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Abstract. The Earth Mover’s Distance (EMD) is a metric based on the
theory of optimal transport that has interesting geometrical properties
for distributions comparison. However, the use of this measure is limited
in comparison with other similarity measures as the Kullback-Leibler
divergence. The main reason was, until recently, the computation com-
plexity. In this paper, we present a comparative study of the dissimilarity
measures most used in the literature for the comparison of distributions
through a color-based image classification system and other simple ex-
amples with synthetic data. We show that today the EMD is a computa-
tionally efficient measure that better reflects the similarity between two
distributions.

Keywords: optimal transport, earth mover’s distance, similarity mea-
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1 Introduction

The Earth Mover’s Distance (EMD) [14], is a dissimilarity measure inspired
by the optimal transport theory. This measure is considered as true distance
because it complies with the constraints of non-negativity, symmetry, and tri-
angle inequality [12]. The superiority of the EMD over other measures has been
demonstrated in several comparative analysis (see for example [13], [14]). Despite
this superiority in theory, in practice, this distance continues to be underused
for the benefit of other measures. The main reason is the high computational
cost due to its iterative optimization process. Although there are comparative
studies (image retrieval scores, for example), the importance of the errors of
the most popular similarity measures has never been illustrated, even for simple
tasks. Here, we use a simple database to show that, surprisingly, no metric but
the EMD yields the desired result (see below, Fig. 4). In this paper, we want
to emphasize the importance of having a true metric to measure the similarity



between distributions. Also, we demonstrate the EMD could be calculated prac-
tically with the use of recently created fast algorithms little known in the field
of image processing.

In image processing and computer vision, the comparison of distribuions
is recurrent technique. Some applications where we use these measures are the
image retrieval, classification, and matching systems [15]. For these, the distribu-
tions could represent low-level features like pixel’s intensity level, color, texture,
shapes or higher-level features like objects. The comparison could be done using
a unique feature (the one-dimensional case for gray-level images comparison) or
combining features in a multi-dimensional distribution, for example, the texture
[1], [9], or a fusion of color distributions and LBP-based texture features for
image retrieval [10]. In the field of medical imaging, distributions comparison
are useful to achieve image registration [16]. On the other hand, more general
applications such as object tracking [11], [7] and saliency modelling [4] also use
the comparison of distributions. Regarding at the number of applications that
make use of the comparison of distributions, the choice of the correct metric to
measure the similarity between distributions is crucial.

In this article, we present a new comparative study between the EMD and
other popular dissimilarity measures. Our primary objective is to show that
the compared measures do not express the difference between distributions ade-
quately. Also, we show that today the EMD is a competitive measure concerning
computing time. Among the dissimilarity measures we compare are the intersec-
tion and correlation of histograms [11], the Bhattacharya distance [16], the χ2

statistic and the Kullback-Leibler (K-L) divergence [7].
This paper is organized as follows: in the section 2, we describe and discuss

some properties of the bin-to-bin measures, while in section 3 we expose the
geometrical properties of the EMD. Then, in section 4, we show the performance
of the different similarity measures with a one-dimensional case, a color-based
image classifier (3D case), and a multivariable case. Finally, in section 5, we close
this work with some reflections about EMD and optimal transport in the field
of image processing and computer vision.

2 Bin-to-Bin Similarity Measures

In computer vision, the distributions describe and summarize different features
of an image. Normally, we compress the image feature distributions dividing
their underlying space in a certain number of bins to generate histograms.

Let p be a histogram which represents some data distribution. In the image
domain, these data represent image features such as pixels intensity, color, tex-
ture, and others. To construct such histogram, we split the underlying feature
space into consecutive and non-overlapping bins pi. In the histogram, each bin
represents the mass of the distribution that falls into its range; the values of the
bins are no negative reals numbers.

The bin-to-bin measures metioned in section 1, compare only the correspond-
ing bins of two histograms. Namely, to compare the histograms p “ tpiu and



q “ tqiu, these techniques only measure the difference between the bins that are
in the same interval of the feature space, that is, they only compare bins pi and
qi @i “ t1, . . . , nu, where i is the histogram bin number and n is total number
of bins. The measures we review here are:

2.1 Histogram Intersection

dXpp,qq “ 1´

ř

iminppi, qiq
ř

i qi
(1)

Swain and Ballard [17] proposed the histogram intersection algorithm. Math-
ematically, it is expressed by a min function that returns the smallest mass of
two input bins. The result of the histogram intersection is the number of samples
of q that have corresponding samples in the p distribution. We normalized this
smallest value by the total number of samples in the corresponding bin qi. The
final score is between 0 and 1, where the highest value means the best match,
i.e., the most similar distribution.

2.2 Histogram Correlation

dCpp,qq “

ř

ippi ´ pqpqi ´ qq
a

ř

ippi ´ pq2
ř

ipqi ´ qq2
(2)

The histogram correlation gives a single coefficient that indicates the degree
of relationship between two variables. Derived from the Pearson’s correlation
coefficient, this measure is the covariance of the two variables divided by the
product of their standard deviations. In Eq. 2, p and q are the histogram means.
For this measure, we normalize the resulting coefficient between 0 and 1, where
0 means that the distributions are strongly correlated.

2.3 χ2 Statistics

dχ2pp,qq “
ÿ

i

ppi ´ qiq
2

qi
(3)

This measure comes from Pearson’s χ2 statistical test for comparing discrete
probability distributions. It is useful for correspondence analysis because it ex-
presses the fit between observed and expected frequencies.



2.4 Bhattacharyya distance

dBpp,qq “

˜

1´
1

a

piqin2

ÿ

i

?
piqi

¸

(4)

The Bhattacharyya distance [2] is a divergence measure which is closely re-
lated to the Bhattacharyya coefficient. This coefficient, represented by

ř

i

?
aibi

in Eq. 4, gives a geometric interpretation as the cosine of the angle between the
distributions.

2.5 Kullback-Leibler Divergence

dKLpp,qq “
ÿ

i

pi log
pi
qi

(5)

The divergence of Kullback and Liebler [8] measures the difference between
the two histograms from the information theory point of view. It gives the relative
entropy of p with respect to q. Although this measure is one of the most used
to compare two distributions, it is not symmetrical.

3 The Earth Mover’s Distance

Earth Mover’s Distance is the term used in the image processing community for
the optimal transport; in other areas, we also find this measure as the Wasser-
stein distance or the Monge-Kantorovich problem. This concept lays in the study
of the transportation theory which aims for the optimal transportation and al-
location of resources. The main idea behind the optimal transport is simple and
very natural for the comparison of distributions. Let

α “
n
ÿ

i“1

αiδxi
and β “

m
ÿ

j“1

βjδyj (6)

be two discrete measures supported in x1, . . . , xn P X and y1, . . . , yn P Y, where
αi and βj are the weight’s bins of histograms α and β; δxi

and δyj are the Diracs
at position x and y, respectively. Intuitively, the dirac function represents a unit
of mass which is concentrated at location x. This notation is equivalent to one
the proposed in [14]; δxi

is the central value in bin i while αi represents the
number of samples of the distribution that falls in the interval indexed by i.

The key elements to compute the optimal transport are the cost matrix
Cij “ cpxi, yiq, which define all pairwise costs between points in the discrete
measures α and β, and the flow matrix (optimal transport matrix) F P Rnˆm` ,
where fij describes the amount of mass flowing from bin i (or point xi) towards



bin j (or point xj). Then the optimal transport problem aims to find a total flow
F that minimize the overall cost

WCpα,βq “ minxC,Fy “
ÿ

ij

cijfij (7)

Placing the optimal transport problem in terms of suppliers and consumers;
for a supplier i, at some location δxi

, the objective is to supply αi quantity of
goods. On the other hand, a consumer j, at some location δyj , expects to recieve
at most βj quantity of goods. Then, the optimal transport problem is subject to
some constrains, @i P t1, . . . , nu, j P t1, . . . ,mu

1. Mass transportation (positivity constraint): fij ě 0 : i Ñ j allows moving
the mass from the suppliers to the consumers.

2. Mass conservation (equality constraint):
ř

j

fij “ αi and
ř

i

fij “ βj stays

that the suppliers cannnot can not send more goods than they have and the
comsumers can not recieve more goods than they need.

3. Optimization constraint:
ř

ij

fij “ min

˜

ř

i

αi,
ř

j

βj

¸

assures to transport the

maximum goods possible from suppliers to consumers.

Then, we define the earth mover’s distance as the work WC normalized by
the total flow

EMDpα,βq “

ř

ij

cijfij

ř

ij

fij
(8)

The importance of the EMD is that it represents the distance between two
discrete measures (distributions) in a natural way. Moreover, when we use a
ground distance as the cost matrix C, the EMD is a true distance. Peyré and
Cuturi [12] show the metric properties of the EMD. To show these advantages,
we developed a series of experiments described in the next section.

4 Comparative Analysis: Bin-to-Bin Measures vs EMD

4.1 One-Dimensional Case: Synthetic data

For the first experiment, we use one-dimensional synthetic distributions to com-
pare the measures described in section 2 in the simplest scenario. We create a
source distribution and a series of target distributions. Both source and target
distributions are random Gaussian distributions. The unique difference between
the source and the target distributions is the increasing mean (µ) of each target
histogram. Fig. 1 depicts the histograms of the source and target distributions.



(a) (b)

Fig. 1: Synthetic histograms: (a) Source distribution, (b) Target distributions.
Each distribution have 1000 samples. The mean of the target distributions is
increasing five units with respect to the previous distribution

Since the distributions mean value increases linearly, we expect that the sim-
ilarity measure also increases linearly. However, in Fig. 2 we can see the response
of the bin-to-bin measures and the EMD. For the bin-to-bin measures, the dis-
similarity value (χ2 statistic), the pseudo-distance (Bhattacharyya distance) and
the divergence (K-L divergence) rapidly saturate and stick to a maximum value;
while the for similarity measures (histogram correlation and intersection), its
value falls rapidly to zero. We can interpret these behaviors as follows. When
the bins pi, qi do not have any mass in common, the bin-to-bin measures fail in
taking into account the mutaul distance of the bins. They could consider that the
distributions are precisely at the same distance (there is no difference between
them), or they are entirely dissimilar. The only measure that presents a linear
behavior is the EMD. This is due to taking into account the ground distance C
of the matching bins (see above, Eq. 8).

4.2 Three-Dimensional Case: Color Image Classification

For the second comparison experiment, we use a database of color images con-
taining 24 photos of different superheroes. The superheroes database has twelve
classes with two samples per class. Fig. 3 shows some examples of the database
and its variations (change of the angle of the toy or the addition of accessories).
The images in the database possess a very distinctive color palette and do not
present textures or important changes in lighting. Typically, the comparison of
the color distribution should be sufficient to perform an image classification since
the images are very simple and do not present significant challenges.

We compare the performance of the six measures described in section 2 in
a color-based image classifier. The performance test is simple. First, we divide
the database samples into model images and query images; each class only has
one model and one query image. The rows in Fig. 3 show the separation of the



(a) Histogram intersection (b) Histogram correlation (c) χ2 Statistic

(d) Bhattacharyya (e) Kullback-Leibler (f) EMD

Fig. 2: Distances between the source and target distributions

Fig. 3: Color superheroes database: The columns represent five of the twelve
classes of the database. The fisrt row shows the model images; the second row
shows the query images

database. As the second stage, we take an image of the query set and compare its
color distribution (source distribution) with the color distribution of all model
images (target distributions). Then, we order the distances given by the simi-
larity measure in ascending order, that is, from the most similar to the most
dissimilar image. We repeat this process for all the images in the query set.

The image retrieval and classifier systems are sensitive to the representation
and quantification of the color image pixels. We show this effect varying the
color space and the color quantization level in the image classifier. For the color
space, we represent the images in the RGB, HSL, and LAB color spaces. For the
color quantization level, we represent the color space in histograms of 8, 16 and



32 bins per channel. Fig. 4 shows the resulting distances for a query image (at
the top left of the table) using the LAB color space and histograms of 32 bins
per color channel ‡.

Fig. 4: Table of similarity values given for a query image representing the images
in the LAB color space with histograms of 32 bins. We sort the distances in
ascending order, being the left image the most similar.

We create a comparison benchmark for the six dissimilarity measures. First,
we normalize the distances given by the different methods between 0 and 1, where
0 means the distribution the most similar to the source distribution and 1 the
most dissimilar. Then we transform the normalized distances into probabilities
using a softmax function.

Spdq “
ed

ř

i

edi
(9)

where the d “ di, @i “ t1, . . . ,mu, represents the distances between the query
image to the m images in the database.

‡The image classification system and an extended superheroes database with 25
superheroes classes are available at https://github.com/E1rc/image_clasifier.git

https://github.com/E1rc/image_clasifier.git


Finally, considering the softmax fuction of the distances vector as a classifi-
cation probability Spdq “ ŷ, we compute the cross-entropy [3] considering the
classification ground truth y.

Hpy, ŷq “ ´
ÿ

i

yi log ŷi (10)

The cross-entropy is a value that we can interpret as the confidence level
of the image classifier concerning the variables we use, i.e., metric, color space
and histogram size. When this value is very close to zero, it indicates a perfect
classification of the query image. In this experiment, we can highlight interest-
ing aspects of the EMD and the use of bin-to-bin measures in the comparison
of distributions. First, we note the superiority of the EMD over the other mea-
sures. Besides, we see the importance of the selection of the color space and
the compression level of the feature space (histogram size). In the case of EMD,
increasing the number of bins improves the classification result, while for other
measures this effect is not always evident. On the other hand, as expected, the
calculation of the EMD in the LAB color space is better than in the HLS or
the RGB. This effect is because the LAB color space models the color human
perception in the Euclidean space, therefore, the ground distance between two
colors is easily calculated with the L2 norm. In Fig. 5 reflects the facts described
below and the sensitivity of the bin-to-bin measures to the different color spaces
and histogram size.

4.3 Multdimensional Case: Time and Memory performance

With the experiments of the previous sections, we show the superiority of the
EMD to represent the similarity between distributions. However, a clear draw-
back of this metric is the computation complexity. Regarding Eq. 7, we can see
that the EMD is an iterative optimization process depending on the number of
bins n of the histograms. The complexity to calculate the distance between a
pair of histograms is at least Opn3 logpnqq [5]. In the area of image processing,
this fact is crucial in applications with large scale databases or with high dimen-
sional feature distributions. There, the number of bins is closely related to the
number of dimensions of the feature space. The more dimensions the distribu-
tion has, the higher the number of bins and the memory consumption to measure
the similarity between distributions. One strategy to accelerate the process is to
compress as much as possible the data distributions. However, as we can see in
Fig. 5, the more we reduce the histogram number of bins, the more precision
we lose. Therefore, it leads to a misrepresentation of the similarity between to
distributions.

A solution to the excessive complexity time and memory consumption are
the regularized distances, also called Sinkhorn distances [5]. This entropy-based
regularization accelerates the computing time giving a close approximation of
the EMD. To show the complexity of the EMD and the Sinkhorn distances we
do a small test. We create two synthetic distributions of n bins. Then, we vary



(a) RGB color space (b) HLS color space

(c) LAB color space

Fig. 5: Cross-entropy values of the image clasifier using the six different measures
in three color spaces: RGB, HLS, and LAB. The color bars mean the histogram
size; red for 8 bins, green for 16 bins and blue for 32 bins per color channel

the number of bins of the histograms and compute both distances. Fig. 6 shows
the average time to compute the EMD and the Sinkhorn distances.

The regularization of distances allows creating parallelizable algorithms. It
is therefore amenable to large scale executions on parallel platforms such as
GPGPUs. In the examples developed in this article, we calculate the EMD us-
ing the iterative process of linear programming. Despite this, the calculation is
fast enough to develop the image classifier. In comparison with the first EMD
algorithm which was limited to 512 bins (see [14]), the progress of the com-
puter processors allows to use the same algorithm and be competitive with the
bin-to-bin measures concerning computing time.

5 Conclusion

In this work, we use some of the so-popular bin-to-bin similarity measures and
compare them with the EMD. We compare the performance with three simple
cases: a one-dimensional case simulating the data distribution, with a very simple
color-based image classifier, and with a multidimensional case to see the compu-
tation time. The objective is to show that measures highly used in the literature



Fig. 6: Computation times of the EMD and the Sinkhorn distances for several
histogram sizes. The number of bins in the x axe is the total of bins of the
distribution

to develope more complex task (image retrieval systems, image registration, ob-
ject tracking, saliency modelling, and others) are not the best choice since they
fail even in the most straightforward conditions. We show that the EMD true
metric that expresses the dissimilarity between distributions naturally.

We believe that EMD is a depreciated metric only because of excessive calcu-
lation time. However, after the evolution of computer processors, despite being
an iterative optimization process, today their calculation is very fast. Besides,
recent works show new strategies such as parallel programming and the use of
GPUs [6] using regularization terms [5] that allow to accelerate the calculation
time and work with large distributions in dimensions and samples.
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