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Abstract. A complete reversible Turing machine bijectively transforms
configurations consisting of a state and a bi-infinite tape of symbols into
another configuration by updating locally the tape around the head and
translating the head on the tape. We discuss a simple machine with 4
states and 3 symbols that has no periodic orbit and how that machine can
be embedded into other ones to prove undecidability results on decision
problems related to dynamical properties of Turing machines.

Keywords: reversible Turing machines · cellular automata · dynamical
systems · undecidability · aperiodicity

In this talk, we present a small minimal aperiodic reversible Turing machines
and new reduction techniques to study the (un)decidability of dynamical prop-
erties of reversible Turing machines. This work is motivated by the study of the
computational complexity of dynamical properties of cellular automata, a more
classical family of dynamical systems.

Motivation

A cellular automaton (Q, f) is given by a finite set of states Q and a local rule
f : Q3 → Q. The automaton transforms a configuration c ∈ QZ into a configura-
tion F (c) by applying the local rule uniformly and synchronously: for all i ∈ Z,
F (c)(i) = f(c(i− 1), c(i), c(i+ 1)). From a dynamical point of view, we study
the set of orbits c, F (c), F 2(c), . . . , F t(c), . . . of the configurations c of the dy-
namical system (QZ, F ). Among the simplest dynamics are the case when the
automaton is nilpotent, i.e. every orbit converges to a same fixpoint (formally
∃c0 ∀c∃t F t(c) = c0), and the case when the automaton is periodic, i.e. every
orbit is a loop (formally ∀c∃t F t(c) = c).

The Nilpotency Problem is the decision problem that, given Q and f as
input, decides if the cellular automaton (Q, f) is nilpotent. This problem was
proven undecidable by Kari in 1992 [7]. The proof involves computing inside
deterministic aperiodic tile sets, sets of Wang tiles that tile the plane but only

? The results presented in this talk were obtained in joint work with J. Cassaigne,
A. Gajardo, J. Kari and R. Torres-Avilés.
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aperiodically, without any vector of periodicity. It builds on the undecidability of
the Domino Problem proven by Berger [1] and the construction of small aperiodic
tile sets by Robinson [9] and others.

The Periodicity Problem is the decision problem that, given Q and f
as input, decides if the cellular automaton (Q, f) is periodic. We proved the
undecidability of this problem with Kari in 2008 [6]. The proof involves com-
puting inside reversible aperiodic Turing machines, reversible Turing machines
without periodic orbits. It builds on the undecidability of the Immortality Prob-
lem proven by Hooper [5] and the construction of aperiodic Turing machines by
Blondel et al. [2].

Aperiodic Reversible Turing Machines

A complete Turing machine is a triple (Q,Σ, δ) where Q is a finite set of states,
Σ is the finite alphabet of symbols and δ : Q×Σ → Q×Σ × {−1, 0, 1} is the
transition function of the machine. A configuration of the machine is a triple
(s, c, p) where s ∈ Q is the current state, c ∈ ΣZ is the content of the bi-infinite
tape and p ∈ Z is the position of the head of the machine on the tape. A
transition of the machine transforms a configuration (s, c, p) into a configuration
(s′, c′, p + d) where δ(s, c(p)) = (s′, a, d) and c′ is equal to c in every position
except for c′(p) = a.

Two configurations (s, c, p) and (s′, c′, p′) are equal up to translation is s = s′

and c(i+ p) = c(i+ p′) for all i ∈ Z.

A configuration is periodic up to translation if, starting from that configura-
tion, the machines reaches a configuration equal to the first one up to translation
after a finite number of transitions. The machine is aperiodic if it has no config-
uration periodic up to translation.

The machine is injective if every configuration has a pre-image by a transition
and surjective if every configuration has a different image by a transition of the
machine.

For complete machines, injective is equivalent to surjective and corresponds
to reversible machines: it can be assigned a reverse. An injective Turing machine
is characterized by a pair (ρ, µ), where ρ : Q×Σ → Q×Σ is a permutation on Q×
Σ and µ : Q→ {−1, 0, 1}, such that δ(s, a) = (s′, b, µ(s′)) where ρ(s, a) = (s′, b)
for every state s and symbol a. The reverse machine is the machine (Q,Σ, δ−1)
such that δ−1(s′, b) = (s, a,−µ(s)). For every configuration (s, c, p) transformed
by the machine into a configuration (s′, c′, p′), the configuration (s′, c′, p′−µ(s′))
is transformed by the reverse machine into the configuration (s, c, p− µ(s)).

The existence of aperiodic Turing machines might feel counter-intuitive. In-
deed, Kůrka [8] first conjectured that every complete Turing machine has a peri-
odic configuration. The first aperiodic machine was later constructed by Blondel
and al [2].

The most important object of this talk is the 4 states 3 symbols aperiodic
complete reversible Turing machine constructed in [3], we describe the machine,
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its dynamics and main properties. The formal definition of the machine is given
on Table 1 and depicted on Figure 1.

In a second part of the talk, we describe the embedding technique, a tech-
nique to combine a pair of Turing machine (one of which is usually the SMART
machine) to preserve some properties of one of the machines. It turns out to
be a precious tool to address the computational complexity of several decision
problems concerning dynamical properties of Turing machines. We discuss dif-
ferent properties including: existence of an orbit periodic up to translation [3],
periodicity [6], transitivity [4] (every finite context, partial tape and state, can
be reached from every finite context), minimality [4] (every finite context, partial
tape and state, can be reached from every configuration).

state/symbol 0 1 2

PINGI (PINGJ,1,I) (PONGJ,1,J) (PONGJ,2,J)

PONGJ (PINGJ,2,J) (PINGJ,0,J) (PONGI,0,I)

PINGJ (PINGI,1,J) (PONGI,1,I) (PONGI,2,I)

PONGI (PINGI,2,I) (PINGI,0,I) (PONGJ,0,J)

where J encodes head shift −1 and I encodes head shift +1
Table 1. The SMART machine transition table

PINGñ PONGð

PONGñ PINGð

1|1 ð
2|2 ð

1|1 ñ
2|2 ñ

0|1 ð
0|2 ñ
1|0 ñ

0|2 ð
1|0 ð

2|0 ð

0|1 ñ

2|0 ñ

Fig. 1. The SMART Machine
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