A, one gets the more
branched tree T' (see Figure 2) and from (2):

Impur(T") > Impur(w)+Impur(ty)+Impur(ty).

weT—{t}

So the impurity fluctuation F of the tree T is

F Impur(t) — Impur(ty) — Impur(tr)
dImpur(A,t)

p(t)dimpur(A,t).

- (5)
Indeed, it results from the probability to be present in
this node multiplied by the decrease of impurity given
by the split A. The following step is now: when do we
have to stop the splits? The user can choose among dif-
ferent rules to stop the division process. Some of them
are natural, others are purely arbitrary: i) obviously, the
divisions stop as soon as the observations of the explana-
tory variables are the same in a given class (not possible
to split once more); ii) define a minimum number of ob-
servations in each node (the smaller it is, the bigger the
number of leaves is); iii) choose a threshold A as the min-
imum decrease of impurity: let A € R,

maz 0 Impur(A,t) < A = stop the division.
€

Actually there is no stopping-rule in CART; we build
the largest tree (Tynq.) and we prune it. A comprehensive
procedure to make it is provided in Appendix A.I1.6.

A.2 The classification function

The aim is to build a classification function, denoted
here by class(.,e), such that

X—C

x — class(x,€) = j,

class

with B, = {z € X;class(z,€) = j}, so that we can class
the policyholder (given its characteristics “x”) in a set B;
to predict the response. This function must provide in-
sight and understanding into the predictive structure of
the data and classify them accurately. Consider that the
optimal tree has been built; to know at what class the
terminal nodes belong, one uses the following rule:

(6)

class(x,€) = argmaz p(j|t).
jec

We recognize the so-called Bayes rule which maximizes
the a-posteriori probability of being in class j given that
we are in the node t. This process defines the classi-
fication function and therefore allows predictions. The
estimation of assigning a wrong class to an observation
present in the node ¢ (with respect to the class observed

for this observation) then reads
r(t) =1—dass(z,€) =1 — mazx p(j|t), (7)

jeC
Let the misclassification rate at node ¢ be 7(t) = p(t)r(¢).
For each node of the tree, it represents the probability to
be in the node ¢ multiplied by the probability to wrongly

class an observation given that we are in the node t. It
turns out that the general misclassification rate is

#HT) =D #(t).

teT

(8)

To put it in a nutshell, we can summarize the four
stages to be defined in the tree growing procedure:

1. a set of binary questions like {is z € S7}, § € X
(quite hard task numerically speaking),

2. an impurity function for the goodness of split cri-
terion (arbitrary choice),

3. a stop-splitting rule (natural stopping-rule is then
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1 case by leaf, hard task because arbitrary choice),

4. a classification rule to assign every terminal node
to a class (easy to define).

As we have seen, CART builds the maximal tree Ty,qs
and then prune it (to avoid arbitrary stopping-rules).

A.3  Prediction error estimate

The prediction error is assessed by the probability
that an observation is classified in a wrong class by
class(.,e), that is to say:

7(class) = P(class(X,e) £Y)

The classification process, the predictor and its efficiency
to get the final tree are based on the estimation of this
error. The true misclassification rate 7*(class) cannot be
estimated when considering the whole data set to build
the classification function, but various estimators exist
in the literature (Ghattas (1999)). The expression of
the misclassification rate depends on the learning sample
chosen to run the study (details in Appendix A.IT.4).
There exists for now three types of prediction error esti-
mate:

e the resubstitution estimate of the tree misclassifica-
tion rate: we consider all observations € in the learning
sample. Achievements are overestimated because we
class the same data (as those used to build the classifi-
cation function) to test the efficiency of the procedure.
This is of course the worse estimator for predictions.

e the test sample estimate: let W C € be a test (wit-
ness) sample whose size is N’ < N (N is the size of
€). Usually N'=N/3 so that the size of the learning
sample equals 2/3 « N. The learning sample is used to
build the classifier and the test sample is used to check
for its accuracy. This estimator is better but requires
a larger initial dataset.

e the cross-validation technique: suppose that € is di-
vided into K disjointed subgroups (ex)i<rp<x of ap-
proximately same size. Let us define K new learning
datasets such that €¥ = € — ¢;,. The idea is to build
a classification function on each sample €* such that
class®(.) = class(.,€"). This technique is highly rec-
ommended when we lack data, because it is more re-
alistic (final error is the mean of K errors).

Hereafter, 7(T) is the prediction error on T; 7(T'), 7(T)

and 7¢Y(T) its estimations.

B Limits and improvements

The classification tree method offers some interesting
advantages: 1) no restriction on the type of data (both
categorical and numerical variables accepted); ii) simple
final form, compactly stored and displayed; iii) by run-
ning the process to find the best split at each node, the al-
gorithm does a kind of automatic stepwise variable selec-
tion and complexity reduction. In addition, monotonous

transformations of ordered variables do not alter the re-
sults. CART is not a parametric model and thus do
not require a particular specification of the relationship
nature between the outcome and the predictor variables
(no linearity assumption for example). Moreover, it often
successfully identifies interactions between predictors.

However, each split is based on one single variable
and when the class structure depends on combinations
of variables, the standard tree algorithm will do poorly
at uncovering this structure. Besides, the effect of one
variable can be hidden by others when looking at the fi-
nal tree. To avoid this, there exists solutions as ranking
the variables in function of their potential in the splitting
process: this is what is called the secondary and sur-
rogate splits (also used with missing data, see Breiman
et al. (1984)). There also remains some additional issues:
i) sometimes the final tree is difficult to use in practice
because of its numerous ramifications: the more you split
the better you think it is, but if one sets the stop-splitting
criterion so as to get only one data point in every termi-
nal node, then the estimation of the misclassification rate
would not be realistic (equal to 0 because each node is
classified by the case it contains: overfitting); ii) CART
gives an idea of the prominence of each explanatory vari-
able: as a matter of fact, reading the final tree from the
root to the leaves gives the importance of variables in
descending order. But Ghattas (2000) criticizes the bad
reliability of the method: a small modification of the
dataset can cause different classifiers, a big constraint to
make predictions because of its instability.

For sure, we would like to avoid that a variable could
be considered very important with a given dataset, and
be absent in the tree in another quasi-similar one! The
first point i) can be solved thanks to the introduction of a
complexity cost in the pruning algorithm (see Appendix
A.I1.6) and the second one ii) using cross-validation, bag-
ging predictors or arcing classifiers.

C Bagging predictors

The bad robustness of the CART algorithm when
changing the original dataset has already been discussed.
To experiment different optimal final classifiers can be
challenged using resampling techniques. Bootstrap is the
most famous of them (sample N cases at random with re-
placement in an original sample of size N), and the bag-
ging is just a bootstrap aggregation of classifiers trained
on bootstrap samples. Several studies (Breiman (1996),
Breiman (1994) and Breiman (1998)) proved the signif-
icance and robustness of bagging predictors. The final
classifier assigns to an observation the class which has
been predicted by a majority of “bootstrap” classifiers.
The final classifier cannot be represented as a tree, but
is extremely robust.

This led to the development of “Random Forest” algo-
rithms which were developed by Breiman (2001) and fol-
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lows the same idea as bagging predictors: a combination
of tree predictors such that each tree is built indepen-
dently from the others. The final classification decision
is obtained by a majority vote law on all the classification
trees, the forest chooses the classification having the most
votes over all the trees in the forest. The larger the num-
ber of trees, the best the ability of this algorithm (until
a certain number of trees). We usually speak about the
out-of-bag error when using Random Forest algorithm: it
represents for each observation the misclassification rate
of predicted values of the trees that have not been built
using this observation in the bagging scheme. This error
tends to stabilize to a low value.

The bagging method can be implemented with the
randomForest R package!. We prefer to use it in our
applications instead of the ipred package? because it
enables to compute the importance of each explanatory
variable. For more precision on these theories, please
refer to Breiman et al. (1984) and Breiman’s webpage.

11l The LR model

The logistic regression (Hosmer & Lemeshow (2000),
Balakrishnan (1991)) belongs to the class of generalized
linear models (McCullagh & Nelder (1989)). Using this
technique yields to predict the probability of occurrence
of a binary event by fitting data (either numerical or cat-
egorical) to a logistic curve. The logistic regression is a
choice model used for binomial regressions, and is mainly
used in medical and marketing worlds (for instance to
predict the customer’s propensity to cease a subscrip-
tion). Actuaries sometimes also model the mortality of
an experienced portfolio with it, which is a way for them
to segment their portfolio regarding death risk. Here, the
goal is to model the surrender decision of policyholders.

A Why the logistic function: a first explanation

The logistic function is very useful because from an
input z which varies from negative infinity to positive
infinity one gets an output @ (z) confined to [0,1]:

1 e?

P(z) = = .
(2) 1+e 2 1+ e

(9)

Because we want to model a probability (represented by
®(z) above), this is the first explanation of this choice.
The requirement of a non-decreasing function for cumu-
lative distribution function is satisfied. Actually z rep-
resents the exposure to some set of risk factors, and is
given by a common regression equation

z= 0o+ 5 X1+ ...+ BuXy,

where the X; are the explanatory variables (e.g. age).
Hereafter, we denote the regression coefficients by § =

6
(ﬁOaﬂlv"'vﬁk)/'
Remark 1. :
o Vi = 1,....,k; B; represents the regression coefficient

associated to the risk factor i (say age for instance),

e the inverse of the logit function is the logistic func-
tion: ®~1(p) = Bo + 5_1 B X,

e there exists the polytomic or multinomial regression
when the response variable has more than two levels,

e other link-functions have been proposed historically,

e we could also introduce this technique considering the
strict regression approach. The idea is to transform
the output of a common linear regression to be suitable
for probabilities by using a logit link function.

B Estimation of parameters

To estimate the regression coefficients, the ordinary
least square estimation is the most famous technique.
However, the fact that we want to estimate a probability
(surrenders ~ B(n, ®(8y + $1X1 + ... + Bk X)))) implies
that we usually estimate the coefficients thanks to the
maximum likelihood principle. Anyway, it can be shown
that maximum likelihood and least square principles are
equivalent in this scope.

B.1 Maximum likelihood estimation

Let n be the number of independent observations. By
definition, the likelihood function for a binomial law is

L(X,8) =TI, ®(X:B) Y (1 - o(X;8)) 7Y,

where @ is defined in (9). The log-likelihood then reads

In(L(X, ) = Y0, Yi(Xif) — (1 +e57)  (10)
The maximum likelihood estimator B satisfies 9 I;I(AL) =0.

This condition yields to a system of equations that are
not in a closed form. We usually run the Newton-
Raphson algorithm to find the solutions (see Appendices
B.IIT and B.IV for further details).

B.2  The final probability

The individual estimation of probability to surrender
is inferred from the previous estimates of coefficients,

(11)

where the ﬂAZ are the regression coeflicients estimated by
maximum likelihood. Thus each insured has her own
estimated probability to surrender given its characteris-
tics. We now want to determine the confidence interval
for the surrender probability on the whole portfolio. In

p=3Bo + 1 X1 + .. + Bu Xp),

1. available at http://cran.r-project.org/web/packages/randomForest/index.html
2. available at http://genome.jouy.inra.fr/doc/genome/statistiques/R-2.6.0/library /ipred /html/bagging.html
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a collective framework, the usual way is to use the Bino-
mial law approximation which considers that the num-
ber of surrenders among n policyholders follows a Nor-
mal distribution. However this technique requires that:
i) n — oo (big size of portfolio), ii) probability p; to
surrender is comparable for all ¢ individuals (homogene-
ity). The first point is usually not a problem in insur-
ance (portfolios are often huge by nature). The second
point is a direct consequence of the Central Limit Theo-
rem (CLT): the sum of i.i.d. random variables follows a
Gaussian law. Actually a portfolio is almost always het-
erogeneous. Anyway, imagine that the n policyholders
in the portfolio are divided into ¢ homogeneous groups
(of size n;) of policyholders. Within each group 4, poli-
cyholders are considered independent and have the same
characteristics: they are therefore homogeneous (same
probability p; to surrender). The number of surrenders
N7 in group ¢ embedding n,; policyholders is thus bino-
mially (by property) or normally (CLT) distributed (sum
of i.i.d. Bernouilli variables), although the assumption of
independence is quite wrong because the environment is
likely to affect lots of policyholders in the same time (see
Loisel & Milhaud (2011) for further details). Hence,

E[N]] = Zpi = n;p; (binomial law prop.), (12)
i=1
ng ni
Var[N7] = Zpi(l —pi) = Zpi%' =nipiqi- (13)
i=1 i=1

From (12) and (13) we can get the confidence interval
of p; = Nf/n; within the i** homogeneous group by
using the one of a Normal standard distribution. The
total number N® of surrenders over the whole portfolio
is the sum of surrenders in those homogeneous groups:
N*® = 3", N?. The Normal law is stable under summa-
tion, so that N° is still normally distributed. Finally, a
good approximation of p = N*/n is

ﬁZZNf/”NN(%Znipi,%znipi(l—pi))y

which yields to the confidence interval (at level 5%)

[A—1.96 x B, A+ 1.96 x B] (14)
> nipi(1 — pi)
n2
dex of the homogeneous group, and p; is the estimated

probability to surrender within group :.

where A = M, B = , ¢ is the in-

B.3 Deviance and tests

The most famous tests are the likelihood ratio test
and the Wald test, they are detailed in Appendix B.V.

C Interpretations

The regression coefficients values give us some infor-
mation on the effect of each risk factor. The intercept Gy
is the value of z for the reference risk profile: this is the
expected value of the outcome when the predictor vari-
ables correspond to the reference modalities (for categor-
ical variables) and thresholds (for continuous variables).
The coefficients 8; (i = 1,2,...,k) describe the contribu-
tion of each risk: a positive §; means that this risk factor
increases the probability of the outcome (lapse), while a
negative one means that it decreases the probability of
this outcome. A large 5;/0(8;) (where o(5;) denotes the
standard deviation of the coefficient estimation) means
that the risk 4 strongly influences the probability of the
outcome, and conversely. The regression coefficients have
to be compared to the reference profile, for which 5 =0
except for the intercept.

Practitioners are used to focusing on the odd-ratio

p

indicators: they represent the ratio of probabilities "

Let us see an example to understand this quantity.

Example 1. Say that the probability of success
p=P(Y=1|X) is 0.7. Then the probability of fail-
ure q=P(Y=0|X) is 0.3. The odds of success are
defined as the ratio of these two probabilities, i.e.
p/q=0.7/0.3=2.33; it means that with the same charac-
teristics (vector X), the success is 2.33 more likely to
happen than the failure (obviously the odds of failure are
0.3/0.7=0.43). Now consider that only one explanatory
variable differ from one policyholder to another, say the
age (among age and region). From (?7?) we get for one
policyholder p/q = ePotPrXagetB2Xregion Al terms dis-
appear between both policyholders except age, the odd-
ratio between them aged 40 and 30 years old is thus

40
P(Y:1|XCL9624O)/P(Y:HXaQGZSO) — — 610[31
P(Y=0|Xage:40) P(Y=O‘Xage:30) e3oﬂ1

Generally speaking, we notice that a unit additive change
in the values of explanatory variables should change the
odds by constant multiplicative figures. The odd-ratios
represent the difference in terms of surrender probability
when explanatory variables change, and thus are a very
useful operational tool to define risk classes.

D Limits of the model

Required assumptions define the main limits of the
model. The policies (Y;|X;) are considered conditionally
independent with respect to the explanatory variables.
Explanatory variables must also be independent, which
is never totally right in reality. Fortunately calculations
can be done in practice if the Pearson correlation coeffi-
cient is not equal to 100% (otherwise singularity in ma-
trix inversion). Modalities of a categorical variable are
considered independent, which is generally true except in
case of erroneous data. Moreover, a lot of data should
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be available for the robustness of the modeling. Well,
this is not really the point here because insurance port-
folios used to be large enough. However, applying the
logistic regression over a whole portfolio of life-insurance
contracts could lead us to very strange results. Indeed, if
this is a run-off portfolio (no new business) which covers
a very long period (say 50 years), almost all the poli-
cyholders would have lapsed and the regression would
make no sense! We checked that this is not the case in
our application (new business is being issued all along
the observation period).

To sum up, logistic regression is a great tool to model
the differences of the outcome variable considering the
differences on the explanatory variables. The big draw-
back is the independence assumption between policy-
holders, but a crucial advantage is the opportunity to
make precise predictions. Some examples of application
can be found in Huang & Wang (2001) and Kagraoka
(2005). Other quasi-similar segmentation models like To-
bit model (Cox & Lin (2006)) or Cox model (Cox (1972))
could have been explored. For further details, a compari-
son of these different models is available in Austin (2007).

IV Application on a Life Insurance portfolio

Depending on the country, the database provides in-

formation on policyholder’s characteristics (birth date,
gender, marital status, smoker status, living place...)
and policy features (issue date, termination date, type
of contract, premium frequency, sum insured, distribu-
tion channel...) of life insurance contracts. Here, a real
life portfolio was collected thanks to the Spanish entity
of a large French insurer. In our study we have informa-
tion on the gender, the birth date of the policyholders,
the premium frequency, the face amount, the premium;
the type of contract, its issue date, its termination date
and the reason of the termination. The face amount is
an indicator of the policyholder’s wealth, and the pre-
mium encompasses the risk premium and the saving pre-
mium. The risk premium is commonly the product of
the sum-at-risk (sum paid back to the policyholder in
case of guarantee) by the probability for the guarantee
to be triggered. Thus with certain endowment products
covering the death, the risk premium is the mortality
rate times the sum-at-risk (amount added to the reserve
in case of death), all discounted. The saving premium is
the investment made by the policyholder.
We used the package rpart of R to implement the
CART method and obtain the results in the sequel.
The functions to implement the logistic regression are
included in the core of the R programs.

A Static analysis

We mean by static analysis a “photograph” of the
portfolio in December 2007. The types of long-term con-
tracts are either pure saving or endowment products,

but we focus on the 28506 endowment policies hereafter.
These Term Annually Renewable (TAR) products can-
not be surrendered in the first year following the under-
writing (except in very special cases), and there is no
tax constraint in Spain concerning life insurance saving
contracts. It means that the policyholders can surren-
der their contracts at each anniversary date without any
fee, but are penalized otherwise. We will see later (in
Figure 6) that these features are big incentives and drive
the surrender profile in function of the contract duration.

The study covers the full period 2000-2007. This
means that the characteristics of policyholders and con-
tracts that we extract from the database are those ob-
served either at the surrender date or in December 2007
(if the policyholder has not surrendered yet). Recall that
we first would like to have an idea of the possible trig-
gers of the surrender decision, by explaining surrenders
as a function of other variables. It will thus enable us to
detect the “risky” policyholders at a given date.

Remark 2. The static analysis raises some burning
questions: what is the composition of the portfolio? Is
it at maturity? What is the part of new business?

For example if the duration of the contract is one of the
main explanatory factor for surrenders (and it is!), one
has to be careful to cover a sufficiently long period to ex-
perience a normal surrender rate, say 10% a year. If the
contract duration is almost always at least 15 months (be-
fore the surrender), looking at surrenders statistics twelve
months after the issue date of the contracts would not be
realistic because the annual surrender rate would be very
close to 0%. Indeed we do not have a dynamical view of
the phenomenon, this static analysis is just a simple way
to point out the more discriminant factors of the surren-
der decision, even if some bias still exists as we have seen
in Introduction. We go back to this problem in Section
1V.B where the monthly study reflects that policyholders
often wonder whether they should surrender their con-
tract (say at least twice a year). However, eight years of
experience here seems to be ok for our purpose.

In December 2007, 15571 of the 28506 endowment con-
tracts present in the database have been surrendered.
The two segmentation models provide us with two differ-
ent information:

e CART gives us the most discriminant variables re-
garding the surrender in descending order (reading the
classification tree from the root to the leaves). Finally,
one can class a policyholder as “risky” at the under-
writing process or later but the predicted response is
binary (although we could get the probability to be in
each class and thus the probability to surrender);

e LR offers a more precise result, the probability
(propensity) for this policyholder to surrender her con-
tract given its characteristics, and sensitivities of sur-
render decisions when explanatory variables change
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Figure 3: The final classification tree. Binary response variable: surrender. The first splitting-rule contract.type = bd
means that the contract type is the most discriminant variable (bd correspond to the 2"% and 4 categories, like in

alphabetic order). Continuous explanatory variables have

(thanks to the odd-ratios technique and the regression
coefficients).

A.1 CART results

In R, one performs the analysis thanks to the package
rpart ! (r-partitionning), and more precisely the pro-
cedure rpart which builds the classification tree. By
default, rpart uses the Gini index to compute the im-
purity of a node. As we have seen previously, this option
does not seem important because results should not much
differ. There is no misclassification cost (see Appendix
A.II.5) in our application.

We proceed like in theory:

1. first, Tnae is built with no complexity cost (by set-

ting the option c¢p equal to 0);
second, this tree is pruned off to lower the number
of leaves and simplify the results.

The minimum number of observations required in a leaf
of Tae has been set to 1, the number of competitive
splits computed is 2, and we use the cross-validation
technique to get better and more accurate results. The
number of samples for cross-validation is set to 10 in
rpart.control. Beware: these cross-validations cor-

been previously categorized for the modeling.

respond to the misclassification rate estimated by cross-
validations (and not the cross-validation estimate of the
prediction error presented in Section I1.A.3, which is use-
ful to estimate better the real prediction error but not to
build an optimal tree). We randomly create the learn-
ing and validation datasets, whose sizes are respectively
16868 and 11638 policyholders.

The test-sample estimate of the prediction error in
the maximal tree T},,, computed on the validation sam-
ple is 14.88%, corresponding to non diagonal terms of
the confusion matrix given in Table 1. This tree has
too many leaves and its representation is too complex,
so that we have to prune it. The choice of the com-
plexity parameter « in the pruning algorithm (see Ap-
pendix A.I1.6) is a trade-off between the final size of
the tree and the minimum misclassification rate required
by the user. Table 7 and Figure 9 in Appendix A.I
plots the learning error in function of this complexity
cost. Each complexity parameter corresponds to an op-
timal tree whose size is specified on the graph gotten by
ten cross-validations. Notice that minimizing the learn-
ing error (by cross-validation) and its standard deviation
requires setting o €]1.04e=%,1.30e=%4], but the corre-

1. http://cran.r-project.org/web/packages/rpart/index.html, developed by T. M. Therneau and B. Atkinson

Table 1: Confusion matrix (Ty,q.) on validation sample.
observed Y =0 observed Y =1

4262 1004

728 5644

predicted Y = 0
predicted Y =1

Table 2: Confusion matrix (pruned), validation sample.
observed Y =0 observed Y =1

4188 1078

664 5708

predicted Y = 0
predicted Y =1
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Figure 4: On the left, the importance of explanatory variables. On the right, the number of trees required to stabilize
the out-of-bag errors: the black line is the overall error, the green line is the error of the category “surrender” and

the red one for the category “no surrender”.
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sponding number of leaves (equal to 82) is too high to
represent the tree easily. Hence we have chosen to set
a = 6e79 which corresponds to 11 leaves and a very
small increase of the error. The corresponding tree is
plotted on Figure 3. The most important (discriminant)
variable seems to be the type of contract (characterized
by the premium type, unique or periodic; and the profit
benefit option), then the duration and so on. Selected
variables in the tree construction are the contract type,
the duration, the face amount, the premium frequency,
the saving premium and the underwriting age. Finally,
gender and risk premium don’t appear in the final tree,
because they should not be relevant. The first splitting-
rule is therefore “does the policyholder own a contract
with profit benefit?”. If “no” go down to the left, oth-
erwise go down to the right. The predicted classes are
written in the terminal nodes, and the proportions under
this class are the number of policyholders observed as “no
surrender” on the left and “surrender” on the right. Ob-
viously the bigger the difference between these numbers,
the better the segmentation. Here, if the policyholder
has a contract with a periodic or unique premium and

0.25
|

0.20
|

Error

40 60 80 100

trees

no profit benefit option (PP sin PB and PU sin PB), he
probably won'’t surrender (2608/2610 = 99.92%). The
predicted class is labeled “No”.

Remark 3. Sometimes some categories of certain ex-
planatory variables do mot appear in the final tree. In
fact, the representation of the tree obliges us to hide
other competitive possible splits at each node (or surro-
gate splits). But the complete analytic result provides the
solution to this problem (it is just a display problem).

Example 2. Let us consider someone whose character-
istics are a periodical premium and a contract with profit
benefit. The duration of her contract is today observed
in the seventh range and her face amount belongs to the
second range. The tree predicts that this policyholder is
today in a risky position given its characteristics (58/61
~ 95% of people with these characteristics have surren-
dered their contract).

Looking at Figure 3, it is clear that the most dis-
criminant factor regarding the surrender risk here is the
profit benefit option. The misclassification rate (learning
error) of this tree is 15% (33.1% x 45.4%, where 45.4% is

Table 3: The confusion matrix of the classifier by the Random Forest.

observed Y = 0

observed Y =1

predicted Y = 0

10327

2608

predicted Y =1

1592

13979
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Figure 5: Importance of explanatory variables excluding the duration effect. On the left policyholders whose final
contract duration corresponds to peaks in Figure 6, and others on the right.
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the root error when no split) according to relative errors
in Table 7 presented in Appendix A.I. The prediction
error can be estimated via the confusion matrix in Ta-
ble 2. Tt is quite satisfying: only 14.97% of predictions
are wrong, which is almost equal to the prediction error
on the maximal tree T},,,,. Indeed the compromise is re-
ally interesting because pruning the tree from 175 leaves
to 11 leaves causes a less than 1%-increase of the predic-
tion error!

To consolidate these results, we use the bagging pre-
dictors thanks to the randomForest package. The fol-
lowing stages in the Random Forest algorithm are per-
formed to grow a tree: bootstrap the original sample (this
sample will be the training set), split at each node with
the best variable in terms of decrease of the impurity
(possible m variables randomly chosen among M initial
input variables, m < M because m=M corresponds to
the bagging method), grow the tree to the largest extent
possible (no pruning). The forest error rate depends on
the strength of each individual tree (its power to clas-
sify well) and the correlation between any two trees in
the forest. When the strength increases the forest error
decreases and when the correlation increases the forest
error also increases. m is the only adjustable parameter
to which random forests is sensitive, and reducing m re-

fa.range ]

contract.type (<]

premium.frequency o

savingPrem.range o

underwritingAge.range o

riskPrem.range o

gender o

T T T T
0 50 100 150

MeanDecreaseGini

duces both the correlation and the strength; thus there is
an optimal m that can be found with the out-of-bag er-
ror. We cannot represent the new final classifier as a tree,
but it gives best results (all these concepts are explained
on Breiman’s webpage!). Table 3 summarizes the re-
sults on the entire original dataset (no learning and test
samples because this is already a bootstrap aggregation):
the unbiased out-of-bag error estimate is 14.73%. The
importance of explanatory variables is given in Figure 4,
as well as the necessary number of trees in the forest for
the out-of-bag error to be stabilized (which seems to be
here about 50 trees). These results confirms what we
expected: the duration and the type of contract are the
most meaningful variables to explain the policyholder’s
decision to surrender her life insurance contract. To be
sure that the importance of these factors is not biased by
the duration effect, we decided to run the analysis exclud-
ing the duration and splitting data into two subsets: pol-
icyholders whose final contract duration corresponds to
peaks in Figure 6, and others policyholders left. We thus
look at surrenders due to penalty fees as well as other
surrenders without penalty constraints. Not surprisingly
Figure 5 shows that we get the same most important fac-
tors (with the order slightly differing), meaning that the
duration effect is not correlated to another risk factor

1. See http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm
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Table 4: Odd-ratios, endowment products (duration in month, learning sample). Contract types: PP con PB —
periodic premium (PP) with profit benefit (PB), PP sin PB — PP without PB, PU con PB — unique premium (PU)
with PB, PU sin PB — PU without PB. Continuous variables (e.g. duration) have previously been categorized.

Odd-ratios Reference Other modalities
Duration [0,12] 112,18] 118,24] 124,30] 130,36]  ]36,42] ]42,48] ]48,54] > 54
surrenders 3062 1740 1187 791 728 400 365 244 682
empirical OR 10.56 2.89 2.69 1.82 1.16 0.96 0.68 0.19
modeled OR 0.27 0.07 0.06 0.05 0.03 0.02 0.02  0.004
Premium freq. Monthly Bi-monthly  Quarterly  Half-Yearly Annual Single
surrenders 2790 12 323 92 595 5387
empirical OR 2.22 0.93 0.66 2.39 1.60
modeled OR 2.52 0.97 0.80 1.55 0.75
UW. age [0,20[ [20,30[ [30,40[ [40,50[ [50,60[ [60,70] > 70
surrenders 258 1719 2165 2002 1490 1088 477
empirical OR 1.16 1.06 1.25 1.63 2.67 3.28
modeled OR 1.32 0.99 0.77 0.67 0.51 0.47
Face amount #1* #2* #3*
surrenders 5361 684 3154
empirical OR 0.14 0.12
modeled OR 0.003 0.0008
Risk prem. #1* H#2* #3*
surrenders 3941 2987 2271
empirical OR 1.50 0.92
modeled OR 1.43 1.30
Saving prem. #1* #2* #3*
surrenders 3331 1762 4106
empirical OR 1.90 2.09
modeled OR 2.55 3.78
Contract type PP con PB PP sin PB PU con PB PU sin PB
surrenders 3840 0 5357 2
empirical OR 0 4.75 0.0008
modeled OR 5.6e-08 0.0006 3.9e-06

* Note: for confidentiality reasons, the real ranges of the face amount, the risk premium and saving premium are omitted.

and thus does not lead to biased viewpoints.

A.2 The LR model

Consider that X is the matrix of explanatory variables
for each observation, that is to say a line of the matrix
X represents a policyholder and a column represents the
observed value for a certain risk factor (e.g. the age).
The response vector Y = (Y1, Yo, ...,Yn)/ represents the
surrender decisions of the 28506 insureds (policyholders).
In the classical regression framework, the problem can be
written in the matrix form:

Y; I X1 Xip X1k B
}/2 1 X2,1 ﬁl
Yn 1 Xn,l Xn,k 5k

We ran the logistic regression in R thanks to the func-
tion glm. The output of the model is the effect of each
variable, the standard deviation of the estimated regres-
sion coefficients, and the deviance of the model (see Ap-

pendices B.I1I, B.IV and B.V).

Categorical variables are split into dummy variables
corresponding each one to a modality (same process as
in CART) to build the so-called “design matrix”. A
stepwise logistic regression is carried out with a step-
by-step iterative algorithm which is used to compare a
model based on p’ of the p original variables to any of
its sub-model (with one less variable), or to any of its
top-model (with one more variable). The R procedure
stepAIC from the package MASS allows us to drop non
significant variables from the model and to add relevant
ones. We finally get the optimal model with the mini-
mum number of relevant variables. The learning sample
still contains the randomly chosen 16868 policyholders
and the validation sample the 11638 ones left. As usual,
the regression coeflicients were estimated on the learning
sample whereas the predictions were made on the val-
idation dataset. Table 8 in Appendix B.I summarizes
the regression coefficients of the explanatory variables,
their standard deviation, and the p-value of the Wald
test (confidence in the estimation and relevance of the



IV APPLICATION ON A LIFE INSURANCE PORTFOLIO 13

Figure 6: Surrender rate (%) VS duration (in month) for Mixtos products. Effect of penalty fees and tax constraints
(contracts can be surrendered at each anniversary date without fees, which explains the peaks).
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regression coefficients, see Appendix B.V.2). We can de-
duce from the estimates of regression coefficients that the
variables which seem to have the main effects (biggest ab-
solute values) are once again the duration, the contract
type, but also the face amount. This suggests that the
results are consistent with CART, and that historical
data should no longer be used if the surrender profile
with respect to contract duration changes (due to regu-
latory’s decisions for example). The odd-ratios presented
in Section I'11.C should be compared to 1 (value corre-
sponding to the reference category). Looking at Table 4,
we clearly see that the modeled odd-ratios are a quite
bad representation of the reality: they are very different
from the empirical ones (obtained via descriptive statis-
tics). For instance, the model tells us that a policyholder
whose underwriting age is over 70 years old is less likely
to surrender than a young policyholder whose underwrit-
ing age is less than 20 years old all other things being
equal. The experience shows that in fact they are 3.28
times more likely to surrender! The good point is that
the estimated odd-ratios very often have the same trend
as the observed ones (as compared to the reference cat-
egory). This is the case with duration: Figure 6 shows
the surrender profile with respect to duration (ratio of
surrenders within each duration range), and is obviously
in line with odd-ratio estimations of Table 4: indeed the
risk is very high at the beginning and goes decreasing

Table 5: Confusion matrix (LR model).
observed Y = 0 observed Y = 1

predict Y =0 F#correct rejections #misses
4153 637

predict Y =1  #false risky policyholder #£success
1113 5735

60 80 100

with time. The model has globally a bad goodness of fit
since many regression coefficients estimates are not signif-
icant, and this is the reason why the modeled odd-ratios
do not represent accurately the reality in most of cases.
As we have previously seen, there is a trade-off between
the goodness of fit and the predictive power: in our case
good results in terms of prediction are clearly favored
since the goal is to make classification predictions. The
confusion matrix given in Table 5 gives the number of
misclassified policyholders and represents the predictive
power of the method. Of course good predictions still
appear in the diagonal of the table. To make such pre-
dictions, we consider that a policyholder with a modeled
probability to surrender greater than 0.5 is assigned the
response 1, otherwise the response 0. Here the predic-
tions are right for 84.96% of the validation sample, thus
the prediction error equals 15.04% and is quasi-similar to
the one gotten with CART method.

It is also interesting to compare the two methods with
other usual performance criteria: the sensitivity (Se) and
the specificity (Sp). Let success be the case which corre-
sponds to a predicted and an observed response equal to
1 in the confusion matrix. misses corresponds to a pre-
dicted response equal to 0 and the observed one 1. correct
rejections corresponds to an observed and a predicted
response equal to 0, and finally false risky policyholder
stands for a predicted response equal to 1 and an ob-

Table 6: Performance criteria.

Tmacc Tpruned TRandomForest LR

Se 84.9% 84.1% 84.3% 90%
Sp 85.4% 86.3% 86.7% 78.9%

(1-Se) 15.1% 15.9% 15.7% 10%
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Figure 7: Monthly average credited rate for Mixtos products. This credited rate encompasses the mean guaranteed

rate, plus the mean profit benefit rate.
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served one to 0. The sensitivity is the number of success
over the number of observed surrendered contracts, and
the specificity is the number of correct rejections over the
number of observed non-surrendered contracts. Table 6
summarizes the performance criteria for each method; we
want to minimize the proportion of misses. The predic-
tions of the LR model have less misses and more false
risky policyholders; in our three CART applications, re-
sults are quite similar and errors are well-balanced. The
compromise between sensitivity and specificity is better
in CART but the number of misses is higher. Hence the
most prudential model is the LR model (10%) for us.
This first static analysis is helpful to understand
which policyholders’ characteristics and contract’ fea-
tures are relevant, but has a big drawback: we can-
not quantify the impact of the economical and finan-
cial context on surrender behaviors since we only look
at the portfolio at a given date. We could state that
in a classical economic and financial regime, behaviors
are not driven by economy and hence the static analy-
sis is enough. This is obviously not the case during a
crisis where it is extremely hard to anticipate behaviors
and thus surrender rates (policyholders’ decisions may be
correlated, see Milhaud et al. (2010) for a discussion on
this). The modeling also becomes much more difficult to
handle. To provide a comprehensive model that enables
to capture well all effects (endogenous and exogenous)
would be tempting but is not in the scope of this paper.

B Further developments: a dynamical analysis

This section is not the heart of the paper, but aims at
proving that a static analysis could lead to huge errors in
terms of future surrender rate predictions. Practitioners
can robustly use segmentation models to get risky pro-
files, but should be very careful when dealing with time
predictions which are strongly dependent on a moving

2004 2006 2008

environment. The dynamical analysis better reflects the
evolution of economic conditions faced by policyholders
and allows us to model their monthly decisions. There-
fore the surrender rate is modeled each month on the
whole portfolio by aggregation of individual decisions.
In this part of the paper we only consider the LR model
because we can easily input economic indexes so as to
make future predictions.

We have already discussed about the problem of the
static analysis (Introduction and Section ITI.D): de-
pending on the period covered and the phenomenon mod-
eled, it could be largely erroneous: if the period covered
is longer than the “term” of the phenomenon, the bi-
nary response variable would everytime equal 1. By con-
sequence, the model would not be true to life; this is
the first argument to run a monthly study. Another one
is that we model a dynamical decision: we may think
that policyholders is likely to wonder each month if they
should keep their contract in force.

However, the dynamical analysis raises a robustness and
stability problem because of the additional underlying
assumption of independence in time. In practice, we
consider that the decision of the policyholder at date
t + 1 is independent of what happened before, and more
precisely independent with her decision at date ¢ (very
strong hypothesis which is obviously not reasonable in
reality). In the new dataset (whose size is 991 010), pol-
icyholders have been duplicated each month while they
were present in the portfolio (no surrender and no other
reason to leave), and their characteristics were up-dated
(duration of the contract, economic indexes...). It gives
birth to another bias which does not really alter the re-
sults from our experience: characteristics of people with
long durations are over-represented in the sample. Any-
way, we perform the LR on this new dataset after being
sure that the model is built on a representative period
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Figure 8: Predictions of the portfolio surrender rate with economic indexes added in explanatory variables. On the
left, the predictions on the learning sample and on the right predictions on the validation sample.
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(the portfolio is at maturity).

We check the accuracy and the quality of the predic-
tions by comparing the predicted surrender rate and the
observed one each month. The final dataset is divided
into the following learning and validation samples: the
learning sample (whose size is 629357) covers the period
from January 2000 to March 2005, and the validation
sample covers the period from April 2005 to December
2007 (size equals 361653). To build the model, we add the
month of observation (seasonality effects), economical in-
dex (unemployment rate) and financial indexes (credited
rate, Spanish market index Ibex 35, 1Y and 10Y risk-free
interest rates) to the same explanatory variables as in the
static study. We neglect the death of policyholders in the
portfolio when making future predictions even if they are
exposed to this risk, since this event is sufficiently rare
(about 2e~*) in our portfolio.

As a matter of fact, we see on Figure 8 that the observa-
tion period has a big influence: the model fits quite well
the data in the “learning period” but is a bit far from the
reality when predicting the future, especially in 2007. As
we can see in Figures 7 and 8, it is rather interesting
to note that the average lapsation level increases as the
profit benefit is decreasing (2003-2004), which shows a
clear relation between credited and lapse rates. The re-
sults seem to be acceptable except that it works very bad
in extreme situations. During an economic crisis, finan-
cial indicators should be the main explanatory variables
of surrender decisions. Besides, the assumptions of inde-
pendence (between policyholders and dates) are not at

— Observed surr. rate
—— Modeled surr. rat

e
95 % confidence interval

4% 6% 8%
| | |

surrender rate

2%
|

0%
|

2007

all realistic when considering extreme events. Here, the
beginning of the financial crisis led the surrender rate of
endowment products in Spain to drop in 2007, which is
not predicted by the model and shows that the economic
framework is crucial. Actually we realize that the model
does not capture the right effects, especially concerning
economy.

This gap between predictions and observed surrender
rate is certainly due to the fact that the user has to make
an assumption when predicting: what will be the aver-
age level of lapsation in the coming months and years
as compared to today (or a reference date)? Then the
predicted surrender rate will be adjusted depending on
this hypothesis. Here we simply assume that the average
level of lapsation during the learning period will stay the
same in the validation period (2005, 2006 and 2007) and
then we predict the surrender decisions of policyholders
taking into account individual characteristics, economy
and seasonality (introduced via the “month” explanatory
variable). Indeed a good prediction partially depends on
the good choice of the future expected general level of
lapsation as compared to today (when the date is intro-
duced in the model): will it be higher? lower? the same?
The conclusion is that if future economic conditions are
significantly different from the past, the findings of the
statistical predictions are often useless, which justifies
why statistical predictions for surrender rates are not so
popular in actuarial theory and practice.
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V Discussion and improvements

The goal of this paper is to give insights on discrimi-

nant contract features and policyholder’s characteristics
regarding the surrender behavior. So what’s new?
Our study has brought out some typical risky profiles:
oldest people tend to surrender more than oth-
ers, as well as those who have a periodical premium
(“annual” and “bi-monthly” are the worst cases). Poli-
cyholders with low income are more likely to surrender
their contracts: poor insureds have to pay for fees and
regular premiums but they do not have the money for it,
whereas rich people may not really pay attention to this.
In general the biggest risks are concentrated on the first
periods following the termination of a tax constraint: if
the duration of the contract has reached the tax
or penalty relief delay, the risk is very high. Fi-
nally, the participation of the policyholder to the ben-
efits of the insurance company plays an important role
in its decision, the study has shown that people with no
profit benefit option do not surrender their contract
whereas people with the profit benefit (PB) option tend
to surrender their contract. Three reasons could explain
it: first, people move to a new product which globally
offers a higher PB, second a high PB in the first years of
the contract enables the policyholder to overperform the
initial yield and could lead her to surrender the contract
and recover the surrender value, third someone with a PB
option simply receives frequent information on it and on
the surrender value, which can prompt her to surrender.
The gender of the policyholder does not seem to
be discriminant.

The conclusion could be that the classification predic-
tions can be performed by running either the LR model
or the CART model. Risky profiles should be extracted
from the descriptive statistics or the CART model more
than from the LR model for which the modeled odd-
ratios are often not really significant. An idea could be to
select salient explanatory variables with the CART pro-
cedure and Random Forest algorithm, and then apply the
LR model to make predictions and use odd-ratios, since
we have seen that the results of both models were con-
sistent and complementary. Another improvement in the
LR model could be to re-balance the dataset (Ruiz-Gazen
& Villa (2007)) which is extremely unbalanced in the dy-
namical analysis: we observe 15571 surrenders among
991010 observations, meaning that surrenders only rep-
resent 1.57% of the whole dataset. We can overcome it by
using downsampling or oversampling (Liu et al. (2006)),
or by changing the decision function (here the policy-
holder was assigned a surrender if the modeled proba-
bility was over 0.5 in predictions, but this is not always
optimal (Lemmens & Croux (2006)).

Most of professionals know that the duration of the
contract is a meaningful factor in explaining the sur-
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render because of tax constraints. At underwriting, we
do not have any information on it because the contract
is newly acquired. Hence, duration as an input of the
model enables us to get reasonable predictions of surren-
der rates but could not be considered when we want to
segment the population of policyholders at underwriting.
However this is not really a point since we just have to
remove the duration in the modeling to segment policy-
holders at underwriting process.

Besides, the results of these two segmentation models
are true at a fixed date ¢ (when the model is built). To
improve this and take nicely into account the duration
and the economic context, it could be preferable to use
a functional data analysis, or to try some models used
in survival analysis like the Cox model family: we could
have access to the intensity to surrender at t + dt, where
dt can be big. The moral hazard, the adverse selection
and hidden variables such as the competition on the mar-
ket (Albrecher et al. (2010)) could be considered as well,
but are much more difficult to measure and collect. Fi-
nally, there still remains the question on how to model
accurately the surrender decisions in all contexts (includ-
ing a disturbed one) and what kind of model to use to
adjust the level of lapsation. Structural effects as well as
the conjuncture have both to be considered when model-
ing surrender rates, which is quite a challenge since they
are different by nature. It suggests for instance the use
of two separated processes with possible jumps.
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Appendices

A CART method
I Choice of the complexity parameter

rpart () prunes the tree and runs a K-fold cross val-
idation (K=10 by default) on each pruned tree (we took
K=10). The policyholders in the cross-validation process
are randomly selected, thus the cptable can slightly dif-
fer from one simulation to another. On Table 7, relerror
measures the learning error and describes the fit of the
tree, xerror measures the misclassification rate in the 10-
fold cross validation and is considered as a better estima-
tor of the actual error. xstd is the standard deviation of
zerror. The optimal tree minimizes err = xerror+xstd.
If two trees have the same error err, we choose the small-
est. Table 7 enables to plot the learning error in function
of the complexity parameter and the size of the tree in
Figure 9.

Remark 4. Notes on how to read this table:

e the third tree with 2 splits corresponds to o €
]2.30,3.10] ,

e R standardizes the error, that is why relative error of
the root is equal to 1. The real error of the root can be
obtained by printing the tree (here it is 45.465%),

o the mazimal tree Tpq, (non-pruned) returned auto-
matically and by default by the function rpart () cor-
responds to the last line of the cptable.
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Table 7: Complexity parameters

Cp nsplit | rel error | xerror | xstd Cp nsplit | rel error | xerror | xstd
3.3981e-01 0 1.000 1.000 | 0.0084 1.9559¢-04 59 0.312 0.332 | 0.0060
3.0539e-01 1 0.660 0.660 | 0.0077 1.8255e-04 68 0.310 0.332 | 0.0060
5.9982e-03 2 0.354 0.361 | 0.0062 1.3040e-04 73 0.309 0.332 | 0.0060
7.8237e-04 5 0.336 0.337 | 0.0061 1.0432e-04 82 0.308 0.332 | 0.0060
5.2158e-04 10 0.331 0.333 | 0.0060 9.7796e-05 88 0.307 0.333 | 0.0060
4.5638e-04 15 0.328 0.333 | 0.0060 8.6930e-05 97 0.306 0.334 | 0.0060
3.9119e-04 19 0.326 0.333 | 0.0060 6.5198e-05 100 0.306 0.334 | 0.0060
3.6945e-04 21 0.325 0.333 | 0.0060 4.3465e-05 117 0.305 0.337 | 0.0061
3.2599e-04 32 0.319 0.333 | 0.0060 3.7256e-05 132 0.304 0.339 | 0.0061
3.1295e-04 34 0.318 0.333 | 0.0060 3.2599e-05 139 0.304 0.340 | 0.0061
2.6079e-04 39 0.317 0.332 | 0.0060 2.6079e-05 159 0.303 0.340 | 0.0061
2.1733e-04 53 0.31360 | 0.334 | 0.0060 0.0000e+00 174 0.303 0.341 | 0.0061
Il Deeper in CART theory symmetric in p1, p2, ..., py and:
1.1 Specification of binary rules 1. the mazimum of g s at equiprobability:

Criterion 1. These rules only depend on one “thresh-
old” p and one variable x;, 1 <1< d:

-z < p,pu € R in the case of an ordinal variable (if
we have m distinct values for x;, the set of possible
sections card(D) is equal to M - 1);

— x; € p where p is a subset of {u1, po, ..., uapr} and
Wm are the modalities of a categorical variable (in
this case the cardinal of the subset D of possible
binary rules is 2M~1 —1).

1.2 What is an impurity function?

Definition 1. An impurity function is a real function g
defined over discrete probabilities on a finite set:

g: (p17p25 "'7pJ) - g(p17p27"'7pJ)a

argmazx g(p1,pa2,...,pJ) = (%%,..., %),

2. the minimum of g is given by the “dirac”:

argmin g(p1,p2,....,ps) € {ei,...,es}, where e; is
the jt" element in the canonical basis of R”.

1.3 Existing impurity functions
We usually consider the following functions which satisfy
the concavity criterium:

o impur(t) = - 327, p(i[t) In(p(j|1));

e impur(t) = > ., p(j[t) p(k[t) (Gini index)
Remark 5. In a variance approach,

e the Gini diversity index also equals to 1 — Zj p? ;
e we also use the twoing rule, choose A to maximize
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Figure 9: The cross-validated misclassification estimator of the optimal tree in function of the complexity parameter
cp (or a). Tpae contains here 175 leaves and corresponds to ¢p = 0. Notice that there is an initial sharp drop of

error followed by a “flat” plateau and a slow rise.
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e in a two-class problem, the Gini index reduces to
impur(t) = 2p(1]t)p(2|t).

1.4 Notes on prediction error

Formally, we can write the expression of the part
of observations wrongly classed by the function class in
function of the prediction error estimate chosen:

— the resubstitution estimate:

Z 1{class(xn,€) # jn} (2)

('Ew Jn)€e

7(class) =

— The test sample estimate: used as in (2):

]\lf, Z 1{class(zn,¢€) # jn}

(T jn)EW
(3)

(class) =

— the cross-validation estimate:

Y(class)

Z S Lclass(wa, ) # ju}

k 1 (‘Ln a.ln)esk
(4)

Notice also that:

Elf(class)| =E | % Y L{class(zn,€) # jn}

(Tn,jn)€e

Z E[ll{class(zn,€) # jn}]

(zn,jn)€Ee

= P(class(X,€) #Y) = 7(class).

and all presented estimators are unbiased:

E[7(class)] = E[7(class)] = E[7'*(class)]

Prediction error and misclassification error are two differ-
ent concepts. Misclassification error is the error in nodes
of the tree whereas prediction error is linked to the final
classification of the variable of interest and is calculated
once the tree is built.

By default, R computes a cross-validation estimator
of the learning error. This is the results given in the com-
plexity parameter table. But this cross-validation proce-
dure does not correspond to the cross-validation tech-
nique in re-sampling theory. The former computes the
optimal tree for a given size by minimizing the learning
error whereas the latter only aims at getting to a more
realistic estimator of the prediction error but does not
deal with the problem of finding an optimal tree.

1.5 Penalize wrong classification

Using the inaccurate resubstitution estimate (see A.3)
as well as selecting too large trees have led tree structured
methods to a lot of critics. In real applications, the cost
of misclassifying a class j object as a class ¢ object is not
the same for all ¢ # j. A possible improvement could
be to penalize the misclassification of an observation (as
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compared to the response observed) by a positive factor.

Definition 2. The cost of classifying an observation in
a wrong class is defined by

I':CxC— Ry, such that
T(i|j) > 0 and T'(ili) =0

Hence, let us define

e the probability to class an observation badly by
Pass(i]j) = P(class(x,€) = 1 | j) (the function class
classes z in the class i instead of the class j),

° Tclass( ) Z F( |]) class( ‘J)

wrong classification,

the mean cost of

We get 7055 = 7(T) and

T(T) = Z W(.])Tclaee

J

Z N Tclaes

Given this new framework, Ghattas (2000) defines the
new penalized classification function to assign a class to
a terminal node t:

class(z, €) = argmin Z I'(il7)
ieC jec

p(j[t) (5)

From (5), the estimation of the misclassification rate is

now
= mln Z p(jlt)

jEC

Given that 7(t) = r(¢t)p(¢), the misclassification rate by
substitution on the tree T is still

HT) =D (1) (6)
teT

Corollary 1. The tree misclassification rate estimator
7(T) becomes smaller each time a split is made, what-
ever the split. Thus, if we denote by Ts the tree gotten
by splitting T at a terminal node, we get

7(Ts) < 7(T) (7)

Let t;, and tg be the descendants of node ¢ in tree T5.
From (6) and (7), it turns out that

oA < D F)
teT. teT
D At = #() + A(t) +F(tr) <D _A(H)
teT teT

(1) (8)

() +7(tr) <
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1.6 Pruning the tree

The problem of a too complex final tree overfitting
data can be easily solved. In fact looking for the right
stopping-rule is the wrong way of looking at the prob-
lem, a more satisfactory procedure to get the final result
consist of two key elements.

1. Don’t stop the construction of the tree (forget arbi-
trary stopping-rules) and get the largest tree T),qz;
then prune it upward until the root node (the cri-
terion to prune and recombine the tree upward is
much more important than the splitting criterion);

2. Use better estimators of the true misclassification
rate to select the right sized tree from among the
pruned subtrees. Use cross-validation or learn-
ing/test samples for this.

The idea is to look for subtrees of T},4, Wwith a minimum
misclassification rate. To prune a branch 7" from a tree
T means to delete all descendants of node ¢ in T.
The resulting pruned tree is denoted by T = T—T¢, and
T <T.
From (8) we get

#(t) > #(T%) (9)

Timaz contains so many nodes that a huge number of
distinct ways of pruning up to the root exist, thus we
need to define a criterion to select the pruning procedure
which gives the “best” subtree (the right-sized tree). Ob-
viously, the natural criterion to compare same sized trees
is the misclassification error: the selective pruning pro-
cess starts with T}, and progressively prunes T},q: Up-
ward to its root node such that at each stage of pruning
the misclassification rate of the tree is as small as possi-
ble. This work yields to a sequence of smaller and smaller
trees: Toaz > T1 > To > ... > Troot- (Troot i just the
root node)

From (7), notice that: Ty < Thaz = T(Tmaz) < 7(T1).
The error of the maximal tree is always less or equal to
the error of the pruned tree and the aim is to lower the
number of leaves of T,,4.., thus it is natural to think about
penalizing a big number of leaves in the final tree. That
is why we introduce in the term of the error a complex-
ity cost representing this idea. The new misclassification
rate or cost-complexity measure is then:

o Card(T)
—_———
complexity term

Ta(T) =7(T) + , where a > 0. (10)

Card(T) is the number of terminal nodes of 7.
Actually we just want to find the substree T(a) < Tz
which minimizes 7,(T") for each «:

To(T(a)) = min 7,(7T)

TST’"L(L(I?

(11)
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For problems of existence and uniqueness of the tree
T(c), please refer to Breiman et al. (1984).

« is clearly linked to the size of the final pruned tree; if
« is small, then the penalty for having a lot of leaves is
small and the tree T'(«) will be large.

The critical cases are:

e o = 0: each leaf contains only one observation
(Tnax very large). Every case is correctly classi-
fied and 7(Timaz) = 0. Tinax minimizes 7o(7T);

e a — +o00: the penalty for terminal nodes is big
and the minimizing subtree will consist in the root
node only.

Algorithm 1. To know what branches to prune off and
the optimal o associated,

1. Let terminal nodes ty, and tr be the immediate de-
scendants of a parent node t; starting from Toaz,
one looks for the division which did not lead to a
decrease of error, i.e. where 7(t) = 7(t) + 7(tr)
(see (8)). Prune off t;, and tr, and do it again
until no more pruning is possible. We get Ty < T';

2. For Tt any branch of Ty, define 7(T}) =
Ztef{ 7(t). According to (9), the non terminal
nodes t of the tree Ty satisfy the following property:
7(t) > 7(T}) (no equality because of step 1).

3. Denote by {t} the subbranch of T} consisting of the
single node {t}, card({t}) = 1.

Hence, 75, ({t}) = 7(t) + o and
FolTY) = #(T}) + a Card(T}) (12)

We have seen that 7(T7) < 7({t}), but the intro-

duction of the complexity term makes this inequal-

ity with T, become not always true. While 7, (T}) <

To({t}) it is no use to prune the tree, but there ex-

ists a threshold . such that 7, (T1) = 74, ({t}).

Therefore,

(TP + o, Card(TY) 7(t) + a
A1) - A(T1).
Card(T?) — 1

Q. =

While o < a, it is no use to prune off the tree at
the node t, but as soon as o = a. pruning off the
subbranch presents some interest because the error
is the same and the tree is simpler;

4. Do this for all t in Ty and choose the node t in Ty
which minimizes this quantity a.. Let aq be .
By pruning Ty at the node t, we get To = Ty — T}.
Recursively, repeat 3. and 4. with Ty, get as, and
so on until the root node.

Finally, we get by construction (see the critical cases)
a sequence o < Qg < ... < Qpoot corresponding to the
pruned trees T7 > To > ... > Troot- Troot cOnsists only
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Table 8: Estimations of the logistic regression coeflicients for “Mixtos” products. With confidential data, modalities

increasing means the variable associated also increasing.

Coef. (var. type) modality : correspondance coefficient estimate  std error p-value effect
Bo (continuous) 10.63398 1.48281 7.42e-13 >0
1: [0,12] (in month) 0 (reference) nul

2: 112,18 -1.31804 0.15450 <2—-16 <0

3:]18,24 -2.66856 0.14016 <2—-16 <0

4: 124,30 -2.75744 0.14799 <2—-16 <0

Bauration 5 : 130,36 -3.09368 0.14294 <2—-16 <0
(categorical) 6 : 136,42 -3.54961 0.15080 <2—-16 <0
7 142,48 -3.72161 0.14980 <2—-16 <0

8 : 148,54 -4.10431 0.15772 <2—-16 <0

9:>54 -5.49307 0.14037 <2—-16 <0

Monthly 0 (reference) nul

Bi-monthly 0.92656 0.62071 0.135504 >0

Quarterly -0.03284 0.10270 0.749148 <0

Boremium frequency Half-yearly ~0.22055 016681  0.186128 <0
(categorical) Annual 0.43613 0.10690 4.51e-05 >0
(in month) Single -0.28494 0.38155 0.455177 <0
1: [0,20] (years old) 0 (reference) nul

2 : 120,30 0.28378 0.13912 0.041376 >0

3 : 130,40 -0.01146 0.13663 0.933163 <0 ™ Note : for

Bunderwriting age 4 : 40,50 -0.26266 0.14077 0.062054 <0
(categorical) 5: [50,60 -0.42098 0.15136 0.005416 <0
6 : (60,70 -0.66396 0.19531 0.000675 <0

7:>70 -0.75323 0.23417 0.001297 <0

1*: 0 (reference) nul

Btace amount 2% : -5.79014 1.46592 7.82e-05 <0
(categorical) 3 -7.14918 1.46631 1.08e-06 <0
1*: 0 (reference) nul

Brisk premium 2% : 0.36060 0.11719 0.002091 >0
(categorical) 3 0.26300 0.14041 0.061068 >0
1*: 0 (reference) nul

Beaving premium 7 0.93642 013009 87413 >0
(categorical) 3 1.32983 0.14955 <2e—16 >0
PP con PB 0 (reference) nul

Beontract type PP sin PB -16.79213 114.05786  0.882955 <0
(categorical) PU con PB -7.48389 1.51757 8.16e-07 <0
PU sin PB -12.43284 1.08499 <2-16 <0

Female 0 (reference) nul

Bgender Male -0.08543 0.04854 0.078401 <0

confidentiality reasons, the real ranges of the face amount, the risk premium and saving premium are omitted.

on the root node.

But what is the optimal tree in this sequence? (11) tells
us that the best pruned tree is the one with the minimum
misclassification rate.

B Logistic regression
| Static results

The regression coefficients, their standard error, the
confidence we can have in the value of the coefficients and
their effect are available in Table 8. The regression coef-
ficients of the dynamical study are not given here, there
are too many coefficients because the date was included
in the modeling.

Il Theoretical framework

The main idea why the logit modeling seems to be
relevant is that we want to model a binary event (sur-
render). Indeed, logistic regression analyses binomially
distributed data of the form Y; ~ B(n;,p;), where n; is
the number of bernoulli trials and p; the probability of
“success” (surrender). If we denote by Y the variable to
explain (i.e. the surrender decision), we have

if the policyholder surrenders,

else.



B LOGISTIC REGRESSION

It is now possible to adapt the logistic regression equa-
tion to our environment and we get p as the probability
to surrender:

logit — In P[Y:1|X0:.’L‘0,...,X;€:.’I}k]
= PIY = 0[Xo = 20, .., X, = 4]
= Bo+B1 X1+ ...+ B Xy
Finally,
D(logit(p)) =  @(@7'(p) =p } )
O(logit(p)) = (Bo+ Y s_; B X;)

(1) = p= (o + X, 5;X,)-
This writing will help us to understand the expression of
the likelihood function in B.

Il The Newton-Raphson algorithm

The condition on maximizing the log-likelihood func-
tion (??) yields to the following system of (k + 1) equa-
tions to solve

% S Y- @B+ X, BXe) =0

0

I 0

— = Y X (Vi — @B+ Y5, BuXr)) =0
0p;

Vi=1,..k.

The problem is that it is not in a closed form, we need
to use an algorithm (often Newton-Raphson) to find its
solution. In SAS and R software, the Newton-Raphson
algorithm to solve it is included and uses the following
iterative process:

gmmzﬁw_(yg%yﬁyﬂx@mifﬁ>um

When the difference between S0+1) and () is less than
a given threshold (say 10™%), the iteration stops and we
get the final solution.

IV Estimating the variance matrix

The variance matrix Z of coefficients J is

Var(Bo)  Cov(Bo, 1) Cov(fo, Br)
Cov(Br, o)~ Var(B) : (14)
COU(éka Bo) COU(K;k, B) V‘“”.(Bk)

and is estimated by the inverse of the information of
Fisher matrix, given by

0 ln(L(ﬁ))}
apop I’

So we have a pretty result: the latter term also appears
in the Newton-Raphson algorithm, so we can estimate

1(8) = -E|

22

the regression coefficients and their variance matrix to-
gether.

The maximum likelihood estimator B converges and is
asymptotically normally-distributed with mean the real
value of 3 and variance the inverse of the Fisher matrix
1(5).

The term in the expectation is called Hessian matriz and
is also used in the significance tests of the regression co-
efficients (.

V' Deviance and tests

V.1 Statistic evaluation of the regression

To check the relevance of the model, we classically
use the statistic of the log-likelihood ratio test: the first
assumption of this test is f1 = 2 = ... = O, = 0 (Hp);
And the alternative hypothesis is ”at least one regression
coefficient is not equal to 07 (Hy).
Now let us denote by 1(3) the log-likelihood of the lo-
gistic regression model with k + 1 regression coefficients,
and the log-likelihood of the simplest logistic regression
model (with only the constant term associated to 5y) by
1(Bo), the statistic of the log-likelihood ratio is

A =2x (1(8) ~ ) ) (15)

This statistic follows a X%, a chi-square law with k de-
grees of freedom (d.f.).
To conclude, if the “p-value” is lower then the expected
threshold of confidence (e.g. 5%), the model is globally
statistically significant and Hy is rejected.
More intuitively, sometimes the R? coefficient of MC Fad-
)

1(Bo)
As one could expect, if this coefficient is closed to 0 it
is because the ratio is closed to 1, and then the log-
likelihood of the complete model is closed to the simplest
model one which means that this is not significant to
have explanatory variables.
On the contrary, if R? is closed to 1 it means that there
is a huge difference between the two model. In this case,
the complete model is the best one.

den is also used: R?2 =1

V.2 Relevance of a given explanatory variable

The idea of this test is to compare the value of the
estimated coefficient [3; (associated to the explanatory
variable X;) to its variance. This variance is taken from
the Hessian matrix defined above.
Here the first assumption is: 3; = 0 (Hy);
Otherwise the alternative one is then: §; # 0 (Hy).
We use the Wald statistic which follows a x? to do this
Var(s;)
Let us choose 5% as confidence threshold, and let us de-
note by X§5%(1) the 95% quantile of the chi-square law
with 1 d.f. Hy is true if the ratio is lower than this quan-
tile, otherwise H; is confirmed.

test: A =



