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Activity Recognition for Ergonomics Assessment of
Industrial Tasks with Automatic Feature Selection

Adrien Malaisé!, Pauline Maurice!, Francis Colas! and Serena Ivaldi!

Abstract—In industry, ergonomic assessment is currently per-
formed manually based on the identification of postures and
actions by experts. We aim at proposing a system for automatic
ergonomic assessment based on activity recognition. In this
paper, we define a taxonomy of activities, composed of four
levels, compatible with items evaluated in standard ergonomic
worksheets. The proposed taxonomy is applied to learn activ-
ity recognition models based on Hidden Markov Models. We
also identify dedicated sets of features to be used as input
of the recognition models so as to maximize the recognition
performance for each level of our taxonomy. We compare three
feature selection methods to obtain these subsets. Data from 13
participants performing a series of tasks mimicking industrial
tasks are collected to train and test the recognition module.
Results show that the selected subsets allow us to successfully
infer ergonomically relevant postures and actions.

Index Terms—Recognition; Human Factors; Ergonomics; Fea-
ture Selection.

[. INTRODUCTION

ORK-related musculoskeletal disorders (WMSDs) are

a major health issue, affecting almost 50% of in-
dustrial workers in developed countries, and representing an
important cost for companies and society as a whole [1]. In
order to reduce the prevalence of WMSDs, the ergonomics of
the workplace should be evaluated and improved. Additionally,
workers should be made aware of which movements and
postures to avoid. Vignais et al. [2] indeed showed that real-
time feedback about the ergonomics of a posture could help
decrease the risk of developing WMSDs. Providing real-time
ergonomic feedback to workers is one of the objectives of
the European project AnDy [3]. Within the AnDy project,
online ergonomic assessment will also be used to control a
collaborative robot in a way that guides the worker towards
more ergonomic movements.

Currently, ergonomics is evaluated with standard pen-and-
paper worksheets filled by experts observing the workers
doing their job [4]]. Digital human modeling software provide
automatic filling of these ergonomic worksheets [3]], but only
based on a digital simulation of the activity to evaluate. These
software are intended for workstation design: they do not work
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Fig. 1. Human activity recognition module. Data from both wearable sensors
form the set of all available features, among which the feature selection
module enables to select the best performing ones with either a filter-based
method or a wrapper-based method. Parameters of the HMM models are
learned based on the selected features and using an annotated training dataset
(supervised learning). The feature selection and training processes are both
performed offline. Recognition can be done either offline or online.

in real-time, and identification of actions performed is done
manually by the user. A possible solution to automatize the
filling of ergonomic worksheets is to use activity recognition
algorithms to infer the actions and postures that are considered
in these worksheets. In a previous paper [6l], we proposed
a method based on wearable sensors and Hidden Markov
Models (HMM) to automatically recognize different activities
during an industrial pick-and-place task. The activities were,
however, high-level descriptions of the actions specific to
the task considered and were not relevant for ergonomics
evaluation. Furthermore, the features (i.e., task and movement
descriptors, such as joint angles, center of mass position, etc.)
used as input of the recognition model were manually selected
among all the available data, which requires expert knowledge
of the relevant movement descriptors for the tasks. To obtain
robust and generic activity recognition models, one cannot
rely on a small set of hand-picked features, because there
is no guarantee that these features are the optimal set that
maximizes the performance of the learned recognition models.
On the other hand, using all the possible features is not a viable
solution, since it requires to use a large number of wearable
and environmental sensors, whereas in industrial applications
the number of sensors should be optimized.

Motivated by these problems, in this paper we present two
contributions to address the limitations of our previous work.
First, we propose a generic taxonomy (i.e., a set of activities
to recognize) that is compatible with the postures and actions
evaluated in standard ergonomic assessment worksheets. Two
ways of using the proposed taxonomy with activity recogni-
tion models based on supervised learning of an HMM are
compared in order to identify the one that achieves the best
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recognition performance. Second, we propose to identify the
best performing subsets of features used as input for our recog-
nition algorithm. To be used in industrial environment, the
number of required sensors for our activity recognition module
must be minimized. Therefore, the most informative features
regarding our proposed taxonomy need to be identified to
select the optimal set of sensors. We compare different feature
selection and dimensionality reduction methods in order to
improve the robustness of the resulting list of relevant features.

We apply our proposed method to the recognition of ac-
tivities relevant for ergonomics evaluation of industry tasks,
that we recorded in a lab environment with 13 participants.
The outcome of our study is the list of features to be used
to classify the activities according to our taxonomy. Both the
dataset and our software are also publicly available.

The paper is organized as follows: Section [lI| reviews the
related work. Section presents the proposed taxonomy
and the activity recognition module depicted in Fig. [T} and
describes the creation of the dataset used to train and test
the recognition module. The two ways of using the proposed
taxonomy and the subsets of relevant features extracted from
feature selection are compared and discussed in Section
Conclusions are presented in Section [V]

II. RELATED WORK

This paper proposes to use an activity recognition algorithm
to identify postures and actions considered in standard er-
gonomic assessment methods, in order to provide a basis for an
automatic assessment of ergonomics. This section reviews how
ergonomics is currently assessed in industry, and how such
assessments could be automatized. Work related to recognition
of human activities and feature selection is also presented.

A. Assessment of ergonomics in industry

Standard ergonomic assessment methods used in industry
rely on pen-and-paper worksheets filled by an expert [7], e.g.,
RULA (Rapid Upper Limb Assessment) [8], REBA (Rapid
Entire Body Assessment) [9], OWAS (Owako Working Pos-
ture Analysis System) [10], OCRA (Occupational Repetitive
Actions) [11] or EAWS (Ergonomic Assessment Worksheet)
[12]. These ergonomic worksheets consists of grids or check-
lists that evaluate the main biomechanical factors of MSDs:
posture, external force or manipulated load, and task repeti-
tiveness. Posture is evaluated mainly based on the elevation of
the arms and flexion of the torso.

Currently, no tools are used in industry to provide work-
ers with real-time ergonomic information on their postures
and gestures. Yet, Vignais et al. [2] showed that real-time
ergonomic feedback could help reduce the factors of risk
for WMSDs. Kim et al. [13] recently developed a wearable
device with vibrotactile elements to warn workers about joint
overloading. Their method focuses however only on load han-
dling. Yet, awkward postures increase the risk of developing
WMSDs even in the absence of a load. In order to assess
the postural risk, motion capture systems can be used to track
workers’ whole-body motion in real-time and simultaneously
fill in standard ergonomic assessment worksheets. Busch et al.

[14] used optical marker-based motion capture to fill in the
REBA ergonomic assessment worksheet automatically and on-
line. They however noted that marker-based motion capture
systems are ill-adapted to industrial settings due to occlusion
issues. Fully wearable sensors such as inertial measurement
units (IMUs) can be a solution to the occlusion problem.

B. Automatic recognition of human activities

Aside from the motion tracking technique mentioned in the
previous section, most methods proposed in the literature to
automatically fill in ergonomic assessment worksheets rely on
direct measurement of joints angles and segment positions
[14][15]. Such methods enable to identify postures, but they
cannot identify gestures or actions (i.e., time-series of specific
postures) which are present in some ergonomic assessment
worksheets (e.g., walking in EAWS worksheet). Moreover,
action-related information can be needed to fill in the er-
gonomic worksheet (e.g., is the person carrying a load, does
the task involves vibrations...). Activity recognition models
based on machine learning can be used to address the action
recognition issue. Classification algorithms have been widely
used to recognize human daily activities, such as walking,
sitting or lying [16]. Among all the existing techniques, Hid-
den Markov Models (HMM) have the advantage of efficiently
modeling time-series data such as whole-body human motions
[L7]. In a previous paper, we successfully used HMM models
along with an inertial motion capture system to identify the
phases of a pick-and-place activity [6].

C. Feature selection for activity recognition

Motion capture systems provide a large set of data that
can be used as input of an activity recognition algorithm,
e.g., position, velocity and/or acceleration of all the joints and
body segments. These features are however not all relevant:
depending on the type of activities that are targeted and the
classifier that is used, some features are useless or simply
redundant. Relevant features can be selected without requiring
any a priori knowledge by using feature selection algorithms.
Feature selection algorithms allow to automatically select,
from a high dimensional set of features, the subset that
maximizes the recognition performance of a classifier, hence
reducing the dimensionality of the input data. Two main types
of methods exist for automatic feature selection: wrapper-
based methods and filter-based methods [[18]].

1) Wrapper-based methods: With wrapper-based methods,
the selection of relevant features is based on the recognition
performance of a classifier and is thus classifier-dependent
[19]. The general idea is overcome the combinatorial explosion
by iteratively building a few best-performing candidates of
feature subsets. More precisely, let N be the total number of
features. First, the classifier is independently trained with each
feature (i.e., one model for each feature), and the recognition
performance of each model is evaluated with standard metrics
such as accuracy or Fl-score. The M features that correspond
to the best-performing models are retained for the next itera-
tion, where M is a number chosen by the user. At the next
iteration, a model is trained for each combination of one of
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Fig. 2. Sample of the EAWS worksheet postural grid. Postures are first
classified into main categories, such as standing or kneeling. Each main
posture is then divided into subcategories corresponding to arms and torso
configuration (e.g., bent forward, elbow at shoulder level).

the M retained features with any of the NV — 1 other features.
The M subsets of 2 features offering the best performance are
then retained for the next iteration. The process is repeated
for subsets of 3 features, and so on until the recognition
performance plateaus. This iterative selection process has the
advantage of taking into account relations between features,
without requiring to test each possible subsets within the initial
set of features. In the original method M = 1, i.e., only the
best subset of features is retained at each iteration. However,
Mandery et al. [20] proposed to keep several subsets at each
iteration to reduce the risk of eliminating a subset offering a
high performance when later combined with one or more other
features. They used the wrapper-based method with kinematic
features of human motion, but each of their features was a
high-dimensional vector. For instance, they considered all the
joint angles of the human body as one single feature, hence
not evaluating the relevance of each joint individually.

2) Filter-based methods: The selection of relevant features
with filter-based methods is not classifier-dependent, therefore
no time-consuming training of classifier is required. Each
feature is individually assigned a score in relation with the
observations. Interaction between features are not considered
[21]. A score commonly used to rank the features in the Fisher
score [22]]: it depends on how this feature allows to regroup
observations corresponding to the same activity (low intraclass
variance), and differentiate observations that correspond to
different activities (high interclass variance). Once each feature
is assigned a score, the selection process consists in taking the
highest-ranked features up to a given number.

III. METHOD

This section first presents the taxonomy and the recognition
algorithm used to identify ergonomically critical postures and
actions. The data collection campaign that was conducted to
generate a dataset for training our models is then described.

A. Taxonomy

We base our work on the EAWS ergonomic assessment
worksheet, as it is widely used in the industry. The taxonomy
we propose, i.e., the set of activities that need to be recognized
by our activity recognition algorithm, is therefore inspired
by the items evaluated in EAWS. The ergonomic assessment
of EAWS is largely based on the evaluation of the posture.
Nevertheless, posture is not the only risk factor for WMSDs,

and other factors evaluated in EAWS require contextual in-
formation about the action being performed (e.g., does the
task involve vibrations, does the person carry a load). Our
taxonomy is therefore composed of several levels to identify
both postures and goal-oriented actions (Table [T).

The postural assessment in EAWS identifies 4 main pos-
tures: standing, kneeling/crouching, sitting, lying. Each main
posture is then divided into subcategories corresponding to
arms and torso configuration: upright, bent, strongly bent,
shoulder level work, and overhead work (see Fig. [2| for a
sample of the EAWS postural grid). The labels in the postural
level of our taxonomy (level DEPOS) mainly reproduce the
EAWS postural classification, e.g,. standing bent forward,
walking upright (Table ). EAWS does, however, not distin-
guish between kneeling and crouching. These two postures
may generate the same overall level of WMSDs risk, but is not
necessarily located in the same joints or body-parts. In order to
provide workers with joint-specific ergonomic feedback, our
taxonomy distinguishes between kneeling and crouching.

The postural information contained in the DEPOS level of
the taxonomy can be retrieved either directly, or by combining
the identification of the main posture (standing, kneeling...)
with the identification of the torso and arms configuration
(bent, overhead work...). Separating the identification of the
main posture from the identification of the torso and arms
configuration allows to use a different recognition model
for each of these two categories, which might improve the
recognition performance. We therefore define 2 additional
levels in the taxonomy: GEPOS and DET. GEPOS contains the
labels corresponding to the main posture, while DET contains
the labels corresponding to the torso and arms configuration.
The two ways of inferring the full postural information is com-
pared in this work to select the best-performing method (i.e.,
using one single model with DEPOS labels or combining two
models, one using GEPOS labels and one using DET labels).

The fourth and last level of the taxonomy (level CUACT)
contains labels representing goal-oriented actions, e.g., carry-
ing a load, screwing. Unlike the postural levels of the taxon-
omy, the list of labels in the CUACT level is not exhaustive.
The labels described in Table [[] are sufficient to describe the
actions performed in our experimental dataset (see Section
[MI-C). New labels can however be added if other actions
relevant for ergonomic assessment need to be identified.

B. Activity recognition with feature selection

In order to automatically infer the postures and actions pro-
posed in our taxonomy, we use classifiers for human activity
recognition which are described hereinafter. The software im-
plementing our methods is available on Github (http://github.
com/inria-larsen/activity-recognition-prediction- wearable).

1) Classifier: We build on our previous method [6], where
activity models were represented by HMM with manually
selected features, trained in a supervised way using action
labels. Here, the activity models are also based on HMM, but
with a set of features that is optimized by the feature selection
algorithm. The models are trained in a supervised way to rec-
ognize the activities from the different levels of the taxonomy
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with the hmmlearn library (http://hmmlearn.readthedocs.io/)
in Python. The models are defined by [V states representing the
activities, such as standing (St) or walking (Wa) for a model
using the GEPOS level of the taxonomy (all activities are
presented in Table [I). S = {s1, s2,..., sy} represents the set
of possible states. The model is trained based on several time
series sequences, each represented by a series of discrete states
Q = {q.,9, -, G,---gr}, obtained by manual annotations
(see Section [[II-C4), and a series of T observations X =
{z1,..., x4, ..., 27} corresponding to features data extracted
from the motion capture suit or the glove. Section [[II-C2]
presents the sequences of activity included in the dataset. For
each instant ¢, the goal is to infer the activity, such as g; = s;.

To train and evaluate a model, the dataset is split randomly
into a training set (70% of the sequences) and a testing set
(30% of the sequences). Two parameters of the HMM are
learned based on the data from the sequences of the training
set: the modeled observations and the transition matrix. The
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TABLE I TABLE II
DESCRIPTION OF THE TAXONOMY. LIST OF FEATURES.
State Label  Description Group Name Dimensions
GEPOS Main posture orientation 17+ 4 =68
Standing St Ends when feet start moving IMUs %}near acce%erat}on « }7 *3 =51
Walking Wa Starts when one foot start moving, ends melar acceleration norm 573 =66
when both feet are still angle ) *o =
Kneeling Kn At least one knee on the floor human model 3- anguiar VC}OC}?’ . ?2 *3 =66
Crouching Cr No knee on the floor DoF joints angu]ar ve OTI y norm 2253 = 66
Sitting Si Buttock on a chair or support angu fir acce eraqon « *o =
Lying Ly Torso on the floor or horizontal surface gr]l)gular.te}cceleratlon norm ; T3 =690
osition * 3=
DET Torso and arms configuration 3D griemmion 23 x4 = 92
Upright U Torso straight 3D velocity . 23 %3 =69
Bent forward BF Torso flexion angle between 20°and 60° velocity norm L
Strongly bent BS Torso flexion angle greater than 60° human ~ model 3D acceleration 23%3 =169
forward segments origin acceleration norm* 1
Shoulder level OS Elbow(s) at or above shoulder level with 3D angular VE.:IOClty . 23 %3 =169
work hand(s) at or below head level gngular \llelocny lnorr.n ;3 5 — 6o
Overhead work OH Hand(s) above head level D angular acceleration *¥o =
- - — angular acceleration norm* 1
DEPOS Full postural information: combination of 3D position 3
GEPOS and DET 3D Velocity 3
- - human model - %
St U Stand}ng upright center of mass ;T)locny lnor:p é
St_BF Standing bent forward acceleration .
St_BS Standing strongly bent forward acceleration norm 1
St_OS  Standing shoulder level work e-glove finger/palm pressure 4
St_OH Standing overhead work finger flexion 3
Wa_U  Walking upright The “norm” features (marked with a *) correspond to the norm of the
vector containing the velocity or acceleration of all joints or segments.
CUACT Goal-oriented action
Reaching Re Moving an arm towards a target, no object
Picki b gl_ *llj}nd o N . observations are modeled based on a Gaussian probability
icking i icking-up an object, starts when touching e . . . ;
the object, ends when arm stops moving d1st'r1but1f)n, Wlﬂ'l a fl:ﬂl covariance mat.nx used. A cross 'Vé'lll-
with respect to the body dation with ten iterations is computed in order to recognition
Placing Pl P ?Clng, aIlll Obéecﬁ similar to Re but with an - performance for each model with the mean and standard
object 1n han ..
Release Rl Bringing arm back after manipulation task deviation of the Fl-score.
Carrying Ca Carrying an object. Starts at the end of Pi, 2) Data processing: To reduce noise, a sliding window
. ends at the beginning of P filter is applied to the recorded motion capture and glove
Fine Fm Dexterous manipulation of an object . .
manipulation data. The observation vector contains the mean of the data
Screwing Sc A special case of Fm: rotational screwing across each time window. Banos et al. [23]] showed that
movement of the hand : e : : : :
ldle " Not doing anything with hands precise recognition could be obtained with short time windows

(250 ms - 500 ms). A 250 ms window is used, with an overlap
of 50% (125ms) between each window, as it reduces the
risk of missing data and can improve the performance [24].
Therefore, there is an observation every 125 ms.

3) Feature selection: The features represent the observation
used to train the model. Table |ll| presents the different features
evaluated in our work, and Section describes how they
are obtained from our measurement devices. Both feature
selection methods presented in Section have advantages
and drawbacks in terms of recognition performance and com-
putation time. To optimize the choice of the relevant features to
use as input of the classifier, three methods are used to extract
relevant features from all possible features: a wrapper-based
method, a filter-based method and a standard dimensionality
reduction based on Principal Component Analysis (PCA).
The resulting subsets of features are evaluated in terms of
recognition performance.

As presented in Section [[I-C] the wrapper-based method is
an iterative algorithm. The method used is inspired by the work
of Mandery et al. [20]. The HMM models presented above are
used as classifier to evaluate the subsets of features, and the


http://hmmlearn.readthedocs.io/

MALAISE et al.: ACTIVITY RECOGNITION FOR ERGONOMICS ASSESSMENT OF INDUSTRIAL TASKS WITH AUTOMATIC FEATURE SELECTION 5

metric performance used is the Fl-score. At each iteration k,
the 10 best subsets of features of dimension %k are kept to
be tested at iteration k + 1. The filter-based method used is
based on the Fisher score with regard to For each subset
of features obtained with the three different methods, a cross-
validation of three iterations is performed with the dataset split
randomly at each iteration with 70% of the sequences used to
train the model, and 30% to test the model.

C. Experimental protocol

The activity recognition algorithm presented in section [[II-B]
is based on supervised learning. Thus, a labeled dataset must
be provided for the training stage. We conducted a campaign
of in-lab data collection where participants performed various
manual tasks. Whole-body kinematics and hand contact forces
were recorded. The data were then manually annotated to gen-
erate the training dataset. The dataset is publicly available on
Zenodo (http://zenodo.org/record/1471975). The experiment
was approved by Inria’s ethical committee COERLE.

1) Participants: 13 healthy adults took part in the data
collection (9 males and 4 females, 11 right handed and 2 left
handed, age: 25.7 £ 5.0yrs, body height: 1754 £+ 7.9cm,
body mass: 72.3 + 14.4kg). Participants were naive to the
purpose of the experiment and had no or limited experience of
industrial work. All participants gave written informed consent
before starting the experiment.

2) Task description: Our activity recognition software
specifically targets tasks and postures that are common in
industrial environments, following the taxonomy proposed in
section Therefore, participants were asked to perform a
series of manual activities mimicking industrial activities and
involving postures of the EAWS ergonomic worksheet. Six
activities were defined and are depicted in Fig. [3}

e Screw high: Take a screw and a bolt on a 75cm-high
table, walk to the shelf, screw at a height of 175 cm.

e Screw middle: Take a screw and a bolt on a 75 cm-high
table, walk to the shelf, screw at a height of 115cm.

e Screw low: Take a screw and a bolt on a 75cm-high
table, walk to the shelf, screw at a height of 25cm (6
participants) or 60 cm (7 participants).

e Untie knot: Untie a knot placed on a 45 cm-high table.
e Carry 10kg: Take a 10kg load on a 55cm-high table,
walk to the shelf, put the load on a 20 cm-high shelf.

e Carry 5kg: Take a Skg load on a 55 cm-high table, walk
to the shelf, put the load on a 110 cm-high shelf.

One trial consisted in performing all 6 activities successively
in a specified order. The order in which the activities had to be
performed was selected randomly among a list of 6 predefined
orders. Each participant performed the activities in 3 different
orders, with 5 consecutive trials for each order, resulting in a
total of 15 trials. Each trial lasted approximately 90s. A break
of about 2 min was allowed between each trial to limit fatigue.
Two spatial organizations of the items involved in the activities
were used to avoid any direct association of one activity with
one position in space (set-up A: 6 participants; set-up B: 7
participants). Participants were given no instructions regarding
the way to perform each activity. The positions of the different

items (holes and tables heights, position of the knot on the
table) were, however, chosen to encourage participants to
adopt some specific EAWS postures (e.g., crouching, working
with hand above head level...).

3) Instrumentation: Two kinds of wearable sensors were
used to record whole-body motion and contact forces (Fig. [)).
Participants were equipped with an Xsens MVN Link iner-
tial motion tracking suit consisting of 17 IMUs to record
whole-body kinematics (Xsens Technologies, Enschede, The
Netherlands). Kinematic data were recorded at 240 Hz with
the Xsens MVN software. The MVN software outputs the
orientation and linear acceleration of each IMU. In addition,
the MVN software uses a scalable kinematic body model
composed of 23 segments linked together by 22 3-DoF joints
to compute the position, velocity and acceleration of the
origin of each segment and of the center of mass of the
model. Participants were also equipped with an instrumented
e-glove on their right-hand (Emphasis Telematics, Athens,
Greece). The e-glove embeds 3 flexion sensors — on the
thumb, index, and middle finger — and 4 pressure sensors —
on the palm and on the fingertip of the thumb, index and
middle finger. Data of the e-glove were recorded at 50 Hz
with a proprietary software. The Xsens and e-glove data were
timestamped to enable their synchronization. All Xsens and
e-glove outputs were integrated in the features used in the
activity recognition algorithm (Table [[I). In addition to these
local features concerning individual joint, we used ‘“norm”
features that correspond to the norm of the vector containing
the velocity or acceleration of all joints or segments. These
features are inspired from Mandery et al. [20] who identified
them as relevant for their activity recognition. Note that no
calibration of the e-glove signal was performed: only the raw
sensors data were used. In addition to the wearable sensors,
participants were videotaped with 2 cameras. Data of the
cameras were not used in the activity recognition algorithm.
They only served to help annotators resolve ambiguities when
labeling the training dataset.

4) Annotations: In order to generate a training dataset,
the collected data must be manually labeled using the la-
bels defined in Table [I| Labeling by human annotators is
intrinsically subjective, especially during transitions between
two successive postures or tasks. Therefore three annotators
independently labeled the data. The ground truth is extracted
from these annotations. For each time window of 250 ms (see
Section there are six related frames and annotations
per annotators. Thus, 18 labels are associated to a window
of observations. The ground truth is defined by the label
which had the majority among the 18 labels. An absence of
majority can happen during transition or when an annotator
adds an intermediate state (e.g., a bent before a strongly
bent). To resolve this conflict, the segments without major-
ity are cut with the first half labeled as the label of the
previous state, and the second half labeled as the label of
the next state. Annotations were performed with the Anvil
software (http://www.anvil-software.org/) on the videos of the
Xsens avatar replaying participants’ motions (video framerate:
25 fps). Each frame of the video was given 4 different labels:
one for each level of the taxonomy defined in Section
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Fig. 3. The 6 tasks performed by participants, with associated videos and corresponding posture and action following the taxonomy proposed in Section@

The annotators give labels corresponding to the level: GEPOS,
DEPOS and CUACT. The DET is directly extracted from the
DEPOS labels, by keeping only the labels about the additional
postural information (bent, overhead work...).

IV. RESULTS

First, the performance of the subsets of features identified
with the 3 feature selection methods are compared. Then these
taxonomy-specific subsets are compared with generic sets of
features. A third part compares the use of a direct model and
a combined model to represent the taxonomy. The last part
presents the results of generalization between participants.

A. Comparison of the feature selection methods

Fig. @] displays the evolution of the recognition performance
(F1-score) with the number of features included in the recog-
nition model, for all 3 feature selection methods (wrapper-
based, filter-based and PCA) and for each of the 4 taxonomy
levels. Table [ITT] then presents the dimension and recognition
performance of the best subsets of features identified with
each of the 3 selection methods. In both cases, we limited
the size of the subsets to 15 features, since we aim to use
low-dimensional sets of features to increase computational
efficiency and reduce the number of sensors needed. For all 4
levels of the taxonomy, the wrapper-based method identifies
better performing subsets than both the filter-based method
and the PCA. The recognition scores are nevertheless close
with all 3 methods, except for the CUACT level where the
wrapper-based method set largely outperforms the 2 other sets
of features. Importantly when aiming to reduce the number of
sensors, the wrapper-based method identifies well-performing
sets of features even in small dimension: the recognition per-
formance starts to plateau around 3 features (Fig. d). It should
also be noted that though subsets of features identified with
the simple PCA method give good recognition performances
in low dimension, they cannot be used to reduce the number
of sensors. Outputs of a PCA are linear combinations of the
input data. Therefore all initial features (hence all sensors) are
needed to compute the features selected with the PCA.

Fig. ] shows that adding new features to subsets selected
with the filter-based method sometimes degrades the recogni-
tion performance (e.g., for DEPOS and DET). This is likely
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Fig. 4. Evolution of Fl-score with the number of features used for the
recognition. Full lines and shaded areas represent respectively the mean of
the F1-Score and the standard deviation. The wrapper-based method allows to
reach the maximum of performance with a low number of features. With the
filter-based method, addition of certain features can decrease the performance
such as for the DET and DEPOS levels.

due to the underlying Gaussian assumption in the observation
model of the HMM: if the distribution of the data related to one
feature strongly differs from a Gaussian distribution, inclusion
of this feature in the model might deteriorate the performance.
The wrapper-based method is less sensitive to the violation
of the Gaussian assumption in features, because features are
then selected directly based on the recognition performance of
the model. Hence the wrapper-based method is more robust,
but its feature selection process is computationally much
more expensive than the filter-based and PCA methods. This
last concern nevertheless fades if optimal sets of features
associated with the proposed taxonomy are identified once and
for all, and the selection process does not need to be run again.

B. Comparison of subsets of features

In order to check whether identifying sets of features
specific to the proposed taxonomy is needed, we compared
our best-performing subsets of features (with the wrapper-
based method) with subsets proposed by Mandery et al.
for human activity recognition, and with high-dimensional
sets of features (all features, 3D position of each segment,
and angle of each joint). Since the 2 subsets proposed in
Mandery et al. [20] are of dimension 4 and 8, we used
our best-performing subsets of similar dimension to make
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TABLE III
PERFORMANCE OF THE FEATURE SELECTION METHODS
Taxonomy Wrapper  Filter PCA
Dimensions 9 5 15
GEPOS  piicore 9653 9581 9428
Dimensions 15 15 4
DET Fl-score 95.25 90.90  91.50
Dimensions 10 6 12
DEPOS  piicore 9381 8758 90.55
CUACT Dimensions 15 13 9
F1-score 84.55 64.77  72.06

the results comparable. Table presents the recognition
performance obtained with those different sets of features.
First, using high-dimensional sets of features does not result in
better performance compared to using reduced sets of selected
features, while it is likely computationally less efficient and
may require more sensors. Hence smaller sets of features are
advantageous. Second, among the reduced sets of features,
our best-performing subsets greatly outperform the generic
subsets proposed by Mandery et al. [20] for all 4 levels
of the taxonomy. Hence, using a set of features dedicated
to our taxonomy is recommended in order to optimize the
performance of the recognition module. It should nevertheless
be noted that the scores presented here are obtained with
subsets of features optimized separately for each level of the
taxonomy. If all levels are to be used simultaneously, and if a
goal is to reduce the number of sensors required, a subset of
features common to all 4 levels may be preferable.

Table [V] lists the subsets of features that allows to reach
2% of the maximum recognition rate for each taxonomy
level (See Table [I). The GEPOS and DET subsets both
contain only features that can be obtained with a reduced
number of sensors. GEPOS features correspond to lower-body
movements, while DET features are related to back and arm
movements, in accordance with the labels of each of these
2 taxonomy levels (Table [[). Conversely, several features in
the DEPOS and CUACT subsets require all IMUs sensors for
their computation (center of mass and “norm” features). These
“aggregated” features were included in the initial set because
Mandery et al. [20] identified them as useful for human motion
recognition which is confirmed by our results. Nevertheless,
when the number of sensors is a concern, a new set of features
should be identified with excluding all “aggregated” features
from the initial set of available features.

C. Comparison of models associated with the taxonomy

In the remaining of the paper, we only use the subsets pre-
senting in Table [V] We compare two ways of inferring the full
postural information: using one model to recognize directly
the full posture (DEPOS) or combining two models, each one
focusing on different aspects of the posture (COP0OS = GEPOS
+ DET). The two methods are evaluated by computing the F1-
score of each sequence obtained either with the direct model
or with the combined model.

Using only a single model to infer directly DEPOS gives
a better recognition performance: the Fl-score is 92.56 with

TABLE IV
PERFORMANCE OF DIFFERENT SUBSETS OF FEATURES
GEPoOs DET DEPOS CUACT
Features Dim. Fl F1 F1 F1
Our subsets
Best subset dimen- 4 95.75 92.01 91.84 75.65
sion 4*
Best subset dimen- 8 96.19 9430 92.72 81.00
sion 8*
Mandery et al. [20]
Center of mass veloc- 4 88.61 32.10 30.63 23.75
ity, Segments velocity
norm
Center of mass veloc- 8 48.59 8235 67.22 55.12
ity, Segments velocity
norm, Velocity norm
of hands and feet
High-dimensional
All available features 779 93.95 93.16  89.30 81.39
All segment positions 69 93.34 95.62 91.15 71.56
All joint angles 66 91.37 93.74  90.12 73.51
TABLE V

DETAILS OF THE FINAL SELECTED SUBSETS OF FEATURES.

Fl1-score
94.53

Subsets of features

Pelvis position (z)

Pelvis velocity (z)

Left lower leg acceleration (x)
Angular acceleration pelvis (y)
L5 vertebra orientation (q1, q3)
Right shoulder orientation (q2)
Left forearm position (z)
Right hand position (x)

Center of mass position (z)
Segments velocity norm

Right shoulder orientation (ql)
Right ankle joint angle (z)
Right upper leg position (z)
Segments velocity norm

IMU acceleration norm
Angular acceleration head (z)
Right elbow joint angle (z)
Pelvis orientation (q3)

Left hand position (x)

Left hand orientation (q3)
Head velocity (z)

Neck velocity (z)

Right forearm velocity (z)
Right hand velocity (z)

Taxonomy Dim.
GEPoOs 3

DET 6 94.00

DEPOS 5 92.61

CUACT 11 83.36

the DEPOS model, and 89.68 with the combined COPOS
model. The DEPOS model relies on a lower number of features
(5) than the combined model (9 features since no features
are shared between the GEPOS and DET subsets), which
may render the DEPOS model computationally more efficient.
However, as mentioned in Section the features in the
DEPOS subsets require all input data, hence all sensors. The
DEPOS model is not more efficient than the COPOS regarding
the number of sensors required. The combined model can also
be useful to infer full postures that are not in the dataset,
if the corresponding labels of the GEPOS and DET levels
are included in the dataset. For example, if the real state is
kneeling bent forward and does not appear in the dataset,
the combined model could infer the complete posture if both
kneeling and bent forward states are known individually.
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D. Generalization

The recognition models should be able to recognize activi-
ties of users that are not in the training set. We therefore test
the generalization capability of the recognition models with a
leave-one-out cross validation. For each of the 13 participants,
a model is trained on the data of the 12 other participants,
and the recognition performance is tested with the data of the
participant excluded from the training set (the best performing
sets of features identified with the wrapper-based method are
used). To be consistent with the previous section, only 70%
of the sequences of the 12 participants in the training set are
used. The F1-score is computed for each of the 13 validations,
and the global evaluation of the generalization corresponds to
the average score of the 13 Fl-scores. The global Fl-score
is 94.00 for the GEPOS model (2.62% of max. Fl-score),
91.55 for the DET model (3.88% of max. Fl-score), 90.96 for
the DEPOS model (3.04% of max. Fl-score), and 81.91 for
the CUACT model (3.12% of max. Fl-score). The proposed
subsets of features for each taxonomy level show overall a
good generalization performance.

V. CONCLUSION

In this paper, we addressed the problem of automatic assess-
ment of ergonomics. We proposed a taxonomy of postures
and actions inspired by the EAWS ergonomics assessment
worksheet used in industry. We showed that using activity
recognition models based on HMM with automatic feature
selection, postures can be successfully recognized with only
a small number of features. In addition, recognition is better
when using subsets of features identified specifically for our
taxonomy than when using generic features. Therefore, we
provide the list of relevant subsets of features associated with
our taxonomy. Recognition of actions did not exhibit similar
performance, and might require a more complex model such
as one based on Neural Network. In the future, the activity
recognition module will be used to provide on-line ergonomic
feedback to warn workers of non-ergonomic movements.
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