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Lapse tables for lapse risk management in insurance:

a competing risk approach

Xavier Milhaud∗, Christophe Dutang†

October 21, 2017

Abstract

This paper deals with the crucial problem of modelling policyholders’ behaviours in life insurance.
We focus here on the surrender behaviours and model the contract lifetime through the use of
survival regression models. Standard models fail at giving acceptable forecasts for the timing
of surrenders because of too much heterogeneity, whereas the competing risk framework provides
interesting insights and more accurate predictions. Numerical results follow from using F&G model
(Fine & Gray (1999)) on an insurance portfolio embedding Whole Life contracts: through backtests,
this framework reveals to be quite efficient and recovers the empirical lapse rate trajectory by
aggregating individual predicted lifetimes. These results could be particularly useful to design
future insurance product. Moreover, this setting allows to calibrate experimental lapse tables,
simplifying the lapse risk management for operational teams.

Keywords: life insurance, lifetime, surrender, lapse, competing risks, cumulative incidence functions.

1 Introduction

Lapses correspond to “the expiration of all rights and obligations under an insurance contract if the
policyholder fails to comply with certain obligations required to uphold those” 1. In terms of financial
consequences, lapse risk is one of the biggest risks to consider for life insurers. Lapses strongly affect
insurers’ Asset and Liabilities Management (ALM) since they trigger unexpected cash flows, and
modify the insurers’ commitments through changes in contractual guarantees.

In this paper, we aim to provide an accurate prediction for the timing of policyholder’s lapse.
More precisely, we focus on surrenders, where surrenders are part of the underwriting risk module in
the Solvency II directive and are defined 1 as “the (premature) termination of an insurance contract
by the policyholder”. In this case, the insurer has to pay the policyholder or its beneficiary the
surrender value (or cash value) which is contractually agreed. Lapses thus include surrenders, but
also other causes of termination: death, default on premium payments, maturity, or else. That being
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1See http://ec.europa.eu/finance/insurance/docs/solvency/impactassess/annex-c08d en.pdf
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said, it seems natural to consider a competing risk approach since these causes of lapse are mutually
exclusive (Laurent et al. (2016)). For sure, someone who dies cannot surrender her contract, or a
default on premium payments has nothing to do with contractual maturity. Surprisingly, there is no
such approach in the literature concerning the lapse modelling within a regression framework, though
it is a standard tool to model prepayments in the banking sector. Many empirical studies show that
the surrender rate drives the lapse rate trajectory in life insurance companies: indeed this trajectory
basically results from policyholders’ decisions, but do not significantly depend on other unvoluntary
events (e.g. death) that remain quite stable in proportion over time. That is the reason why this paper
focuses on surrender behaviours.

In practice, it is crucial for insurers to model not only the surrender decision but also its timing,
because initial expenses to issue the contract as well as associated management costs cannot be
recovered in case of early surrenders. This means that the insurer must pay a particular attention to
the product design to avoid this, but more on that in Section 2 through our real-life analysis. Based
on this idea, we adopt a survival analysis framework combined to a competing risk approach. To the
best of our knowledge, lapse risk has never been modeled this way: the novelty of our work lies in
the consideration of the subdistribution approach to model the contract survival probability related
to surrenders. There exist many other statistical approaches available in the literature to model
surrenders: generalized linear models (GLM) were often used in the past (Cox & Lin (2006), Milhaud
(2013)), as well as financial mathematics techniques (to price the surrender option, see Bacinello
(2005), Bacinello et al. (2008)) or temporal series and cointegration (Kuo et al. (2003)). However,
they all suffer from “unacceptable” drawbacks: a selection bias is introduced when using GLM on
multiple periods, the assumption of agent’s rationality is very strong in the second case, and the
heterogeneity of policyholders’ behaviours cannot be captured within the last approach. To assess the
financial consequences of lapses on the insurer balance sheet, please refer to the interesting papers by
Buchardt (2014) and Buchardt et al. (2015) (competing risks appear therein, but there is no focus on
individual risk factors that impact the surrender rate).

In this competing risk framework, the surrender is our cause of interest. In this perspective, we
develop a survival regression model which allows to predict the individual contract lifetime before sur-
render given a set of risk factors affecting the propensity to terminate the contract. Most of time,
practitioners suggest to distinguish structural from temporary surrenders: the firsts relate to surren-
ders due to personal projects (e.g. purchase a car, buy a new house, which is not independent from the
policyholder’s age for instance), whereas others are triggered by adverse scenarios concerning the con-
ditions surrounding the insurance contract (e.g. bad macroeconomic conditions, firm reputation). In
this view, the model has to integrate various effects, from idiosyncratic risk factors (Outreville (1990))
to external information (e.g. a financial market index linked to the insurance contract profitability, see
Kim (2005) or Russell et al. (2013)). Roughly speaking, the model should be flexible enough to take
into account the heterogeneity of policyholders’ behaviours facing different situations. In this context,
we show hereafter that the F&G model (Fine & Gray (1999)) provides satisfying results and enables
to get accurate predictions of contract lifetime depending on policyholder’s characteristics, contract
features and financial environment.

The paper is organized as follows: Section 2 presents the portfolio and the insurance product under
consideration. Some general descriptive statistics are provided. In Section 3, we explain the differences
between the cause-specific and the subdistribution approaches in a competing risk framework: despite
being the most famous one, the former approach tends to be unadapted to our context. To illustrate
this, we give a practical example which shows that the estimation of the surrender intensity can be
strongly biased because of the misestimation of intensities related to other (rare) events. Then we
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build an optimal model in Section 4, which is validated in Section 5 through classical test statistics
applied to the learning data. Furthermore, we check for its prediction power by two methodologies:
i) we compare predicted and observed surrender rates (computed from the agregation of individual
lifetimes), and ii) we compare predicted and observed survival probabilities by risk profile. Finally
and in the same spirit as CSO tables for mortality in US, we propose to build multidimensional
experimental surrender tables in Section 6.

2 Context and portfolio under study

In this section, we first describe the general context corresponding to our study and give some particular
features of the product under consideration. Our simulated dataset is largely inspired by a real-life
portfolio provided by a private insurer operating in US.

Life insurance in US can roughly be divided into two families: either Term Life or Whole Life
contracts. Term Life contracts concerns temporary insurance contracts which guarantees a capital
against the death of the insured (e.g. a mortgage life insurance) and does not accumulate a cash value.
On the contrary, Whole Life insurance deals with permanent insurance contracts which accumulates a
cash value and terminates at the death of the policyholder. Our data deals with Whole Life policies,
where the policyholder may voluntary cancel her contract (possibly with penalties in case of early
withdrawals).

Typically, Whole Life insurance comes along with a minimum death benefit (nominal value), a
maturity benefit on the cash value (the minimum between the nominal and the economic value of
the unit-linked account), and sometimes with riders which guarantee extra cash amount in case of
predetermined events (e.g. accidental death). The underwriting of such policies assumes the payment
of a contractual premium. That premium can be paid periodically (e.g. every month), or as a lump
sum at the beginning. This particular feature may have an impact on the customer behaviour: either
attachment to the contract because of the regular contribution, or tiredness. The premium depends
on at least four features: the nominal value, the policyholder’s age and gender, and the tobacco
consumption.

Expenses and commissions are added up to the pure premium. The corresponding rates depend
mainly on the distribution channel: brokers and tied-agents are not similarly compensated. In Table
1, we present the commission and the expense rates generally used for Whole Life contracts sold by
tied-agents. Notably, the commission rate is very high in the first year of the contract and falls to
zero after the tenth year. Therefore, the tied-agent may have an incentive to force customers to move
to a new contract with higher commissions for him. It is also important to mention that the expense
rates vary depending on the premium frequency. The general rule is: the more frequent the premium
is paid, the higher the expenses.

Type (nominal > 10000$) 1st year 2-10 years 11+ years

Commission 50% 4% 0%

Management expense 0% 2% 3%

Total 50% 6% 3%

Table 1: Commissions and expense as percentage of the annual premium.
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As already mentioned, the policyholder may choose to surrender her life insurance policy in order
to immediately retrieve the cash value. However, the policyholder faces potential penalties. For
example in France, there are 35% of tax on capital gains of the contract if the withdrawal happens
before the fourth year, 15% between the fifth and the seventh year, and only 7.5% above an increasing
threshold afterwards. In US (our setting), surrender charges also apply if a withdrawal occurs during
the surrender period (from 10 to 15 years). Here, the surrender charge is 100% on the cash value in
the first three years and then linearly decreases as time elapses. This feature is a clear incentive to
keep the contracts in force at least three years, and then as long as possible.

Each year and after deduction of expenses and commissions, the premium remainder is devoted
to a saving account. This accumulated amount is called the total cash value. It is the sum of three
components: the guaranteed cash value, the dividends, and the terminal dividends minus potential
penalties. The value of dividends is not guaranteed and depends on the financial performance of the
insurance company. Whatever the value, the dividend option gives extra money to the policyholder
punctually. Non-terminal dividends may be used to pay cash to the policyholder, to accumulate on
interest on the dividend value or to buy paid-up options (i.e. new riders: increasing the guaranteed
value, decreasing the premium, increasing the death benefit). These possibilities are incentives to
increase the loyalty of customers. Unfortunately, in our dataset, non terminal dividends are unknown.
Terminal dividend may be known at underwriting, see Table 2. Since the terminal dividends are zero
before the twelfth year, the customer has another incentive to keep the policy in force for a long time.
These features of Whole Life insurance are common to both American and European markets, and
can be seen as a profit benefit option.

When there is a premium payment default, multiple termination options are possible. Either the
contract may be transformed to a temporary contract paid-up extended Term insurance (so that the
cash value is used to buy a Term Life insurance policy), or the contract may be extended to a reduced-
paid up insurance so that the nominal value gets lower.
Regulation and taxation also impacts the surrender value and by consequence the customer choice. In
US, the TAMRA law was initially designed to prevent policyholders from using life insurance contracts
to gain huge tax relief. In particular, it sets a maximum amount of premiums paid during the first
seven years. Otherwise, the life insurance policy is considered as a modified endowment contract. In
addition, any change in the contractual nominal value or the inclusion of an extra rider renews this
seven-year period.

Let us now say a few words about the individual data, and give some descriptive statistics. The
portfolio contains detailed information on the 29,317 Whole Life policies, all sold from the tied-agent
channel between January 1995 and December 2008. Table 3 provides usual statistical indicators on the
main variables: most of them are categorical, such as the gender or the payment frequency. Only two
information (also called further covariates or risk factors) are continuous: the annual premium, and
the last observed Dow Jones (DJ) quarterly variation. Both have been standardized for future
statistical modelling.

Underwriting Policy age (years)
age [0, 11] 12 13 14 15 16 17 18 19 ≥ 20

[0, 39] - - - 1% 1.5% 2% 2.5% 3% 3.5% 4%
[40, 44] - - 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5%
≥ 45 - 1% 1.5% 2% 2.5% 3% 3.5% 4% 4.5% 5%

Table 2: Dividend rates at the termination date.
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Variable Statistics Comments

Issue Date between 01/01/1995 for policies not terminated in Dec. 2008,
and end of 2008 we have no information: fixed right censored

Time duration min: 0.01; max: 62.09; unknown if policy not terminated
(in quarters) mean: 30.26; std: 18.78

Gender male: 50.05%; female: 49.95% no missing value

Payment frequency infra annual: 61.37%; annual: 23.44%; Infra-annual: monthly, quarterly, semi-annual.
other (supra annual): 15.19%

Risk state non smoker: 63.01%; smoker: 36.99% no missing value

Underwriting age young: 47.46% between 0 and 34 years old
middle: 34.04% between 35 and 54 years old
old: 18.50% between 55 and 84 years old

Living place east coast: 20.62%; west coast: 4.60%: no missing value
other: 74.78%

Annual premium min: -1.07; median: -0.30; max: 12.13 this variable has been standardized.
mean: $560.88 ; std: $526.5870 (in original dollar scale)

DowJones Index variation min: -4.53; median: -0.38; max: 2.43 this variable has been standardized.
mean: 0.001781 ; std: 0.049413 (in original scale)

Accidental death rider yes: 16.42%; no: 83.58%

Termination cause 0: 49.06% in force
1: 38.22% surrender
2: 12.72% cancellation (other causes: death, term,. . . )

Death indicator 0: 95.62% alive
1: 4.38% dead

Table 3: List of main variables in our database.

To visualize the data, we use traditional boxplots where the width of the boxplot is proportional
to the exposure of each variable category in the whole dataset. In Figure 1, we represent the boxplot
of the duration with respect to the termination cause (i.e. no termination, surrender, cancellation).
We logically observe that the duration of the policy is much longer for in-force policies than those
that have been terminated. In average the contract lifetime is close to 14 quarters for surrendered
contracts, whereas half of the contracts experience at least 45 quarters of duration. These statements
are in line with the aforementioned product features.

Similar boxplots can be obtained from other categorical covariates, but are not illustrated here since
the differences in terms of duration for each category are not as convincing as for the termination cause.
Instead, we present in Table 4 the results of the Kruskal-Wallis test (χ2 statistic) for independence
between the lifetime and the categorical variable under study. All variables except the living place of
the policyholder are statistically not independent to the surrender decision. It thus makes sense to
analyze them in the coming modeling section, yet the living place should not appear to be relevant.

Surrender Termination Acc Rider Gender Under. Age Living place Risk state Prem. Freq.

p-value (%) < 10−4 < 10−4 < 10−4 0.0126 0.0001 38.32 0.0157 < 10−4

KW statistic 7626.30 11211.89 27.62 14.70 27.59 1.92 14.29 111.05
deg. of freedom 1 2 1 1 2 2 1 2

Table 4: Results of the Kruskal-Wallis rank sum test.
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Figure 1: Boxplots of duration (in quarters) depending on the termination cause.

In Figure 2, we plot the quarterly lapse and surrender rates all along the observation period (from
1995 to 2008). Notice that the two trajectories are similar and have a strong correlation, which shows
that other events than surrenders (e.g. deaths) have a stationnary impact on the lapse rate. The
barplots in the background represent the number of in-force policies: the biggest exposure in the
portfolio happens in 2006.

Figure 2: Exposure and exit rates over time, on the whole sample. The exposure (left y-axis) refers
to the number of in-force policies for each quarter, and the right y-axis represents quarterly rates.

In Figure 3, we analyze the effect of two risk factors on the surrender decision: the payment
frequency and the underwriting age. We have chosen these two variables because they have the
highest statistic value in Table 4. For each category, we also report the surrender rates (in percentage)
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Figure 3: Surrender rates depending on premium frequency and policyholder’s age.

and the mean of the contract lifetime (in quarters). Graphically, the effect is clear: both the payment
frequency and the age have a significant impact. For instance, people that pay premiums more than
once a year are more likely to surrender, and middle-aged policyholders exhibits the highest surrender
rates. This last statement is not surprising since people from 35 to 54 years old usually have more
frequent liquidity needs for personal projects. However, despite that they tend to surrender more than
the others, they also have higher mean contract lifetime.

3 Survival analysis: cause-specific or subdistribution approach?

Recall that our goal is to predict individual contract lifetimes. In order to achieve this, there exist
two standard approaches in survival analysis: the cause-specific one, and the subdistribution one. The
goal of this section is twofold: to present the probabilistic details of both models, and to make a choice
between both, based on the specificity of our data.

Let us denote by T the random variable of the contract lifetime. In a survival analysis, the
distribution of T is generally specified by its hazard function, or its survival function. Indeed, the
survival function defined as ST (t) = P (T > t) characterizes the distribution, as well as the hazard
rate defined as λT (t) = −S′T (t)/ST (t). Typically, for an exponential distribution of rate λ, λT (t) = λ;
and for a Weibull distribution of scale λ and shape k, λT (t) = (k/λ) (t/λ)k−1. The survival function
can be derived from the hazard function by ST (t) = exp(−

∫ t
0 λT (s)ds) since λT (t) = −d lnST (t)/dt.

In practice lifetimes are may be censored, that is we observe the random variable Y = min(T,C)
where T is the variable of interest and C is the censoring variable. C may be random or deterministic
depending on the type of studies: hereafter, C is considered to be a random variable. Assuming
that C is independent from T , it is easy to show that λT (t) = λY (t) + λC(t). So a straightforward
conclusion is that random censoring without the information whether T is censored or not leads to
false estimation of λT (t) when estimating λY (t). However, when we know if T is censored or not, the
couple (T, 11T≤C) has the targeted hazard rate

λT (t) = lim
dt→0

P (t ≤ T < t+ dt | T ≥ t)
dt

.

Hence, there is no particular bias when dealing with censoring as long as we know which data are
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censored.

Let us now consider the counting process framework. A counting process (Nt)t is a càdlàg stochastic
process adapted to a filtration with N0 = 0, Nt < +∞ a.s. and jumps of size 1. The well-known Doob-
Meyer decomposition, see Fleming & Harrington (2013), states that Nt = Λt + Mt where (Λt)t is
called the compensator, a non decreasing predictable process and (Mt)t is a local martingale w.r.t.
the filtration such that E(Nt) = Λt. In the absolute continuous case, the compensator has the following
form Λt =

∫ t
0 λ(s)ds where λ(t) is a predictable process known as the intensity. The very special case

of a constant intensity λ(t) = λ leads to the Poisson process with exponential rate jumps.

A process of particular interest linked to the couple (T, 11T≤C) is Nt = 11T≤t,T≤C , that jumps if
the time of interest T is below t and non censored. The at-risk process defined as Rt = (11T≥t)t
indicates if neither the event nor the censoring occurs before t. (Nt, Rt) is the stochastic process
counterpart of static random variables (T, 11T≤C). Studying n i.i.d. replicates (Ti, 11Ti≤Ci)i=1,...,n leads
to the empirical version of the counting processes by summing over all individuals:

Nt =
n∑
i=1

11Ti≤t, Ti≤Ci , Rt =

n∑
i=1

11min(Ti,Ci)≥t.

One can show that the compensator of Nt is Λt =
∫ t
0 RsλT (s)ds. The well-known nonparametric

Nelson-Aalen estimator of Λt is defined by Λ̂t =
∫ t
0 (1/Rs) 11Rs>0 dNs. By the central limit theorem,

the asymptotic distribution of Λ̂t can be obtained.

In a multi-cause framework, see e.g. Martinussen & Scheike (2006), we suppose that at the failure
time we know the cause of the failure. That is we define JT the type of failure among {1, . . . , J}. The
process (Jt)t starting with J0 = 0 is a continuous-time random process that jumps at T into a state
in {1, . . . , J}. From a multi-state model point-of-view, the multi-cause model is a special case where
0 is the initial state and {1, . . . , J} are absorbing states, see Figure 4.

Figure 4: Competing risk model and multistate representation, for j = 1, 2, ..., J .

Let us define cause-specific hazard rates for j ∈ {1, . . . , J} as

λT,j(t) = lim
dt→0

P (t ≤ T < t+ dt, JT = j | T ≥ t)
dt

. (1)

By the formula of total probability, we can retrieve the overall hazard rate by summation of Equation
(1): λT,1(t) + · · ·+ λT,J(t) = λT (t), and recover the overall survival distribution of T by

P (T > t) = 1− FT (t) = ST (t) = exp

(
−
∫ t

0
(λT,1(s) + · · ·+ λT,J(s)) ds

)
.
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In practice we are interested not in ST but in the following probability FT,j(t) = P (T ≤ t, JT = j),
the so-called cumulative incidence function (CIF) for the cause j. Due to the event JT = j, this is
not a proper cumulative distribution function since FT,j(t)→ P (JT = j) as t→ +∞.

For a continuous distribution of T , we characterize it as the integral of a (improper) density
FT,j(t) =

∫ t
0 fT,j(s)ds. By conditioning on T ≥ t, the improper density is obtained as the following

limit:

fT,j(s) = lim
dt→0

P (t ≤ T < t+ dt, JT = j)

dt
= λT,j(t)ST (t).

In other words, fT,j(t) is the product of the cause-specific hazard rate and the probability to survive
up to time t. Therefore, the CIF is

FT,j(t) =

∫ t

0
λT,j(s) exp

(
−
∫ s

0
λT (u)du

)
ds. (2)

Hence, in this framework, the CIF of cause j depends on all other causes via the global survival
function, which makes the interpretation of the effects of covariates quite tricky since some effects
come from the overall hazard rate λT (t). The CIF has the good property to be interpretable and

summable P (T ≤ t) = FT,1(s) + · · ·+ FT,J(s), unlike to the function 1− exp
(
−
∫ t
0 λT,j(u)du

)
.

This approach, called the cause-specific approach, thus requires to estimate the hazard rates (1) of all
causes so as to estimate the CIF (2) of cause j.

The concurrent methodology to estimate the CIF of a single cause is possible by considering a new
competing risk process. Let us assume that cause 1 is our cause of interest. We define τ as

τ = T × 11JT=1 +∞× 11JT 6=1.

The distribution of τ is the same as T for JT = 1, P (τ ≤ t) = FT,1(t) and a mass point at infinity
1 − FT,1(∞), probability to observe other causes (JT 6= 1) or not to observe any failure. The hazard
rate of τ can be written as

λτ (t) = lim
dt→0

P (t ≤ T < t+ dt, JT = 1 | {T ≥ t} ∪ {T ≤ t, JT 6= 1})
dt

. (3)

Hence the CIF for cause 1 is computed as

FT,1(t) = 1− exp

(
−
∫ t

0
λτ (s)ds

)
. (4)

Therefore the estimation of the CIF (4) does not depend on the estimation of other causes’ hazard
rates. This second approach is called the subdistribution approach, and often leads to different effects
of covariates on the cause-specific hazard function on one side and on the corresponding CIF on the
other side (Gray (1988), Pepe (1991)). Without censoring, the process Nτ (t) = 11τ≤t = 11T≤t, JT=1 has
the compensator

Λτ (t) =

∫ t

0
λτ (s)(11T≥s + 11T≤s, JT 6=1) ds.

Taking into account censoring, the nonparametric Nelson-Aalen estimator of Λτ can be adapted to the
competing risk framework by updating the at-risk process Rt and the counting process Nt accordingly.
That is, the numerator is the count of non-censored times Ti ≤ Ci of interest JTi = 1 while the
denominator is the count of non-exited individuals and exited individuals of other causes (JTi 6= 1):

Λ̂τ (t) = 11maxi Ti>t

n∑
i=1

11Ti≤t≤Ci,JTi=1

RTi
, Rt =

n∑
i=1

(1− 11Ti≤t≤Ci,JTi=1),
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with Yi = min(Ti, Ci).

To illustrate the differences between these two approaches, we consider a randomly selected subset
of our database, and extract the three main causes of termination: surrender, death, and other causes
grouped in a single category (i.e. JT ∈ {1, 2, 3}). Our cause of interest is the surrender cause, denoted
by JT = 1. Other causes are tagged as competing risks. On this subset, we fit a simple regression
model via the cause-specific approach by considering one single explanatory variable: the risk state.
In addition, we fit the same regression model (with the risk state as covariate, related to the smoker
status) via the subdistribution approach. By construction, the cause-specific approach will provide
an estimation of three CIFs P (T ≤ t, JT = 1), P (T ≤ t, JT = 2), P (T ≤ t, JT = 3) unlike the
subdistribution approach which only provides P (T ≤ t, JT = 1).

Estimations are plotted in Figure 5. The solid line corresponds to the CIF of non-smoker policy-
holders, while the dashed line represents the CIF of smokers. Colored curves stand for the regression
model, whereas the black curves correspond to the non-parametric estimation. On the middle and the
right-hand graphs, we observe that the CIF estimated by the cause-specific approach are particularly
badly estimated: there is a significant difference with the non-parametric estimation. On the left-hand
graph we observe that the estimated CIF are graphically close, irrespectively of the approach. In order
to differentiate these approaches numerically, we compute error statistics2 in Table 5. In overall, the
CIF for non-smoker are better estimated than the CIF for smoker (errors three times lower). On the
two competing risks (causes 2 and 3), the errors are particularly high: from 8 to 90 times higher than
the error for cause 1. Regarding the cause of interest, the estimation via the subdistribution approach
is slightly better than with the cause-specific approach. This is probably due to uncertain estimations
of hazard rates for other causes used when computing the CIF. The difference would probably be much
higher if there were very few events for one of the different causes of lapse: compensation would be
experienced, which should lead to poor estimation of individual hazard rates. In conclusion to these
results, we opt for the subdistribution approach in the coming modelling section.

Figure 5: Estimation of the cumulative incidence functions (NS: non-smoker, S: smoker).

4 Model selection

To build the model, the dataset is splitted into two subsamples. Two third of the data, the learning
sample, are used to fit the competing risk model. The last third, representing the test sample, will

2See Appendix A for a definition.
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Sum of absolute relative error Sum of squared relative error

Risk state non-smoker smoker non-smoker smoker

Cause-spec. P (T ≤ t, JT = 1) 11.53 45.66 0.69 76.08
Cause-spec P (T ≤ t, JT = 2) 83.40 184.73 44.59 156.91
Cause-spec P (T ≤ t, JT = 3) 37.68 135.98 11.46 448.04
Subdist. P (T ≤ t, JT = 1) 9.71 39.80 0.62 68.86

Table 5: Goodness of fit statistics: summary of errors related to the CIF estimation.

enable us to assess the performance and the robustness of the selected model in Section 5.

First, let us introduce formally the F&G proportional hazards model, see Fine & Gray (1999).
As previously explained, the principle of the subdistribution approach lies in considering a new and
artificial at-risk population (this idea already existed in the context of cure models). Integrating
covariates to take into account the individual characteristics of the population (through the vector
X), the subdistribution hazard of this model for surrenders (cause 1 from (4)) is defined by

λτ,1(t; X) := lim
dt→0

1

dt
P (t ≤ T < t+ dt ∩ JT = 1 | {T ≥ t} ∪ {T ≤ t ∩ JT 6= 1},X)

= λ10(t) exp(X(t)′β), (5)

where λ10(t) is a completely unspecified nonnegative function (risk of the reference profile, more
details further), X(t)′ = (X1(t), ..., Xk(t)) is the vector of the k (time-varying or not) covariates, and
β′ = (β1, ..., βk) is the vector of regression coefficients to be estimated3.

This specification looks like the well known Cox model. However, recall that the at-risk population
is different to take into account the competing risk framework, which has an impact on the estimation
of λ10(t) and β. The expression of the hazard λτ,1(t; X) yields to the following formula for the CIF of
surrenders:

FT,1(t; X) = P (T ≤ t, JT = 1 |X) = 1− exp

(
−
∫ t

0
λ10(s) exp(XT (s)β) ds

)
. (6)

In order to select an optimal model and make some comparisons at the end, we start by estimating a
fully nonparametric model (whose regression coefficients are all time-varying). Then, step by step, we
introduce parametric terms through the consideration of constant effect on the response for some co-
variates. The selection of introduced parametric terms is made based on statistical tests that measure
the significance of the effects and their type (time-varying versus constant coefficients β). Typically,
the supremum test and the Kolmogorov-Smirnov test are used. In the fully nonparametric model,
all the regression coefficients are time-varying. On the opposite, the case of only constant regression
coefficients is the semiparametric model by Fine & Gray (1999), see Equation (5). This procedure
allows us to check that considering only constant effects is not too restrictive from a modelling view-
point. All the estimations are performed in R (R Core Team (2017)) thanks to the packages timereg
(Martinussen & Scheike (2006), Scheike & Zhang (2011)) and cmprsk (Gray (2014)).

To start with, all available covariates of the database were initially inputed in the modelling. That
is to say accidental death rider, gender, premium frequency, risk state, underwriting age, living place,
annual premium, and Dow Jones index (more precisely the relative variation of this index in the last
observed quarter). The results show that one category of the living place, people living on the West

3’ denotes the transpose.
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Coast, has a non significant effect on the lifetime before surrender (see Table 12 in Appendix B).
We thus aggregate this category with another one (East Coast), and estimate once again the model.
Considering living place as a risk factor is still not relevant (see Table 13, still in Appendix B). The
estimation of the model without this variable leads to satisfying results in terms of global significance
(Table 14), despite concerns about some effects that should not be considered as time-varying. Indeed,
it is clear from Table 15 in Appendix B that some covariates seem to have a constant effect (constant
associated regression coefficients) on the lifetime before surrender.

Looking at the outputs of previous statistical tests, we now estimate an “intermediate” model
in which some of the covariates have a constant effect on the response. These covariates are the
underwriting age and the gender. After having fitted this new model, results show that other covariates
should also be considered as having constant effects: this is the case of the category annual of the
premium frequency, as well as the category smoker for the risk state. Finally, this process ends up with
a model having constant effects (gender, risk state, category annual of premium frequency, category
middle of underwriting age) and time-varying effects (category other of premium frequency, category
old of underwriting age, accidental death rider, annual premium and Dow Jones). Tables 16 and 17
in Appendix B provide the numerical outputs of this model. The fact that half of the covariates seem
to have a constant effect comforts us in the opportunity to apply the F&G model further, where F&G
model is less flexible but more parsimonious (and is thus likely to provide more robust predictions).

Regarding time-varying effects of this intermediate model, we plot in Figure 6 the intercept and
the regression coefficients of the five corresponding variables (namely death rider, premium frequency,
underwriting age, annual premium and Dow Jones variation). Notice that the effect of the variation
of the Dow Jones Index tends to explode for highest durations. This was also the case with the
fully nonparametric approach. The confidence we can have in this estimation is low: the highest the
duration, the widest the confidence interval. This is due to the fact that there are very few events
observed for such durations. In practice, this means that the propensity to surrender due to the
variation of the Dow Jones Index is likely to be largely overestimated for highest durations.

Let us now focus on the estimation of the F&G proportional hazards model of Equation (5).
Beginning with all available covariates, we fit the model by a backward stepwise approach. As in the
fully nonparametric modelling, the living place is not significant (associated p-values for each category
exceed 20%). This is in line with our conclusions following descriptive statistics in Section 2. The next
step thus consists in performing the estimation without this covariate, still embedding only parametric
terms. This procedure comes up with a model that is globally statistically significant, and where every
covariate also has a statistically significant effect. In other words, this is one of the best model in this
model class. The results of the F&G model are stored in Table 6.

Covariate Coefficient Standard Error Gray’s test statistic p-value

Accidental Death Rider - Yes -0.191 0.0371 -5.16 2.5×10−7

Gender - Female -0.0784 0.0256 -3.06 2.2×10−3

Premium Frequency - Annual -0.222 0.0316 -7.03 2.13×10−12

Premium Frequency - Other -0.395 0.0398 -9.94 0

Risk State - Smoker -0.136 0.0269 -5.04 4.7×10−7

Underwriting Age - Middle 0.121 0.0293 4.12 3.83×10−5

Underwriting Age - Old -0.2 0.0389 -5.14 2.73×10−7

Annual Premium 0.142 0.0116 12.30 0
Dow Jones variation 0.889 0.0186 47.90 0

Table 6: Estimated constant regression coefficients in the F&G model.
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Figure 6: Estimation of time-varying regression coefficients in the intermediate model.

All the regression coefficients in Table 6 are estimated in comparison to a reference profile, i.e. a
policyholder with the following characteristics in our case: a young non-smoker male with an infra-
annual premium frequency, without the rider of accidental death, and whose annual premium equals
$560.8 and last relative DJIA variation equals 0.178 % (cf Table 3).

Table 6 gives some interesting insights in terms of interpretation. Firstly, people with an accidental
death rider tend to have a lower propensity to surrender whatever the current lifetime of their contract,
and this is also the case for those having a low premium frequency. The lower the frequency, the lower
the intensity of surrender. Practitionners’ intuition is in line with the aforementioned statements.
Secondly, women, as well as smokers, seem to have a lower propensity to surrender. This is less
intuitive, and there is no well-known consensus on the sense of impact for these risk factors. Anyway,
looking at the absolute values of regression coefficients, these effects seem to be less pronounced
than the others. Thirdly, speaking about the underwriting age, people from 35 to 54 years old are
more likely to surrender than others: this makes sense since this age range corresponds to a period
in which people often invest in personal projects (this remark was already made in the descriptive
analysis). Fourthly, the coefficient related to annual premium indicates that the behaviour of richer
policyholders differs from the others: they are more likely to surrender their contract. In an extreme
case we know that the richest people have personal advisors, which obviously plays a big role on their
behaviour. Finally, the Dow Jones has the most prominent impact: although averaged as compared to
its maximum value in the intermediate model (' 4, see Figure 6), a rise in Dow Jones variation has a
deep impact on the surrender intensity, making it increase significantly. Once again, it seems natural
given the type of contract under study. Indeed these contracts are not index-linked, which means that
their owners do not directly benefit from such an increase. This could cause further frustration and
trigger some surrenders.
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5 Assessment of the predictive power

Statistically speaking, we have validated the usual tests to ensure the significance of the selected
models. We now have to validate their predictive power on a new independent test set. Adopting
a backtesting approach, we compare the predictions given by the three selected models (only time-
varying regression coefficients, mix of time-varying and constant coefficients, and the F&G model with
only constant effects) to real-life observations.

To begin with, one has to check whether the main characteristics of the independent test set are
similar to those of the learning set. There are 9772 policyholders in this validation sample, which
represents one third of the full dataset. The proportions of each category for all other covariates are
similar in both subsamples, which ensure that the subsamples were randomly built. The censoring
rate equals 49.77%, whereas there was 49.06% of lapsed contracts in the learning sample. Therefore,
more than half of the contracts in the test sample have already experienced one of the events that
triggers a lapse: death, maturity, default on premium payments, surrender, and so on. Among those
4908 lapses, 3628 were surrenders and 444 were deaths. Here, the subdistribution approach should
reveal useful since only 4.54% of events correspond to death: a survival model for this cause would
thus be quite tricky to fit, affecting the estimation of intensities related to other causes, and causing
compensations to get a good final fit on the overall hazard rate.

5.1 Overall quality of the predictions

Firstly, recall that the model was fitted on a quarterly basis for the estimation of lifetimes. For each
quarter and each individual i, one computes the probability that the policyholder makes the decision
to terminate her contract in this period. To do so, Equation (6) is useful: indeed, we want to estimate
the conditional probability

P (d1 < Ti ≤ d2, JTi = 1 |Xi, Ti > d1), (7)

where d1 and d2 are durations that respectively correspond to the beginning and end of the period, for
the ith policy under study. For instance, consider a policy issued on the 1st of May, 2005, and say that
each year is divided into four periods with the following quarters: from 01-01-XXXX to 03-31-XXXX,
from 04-01-XXXX to 06-30-XXXX, from 07-01-XXXX to 09-30-XXXX, and from 10-01-XXXX to
12-31-XXXX. To compute the individual propensity to surrender in the third quarter of 2005, d1 and
d2 would respectively equal (2/3) and (1 + 2/3). Concretely, Equation (7) yields to

P (d1 < Ti ≤ d2, JTi = 1 |Xi, Ti > d1) =
P (d1 < Ti ≤ d2, JTi = 1, Ti > d1 |Xi)

P (Ti > d1, JTi = 1 |Xi)

=
FT,1(d2; Xi)− FT,1(d1; Xi)

1− FT,1(d1; Xi)
. (8)

The estimation of all the quantities in Equation (8) results from the fitted model, see Equation (5)
where estimators given in Table 6 replace the parameters. Indeed, the CIF for surrenders is linked
to the surrender hazard rate thanks to Equation (4). The prediction of the surrender rate, denoted
further by r̂t, is then deduced by summation of estimated probabilities within each period (and divided
by the exposure on the same period):

r̂t =
1

nt

∑
i∈Rt

P̂ (t < Ti ≤ t+ 1, JTi = 1 |Xi, Ti > t), (9)
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where Rt denotes the population at-risk at the beginning of quarter t, and nt its size.

Figure 7 illustrates this agregation. The solid line is the observed surrender rate. Notice that the
predictions given by the three built models are similar until the beginning of 2005. This is roughly
because the estimators of regression coefficients in all three models are comparable for durations below
40 quarters (or equivalently ten years). However, as soon as the duration of the contract exceeds this
threshold, there is a huge difference when taking into account the effects due to the variations of the
Dow Jones Index (see the last graph in Figure 6, and the discussion about the intermediate model in
Section 4). In particular, an increase of the DJ index may have a (very) big impact on the propensity
to surrender for “oldest” contracts, both in the intermediate and nonparametric models. That explains
the sudden increase of the surrender rate before the financial crises (a period in which there was an
important rise of the DJ index), and then its decrease in 2008. The effect is not negligible since more
than one third of the contracts, exactly 3519, have a duration higher than 40 quarters in the test
sample. On the contrary, the F&G model (green dot-dashed line) moderates this impact since the
associated coefficient remains constant for every duration and consequently for the whole period. In
reality, it seems that the F&G model works much better in terms of predictions: indeed the temporary
surrenders before the financial crisis were largely overestimated in the nonparametric and intermediate
models, whereas the predicted surrender rate by F&G still has the same pattern as the observed one
at the end of the observed period.
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Figure 7: Comparison between the observed and predicted surrender rates obtained by different models
on the test sample, from 01-01-2005 to 12-31-2008.

Another way to compare those predictions is to introduce a numerical indicator representing the
difference between the models: the Area Under the Trajectory (AUT). This area could easily be
linked to another indicator concerning the liquidity risk faced by the insurer, knowing that the latter
is forced to give back immediately to the policyholder her surrender value. Table 7 summarizes
these information, and provides some measures of errors within each model. Relative errors are first
computed w.r.t. the whole observed trajectory, and then w.r.t. the experienced surrender rates4. As
expected, the F&G model is better than others, but it tends to slightly underestimate the global risk.

4see Appendix A for details.
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Empirical Nonparametric Intermediate F&G
surrender rate model model model

Area under the trajectory (AUT) 0.94 1.47 1.42 0.92
Absolute relative error of AUT 0% 60.3% 55.5% 2.1%

Mean abs. rel. error of rates 0.844 0.787 0.155
Mean sq. rel. error of rates 2.122 1.748 0.036

Table 7: Areas and errors of the observed and estimated curves for the surrender rate (see Figure 7).

To sum up, the overall quality of the F&G model is rather satisfying when considering the timing of
individual surrender decisions. In an Asset and Liabilities Management perspective, this is an impor-
tant result since it gives precise information about the future cash-flows of the insurer. Nonetheless,
this method of agregation is not comprehensive enough to check for the quality of the predictions
individually. Concretely one would like to identify the cases where the model fails, i.e. detect the risk
profiles for which the predicted probabilities to surrender for a given contract duration are significantly
different from the observed ones. This is the aim of the coming section.

5.2 Prediction by policyholder’s profile

One focuses here on predicting the surrender rates by risk profile, still in the test set. The estimated
surrender rate for a given profile is once again computed by Equation (9), but the at-risk population
Rt becomes the set of policyholders present at the beginning of quarter t and having a given set of
characteristics.

A first attempt when selecting profiles is to make the exhaustive combination of all explanatory
variables. This results in a list of 72 profiles: however, many profiles represent a tiny proportion in
the test set (from 0.08187 % to 7.726 %). In a second attempt to select some relevant risk profiles,
we have chosen to group together some of these profiles. We thus consider fewer covariates on which
to differentiate profiles, or fewer categories for categorical covariates. Looking at results stored in
Table 6, we select profiles according to three highly significant risk factors : premium frequency, risk
state and underwriting age. We obtain 18 risk profiles, among which the 12 ones listed in Table 8. Note
that the proportion of each selected profile in the validation population is given in the last column.
Among these profiles, we select the three most common profiles (#1, 3, 5) and the three least common
profiles (#8, 10, 12), see bolded numbers in Table 8. Let us note that the three most common profiles
represent 51.2% of the test set while the three least common ones only stand for 7.6 % of the size.
From a marketing perspective, the three most common profiles would be chosen as the first targets
of customer relation management (advertisement campaign), while the three least common profiles
would be the last targets.

For the six selected profiles, we plot the estimated and observed surrender rates in Figures 8 and 9.
In the first series in Figure 8, we observe that the estimated surrender rates are relatively stable before
Quarter 40. After that, the predictions by nonparametric and semi-parametric (intermediate) are
particularly volatile, unlike the F&G model which provides stable outputs (this was already depicted
in Figure 7).

Figures 8a and 8b differ from the risk state, respectively non-smoker and smoker. The observed
rates are naturally more volatile in 8b since the associated population is smaller, but the predicted
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Pf. # Gender Prem. Freq. Risk state UW age Premium DJIA Death rider Percent.

1 Male, Female Infra, Other NonSmoker Young $560.88 0.178 % Yes, No 22.24 %
2 Male, Female Annual NonSmoker Young $560.88 0.178 % Yes, No 6.74 %
3 Male, Female Infra, Other Smoker Young $560.88 0.178 % Yes, No 12.55 %
4 Male, Female Annual Smoker Young $560.88 0.178 % Yes, No 4.32 %
5 Male, Female Infra, Other NonSmoker Middle $560.88 0.178 % Yes, No 16.4 %
6 Male, Female Annual NonSmoker Middle $560.88 0.178 % Yes, No 5.18 %
7 Male, Female Infra, Other Smoker Middle $560.88 0.178 % Yes, No 10.05 %
8 Male, Female Annual Smoker Middle $560.88 0.178 % Yes, No 2.88 %
9 Male, Female Infra NonSmoker Old $560.88 0.178 % Yes, No 7.69 %

10 Male, Female Annual NonSmoker Old $560.88 0.178 % Yes, No 3.07 %
11 Male, Female Infra Smoker Old $560.88 0.178 % Yes, No 4.33 %
12 Male, Female Annual Smoker Old $560.88 0.178 % Yes, No 1.63 %

Table 8: Table of selected profiles for the analysis. Common and differing risk factors are reported,
with associated proportions in the test population.
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Figure 8: Common features: non annual premium frequency, male or female, with or without rider.

rates are almost the same. Figures 8a and 8c differ from the underwriting age, respectively young and
middle. Predicted and observed rates are slightly decreasing before Quarter 20.
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Figure 9: Common profile features: annual premium frequency, male or female, with or without rider.
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For the three Figures 9a, 9b, 9c, the observed rates (solid lines) are very erratic with a slight
decreasing trend for 9a, 9b. The predictions by the nonparametric and semiparametric (intermediate)
models (respectively dashed and dotted lines) are more stable than in Figure 8, even after Quarter 40.
In fact, the regression coefficients associated to these risk profiles in both models compensates more
than with other profiles the effect of the DJIA variation. As always, the F&G model (dot-dashed
line) provides stable estimated surrender rates, due to its constant effect of DJIA variation. Clearly,
it seems in Figure 9c that the F&G model overestimates the surrender rates, but one has to keep in
mind that the profile #12 only represents a small part (1.63%) of the test sample.

Furthermore, let us complete this graphical analysis with the assessment of mean absolute relative
errors and mean squared errors for the six selected profiles (see Appendix A for details). Results are
stored in Table 9. Irrespective of the metrics considered, the F&G model remains the best model for
all the profiles. However, the errors of the nonparametric and intermediate models are less pronounced
for the three least exposed profiles than for others (particularly for profile #10). This is in line with
what was observed in Figures 8 and 9.
Notice also that the best predictions of the F&G model are obtained for two antagonistic profiles #1
and #12, respectively non-annual premium, non smoker, young and annual premium, smoker, old
profiles. So the F&G model does not need a large number of individuals to provide reasonable and
fair predictions, and is relatively robust to changes of risk factors.

Profile Mean absolute relative error Mean squared relative error
Num. Perc. nonparametric intermediate F&G nonparametric intermediate F&G

1 22.24% 1.045 0.973 0.411 3.884 3.099 0.263
3 12.55% 1.762 1.939 0.923 11.858 14.331 1.329
5 16.40% 1.907 1.652 0.836 11.992 8.329 1.388

8 2.88% 1.167 1.352 0.762 5.672 5.967 1.235
10 3.07% 0.656 0.659 0.470 0.893 0.718 0.379
12 1.63% 0.922 0.706 0.426 2.864 1.470 0.243

Table 9: Relative errors for the six selected profiles.

Finally, we select the individuals in the validation sample according to their underwriting year. In
Figure 10, we plot the observed and predicted surrender rates for such cohorts. The same conclusions
apply here: it seems that whatever the underwriting year, the predictions for every models are pretty
right before Quarter 40 but fail in the nonparametric and intermediate cases for longer durations (see
Figures 10a, 10b and 10c). Once again, the coefficient related to the Dow Jones variation must be
responsible for these unrobust results.

6 Experimental surrender tables

In this section, the aim is to propose an experimental table based on historical data. In the same spirit
as experimental mortality tables, this tool could help operational teams to manage the surrender risk
in a day-to-day task and make some easier ALM predictions.

In our context, the table provides the surrender rate by duration of the contract (in month), for
the 14 first years (our experience here). It corresponds to surrender rates for the reference profile of
the portfolio, which means that some adjustments have then to be made depending on the profile
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Figure 10: Surrender rates prediction by underwriting year.

of the policyholder. In other words, it represents the average surrender risk for the current portfolio
composition. Table 10 is easily deduced from the estimators of Table 6 and formulas of the CIF, and
has to be updated on a regular basis (each time the underlying model is updated, once a year in
practice for instance).

Recall that the reference profile is the following: a young non-smoker male with an infra-annual
premium frequency, and without the rider of accidental death. Corresponding CIFs are plotted in
solid lines in Figures 11a, 11b, 11c, for the F&G model. In order to make some assumptions about the
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Figure 11: Comparison of CIF for the Fine & Gray model

expected contract lifetime for other profiles, Table 11 gives the multiplicative coefficients to apply on
the mean risk represented by Table 10. It is straightforward, thanks to Taylor expansions, to compute
these coefficients thanks to the ratio of (1-estimated CIF) for two individuals differing only on one
given risk factor. For a given covariate Xk, this kth coefficient is roughly equal to (exp(β̂k)) : in the
case of a continuous covariate, this is valid for a 1-unit increase of the covariate, otherwise this is the
coefficient to apply when changing the category from the reference one to the one under study.
As this coefficient does not depend on time (here the duration of the contract), it can be applied to
all the rates in Table 10 without any difference. To sum up, surrender rates have to be corrected if
the portfolio composition evolves, or if the (economic and financial) context changes.
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# Months Rate (%)

1-12 0.8500 0.7665 0.4990 0.5199 0.5052 0.5057 0.5155 0.5505 0.5640 0.5904 0.5738 0.4907
13-24 0.4824 0.4858 0.4741 0.4927 0.5071 0.5097 0.4925 0.5104 0.5097 0.5034 0.5070 0.4349
25-36 0.4368 0.4398 0.4429 0.4311 0.3982 0.3928 0.3839 0.3373 0.3514 0.4092 0.4476 0.4342
37-48 0.3966 0.3970 0.3878 0.3470 0.3615 0.3665 0.3752 0.3766 0.3103 0.3063 0.3085 0.3293
49-60 0.3267 0.3390 0.3125 0.3085 0.2993 0.3154 0.3177 0.3187 0.2878 0.2924 0.2946 0.3006
61-72 0.2912 0.3024 0.3163 0.3200 0.3223 0.3168 0.3323 0.3347 0.3212 0.2930 0.3045 0.3162
73-84 0.4045 0.3940 0.4078 0.3591 0.3536 0.3439 0.3409 0.3338 0.3336 0.3263 0.3413 0.3411
85-96 0.3479 0.3970 0.3844 0.4001 0.4273 0.4621 0.4470 0.4317 0.3857 0.3872 0.3770 0.4048
97-108 0.4153 0.4155 0.4024 0.4041 0.4042 0.4058 0.3728 0.3681 0.3695 0.3708 0.3875 0.3860
109-120 0.4014 0.4014 0.3470 0.3248 0.3368 0.3395 0.3691 0.3800 0.3941 0.3973 0.3780 0.3232
121-132 0.3355 0.3367 0.3394 0.3650 0.3566 0.3693 0.3707 0.3555 0.3236 0.3363 0.3374 0.3403
133-144 0.3229 0.3257 0.3267 0.3295 0.3170 0.3231 0.3190 0.3200 0.3107 0.3220 0.3092 0.3014
145-156 0.3041 0.2945 0.3042 0.3069 0.2229 0.2092 0.2167 0.2172 0.2177 0.2110 0.2312 0.2425
157-168 0.2449 0.2364 0.2442 0.2467 0.2327 0.2078 0.2173 0.2160 0.2164 0.2169 0.2118 0.2104

Table 10: Surrender rates for each month of lifetime for the reference profile in the portfolio.

Covariate Coefficient to be applied Type of effect How much?

Accidental Death Rider - Yes 0.8261 decrease risk ' 17%
Gender - Female 0.9245 decrease risk ' 8%

Premium Frequency - Annual 0.8009 decrease risk ' 20%
Premium Frequency - Other 0.6736 decrease risk ' 33%

Risk State - Smoker 0.8728 decrease risk ' 13%
Underwriting Age - Middle 1.1286 increase risk ' 13%

Underwriting Age - Old 0.8187 decrease risk ' 18%
Annual Premium (+1 unit) 1.1525 increase risk ' 15%

Dow Jones variation (+1 unit) 2.4326 increase risk ' 143%

Table 11: Coefficients to use to adjust the risk from the reference profile.

7 Conclusion

In this paper, one raises the question about the timing of surrenders. This is key in a risk management
perspective since initial costs for the insurer cannot be recovered in case of early lapses. Competing
risk models, and more precisely Fine & Gray’s subdistribution approach, reveals to be quite efficient
and appropriate. Results show that the trajectory of the surrender rate is well predicted in the test
sample, and the regression framework allows to identify some crucial impacts coming from certain risk
factors.

All along this work, an important assumption is made on the different causes of lapses: we consider
that those causes are independent and mutually exclusive. For future research, an extension could thus
be to incorporate some correlation between two (or more) causes. Practically speaking, it makes sense
to introduce this effect: for instance, an old person who needs money to pay for medical expenses
related to a deterioration of her health would be more likely to surrender her contract. This way,
surrender and death are two correlated causes of lapse.
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A Error definition

Consider a set of predicted values x̂1, . . . , x̂n for a set of observations x1, . . . , xn. Let p = 1 or 2. We
define the ith squared/absolute relative error as

epi =

{
|x̂i−xi|p

xi
if xi 6= 0,

0 if xi = 0

Therefore, the mean and the sum of relative errors are respectively given by

n∑
i=1

epi

n∑
i=1

1xi 6=0

,

n∑
i=1

epi .

The area under the trajectory for points x1, . . . , xn is obtained

AUT (x1, . . . , xn) = h
n∑
i=1

xi,

for a step h of the computing grid.

B Additional regression outputs of Section 4

Here is the test for non-significant effects in the competing risk framework, based on the supremum-test
(only nonparametric terms in this modelling):

Covariate Supremum test p-value: H0 : β(t) = 0

(Intercept) 6.34 0
acc.death.riderRider 6.97 0

genderFemale 3.31 0.04
premium.frequencyAnnual 7.62 0
premium.frequencyOther 10.60 0

risk.stateSmoker 5.64 0
underwriting.ageMiddle 5.32 0

underwriting.ageOld 7.09 0
living.placeEastCoast 2.51 0.02
living.placeWestCoast 2.01 0.44

annual.premium 12.20 0
DJIA 16.40 0

Table 12: Significance tests in the fully nonparametric model.

Now, let us present the results of significance when removing the category WestCoast of the
covariate living place, still in the fully nonparametric model:

Finally, here are the results of significance in the optimized fully nonparametric model:
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Covariate Supremum test p-value: H0 : β(t) = 0

(Intercept) 6.34 0
acc.death.riderRider 6.97 0

genderFemale 3.30 0
premium.frequencyAnnual 7.60 0
premium.frequencyOther 10.5 0

risk.stateSmoker 5.62 0
underwriting.ageMiddle 5.34 0

underwriting.ageOld 7.08 0
living.placeCoasts 2.05 0.26
annual.premium 12.20 0

DJIA 16.40 0

Table 13: Significance tests in the second step of the fully nonparametric model.

Covariate Supremum test p-value: H0 : β(t) = 0

(Intercept) 6.28 0
acc.death.riderRider 6.97 0

genderFemale 3.29 0
premium.frequencyAnnual 7.61 0
premium.frequencyOther 10.5 0

risk.stateSmoker 5.68 0
underwriting.ageMiddle 5.32 0

underwriting.ageOld 7.1 0
annual.premium 12.20 0

DJIA 16.40 0

Table 14: Significance tests in the optimized fully nonparametric model.

Within this modelling, we can test for time invariant effects:

Covariate Kolmogorov-Smirnov p-value KS test Cramer Von p-value CVM test
& category (KS) test H0: constant effect Mises (CVM) test H0: constant effect

(Intercept) 2.79 0 49.3 0
acc.death.riderRider 0.288 0 0.962 0

genderFemale 0.0958 0.26 0.058 0.26
premium.frequencyAnnual 0.122 0.06 0.209 0.02
premium.frequencyOther 0.55 0 2.44 0

risk.stateSmoker 0.123 0.34 0.22 0.08
underwriting.ageMiddle 0.105 0.56 0.0664 0.42

underwriting.ageOld 0.338 0 1.31 0
annual.premium 0.187 0 0.201 0

DJIA 3.5 0 98.9 0

Table 15: Tests for time invariant effects in the optimized fully nonparametric model.

The following table illustrates the global significance of the optimized intermediate model:

Covariate Supremum test p-value: H0 : β(t) = 0

(Intercept) 25.40 0
acc.death.riderRider 6.44 0

premium.frequencyOther 10.30 0
underwriting.ageOld 6.85 0

annual.premium 13.30 0
DJIA 44.30 0

Table 16: Significance tests in the optimized intermediate model.
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And the results of the optimized intermediate model:

Covariate & category: Indicators depending on the type of effect:

Nonparametric terms: KS test p-value KS test CVM test p-value CVM test
(Intercept) 2.5 0 36.1 0
acc.death.riderRider 0.266 0.02 0.867 0
premium.frequencyOther 0.527 0 2.1 0
underwriting.ageOld 0.368 0 1.55 0
annual.premium 0.177 0 0.197 0
DJIA 3.480 0 99.4 0

Parametric terms: Coefficient Standard error Statistic value p-value

genderFemale -0.0819 0.0267 -3.07 2.14×10−3

premium.frequencyAnnual -0.211 0.0329 -6.41 1.45×10−10

risk.stateSmoker -0.133 0.028 -4.75 2.03×10−6

underwriting.ageMiddle 0.1240 0.0304 4.09 4.27×10−5

Table 17: Optimized intermediate model: regression coefficients for the parametric terms, and tests for
time invariant effects for remaining covariates (corresponding coefficients are functions, see Figure 6).
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