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A complete reversible Turing machine bijectively transforms configurations consisting of a state and a bi-infinite tape of symbols into another configuration by updating locally the tape around the head and translating the head on the tape. We discuss a simple machine with 4 states and 3 symbols that has no periodic orbit and how that machine can be embedded into other ones to prove undecidability results on decision problems related to dynamical properties of Turing machines.

In this talk, we present a small minimal aperiodic reversible Turing machines and new reduction techniques to study the (un)decidability of dynamical properties of reversible Turing machines. This work is motivated by the study of the computational complexity of dynamical properties of cellular automata, a more classical family of dynamical systems.

Motivation

A cellular automaton (Q, f ) is given by a finite set of states Q and a local rule f : Q 3 → Q. The automaton transforms a configuration c ∈ Q Z into a configuration F (c) by applying the local rule uniformly and synchronously: for all i ∈ Z, F (c)(i) = f (c(i -1), c(i), c(i + 1)). From a dynamical point of view, we study the set of orbits c, F (c), F 2 (c), . . . , F t (c), . . . of the configurations c of the dynamical system (Q Z , F ). Among the simplest dynamics are the case when the automaton is nilpotent, i.e. every orbit converges to a same fixpoint (formally ∃c 0 ∀c ∃t F t (c) = c 0 ), and the case when the automaton is periodic, i.e. every orbit is a loop (formally ∀c ∃t F t (c) = c).

The Nilpotency Problem is the decision problem that, given Q and f as input, decides if the cellular automaton (Q, f ) is nilpotent. This problem was proven undecidable by Kari in 1992 [START_REF] Kari | The nilpotency problem of one-dimensional cellular automata[END_REF]. The proof involves computing inside deterministic aperiodic tile sets, sets of Wang tiles that tile the plane but only aperiodically, without any vector of periodicity. It builds on the undecidability of the Domino Problem proven by Berger [START_REF] Berger | The undecidability of the domino problem[END_REF] and the construction of small aperiodic tile sets by Robinson [START_REF] Robinson | Undecidability and nonperiodicity for tilings of the plane[END_REF] and others.

The Periodicity Problem is the decision problem that, given Q and f as input, decides if the cellular automaton (Q, f ) is periodic. We proved the undecidability of this problem with Kari in 2008 [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF]. The proof involves computing inside reversible aperiodic Turing machines, reversible Turing machines without periodic orbits. It builds on the undecidability of the Immortality Problem proven by Hooper [START_REF] Hooper | The undecidability of the Turing machine immortality problem[END_REF] and the construction of aperiodic Turing machines by Blondel et al. [START_REF] Blondel | On the presence of periodic configurations in Turing machines and in counter machines[END_REF].

Aperiodic Reversible Turing Machines

A complete Turing machine is a triple (Q, Σ, δ) where Q is a finite set of states, Σ is the finite alphabet of symbols and δ : A configuration is periodic up to translation if, starting from that configuration, the machines reaches a configuration equal to the first one up to translation after a finite number of transitions. The machine is aperiodic if it has no configuration periodic up to translation.

Q × Σ → Q × Σ × {-1, 0, 1}
The machine is injective if every configuration has a pre-image by a transition and surjective if every configuration has a different image by a transition of the machine.

For complete machines, injective is equivalent to surjective and corresponds to reversible machines: it can be assigned a reverse. An injective Turing machine is characterized by a pair (ρ, µ), where ρ : Q×Σ → Q×Σ is a permutation on Q× Σ and µ : Q → {-1, 0, 1}, such that δ(s, a) = (s , b, µ(s )) where ρ(s, a) = (s , b) for every state s and symbol a. The reverse machine is the machine (Q, Σ, δ -1 ) such that δ -1 (s , b) = (s, a, -µ(s)). For every configuration (s, c, p) transformed by the machine into a configuration (s , c , p ), the configuration (s , c , p -µ(s )) is transformed by the reverse machine into the configuration (s, c, p -µ(s)).

The existence of aperiodic Turing machines might feel counter-intuitive. Indeed, Kůrka [START_REF] Kůrka | On topological dynamics of Turing machines[END_REF] first conjectured that every complete Turing machine has a periodic configuration. The first aperiodic machine was later constructed by Blondel and al [START_REF] Blondel | On the presence of periodic configurations in Turing machines and in counter machines[END_REF].

The most important object of this talk is the 4 states 3 symbols aperiodic complete reversible Turing machine constructed in [START_REF] Cassaigne | A small minimal aperiodic reversible Turing machine[END_REF], we describe the machine, its dynamics and main properties. The formal definition of the machine is given on Table 1 and depicted on Figure 1.

In a second part of the talk, we describe the embedding technique, a technique to combine a pair of Turing machine (one of which is usually the SMART machine) to preserve some properties of one of the machines. It turns out to be a precious tool to address the computational complexity of several decision problems concerning dynamical properties of Turing machines. We discuss different properties including: existence of an orbit periodic up to translation [START_REF] Cassaigne | A small minimal aperiodic reversible Turing machine[END_REF], periodicity [START_REF] Kari | Periodicity and immortality in reversible computing[END_REF], transitivity [START_REF] Gajardo | The transitivity problem of Turing machines[END_REF] (every finite context, partial tape and state, can be reached from every finite context), minimality [START_REF] Gajardo | The transitivity problem of Turing machines[END_REF] (every finite context, partial tape and state, can be reached from every configuration). 

  is the transition function of the machine. A configuration of the machine is a triple (s, c, p) where s ∈ Q is the current state, c ∈ Σ Z is the content of the bi-infinite tape and p ∈ Z is the position of the head of the machine on the tape. A transition of the machine transforms a configuration (s, c, p) into a configuration (s , c , p + d) where δ(s, c(p)) = (s , a, d) and c is equal to c in every position except for c (p) = a.Two configurations (s, c, p) and (s , c , p ) are equal up to translation is s = s and c(i + p) = c(i + p ) for all i ∈ Z.

Table 1 .

 1 The SMART machine transition table

	state/symbol	0	1	2
	PING	(PING ,1, ) (PONG ,1, ) (PONG ,2, )
	PONG	(PING ,2, ) (PING ,0, ) (PONG ,0, )
	PING	(PING ,1, ) (PONG ,1, ) (PONG ,2, )
	PONG	(PING ,2, ) (PING ,0, ) (PONG ,0, )
	where encodes head shift -1 and encodes head shift +1
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		Fig. 1. The SMART Machine