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Abstract: The objective of this paper is to motivate the design of Radio Frequency (RF) analog
filters under the LFT framework. Current increase in filter complexity makes traditional design
methods outdated. New methods need then to be developed to tackle this issue. The Linear
Fractional Transformation (LFT) is a general tool enabling to represent, analyse and synthesize
interconnected systems. Coupling with the so-called KYP lemma, and its extensions, it allows
to transpose complex analytical optimization problem into a finite dimensional convex problem
under Linear Matrix Inequality (LMI) constraints. That is to say a problem which is optimally
and efficiently solvable. All through this paper, illustrations are provided on how using the LFT
framework for LC filter design. Finally, potential benefits of such an approach are enumerated,
which are mainly based on the generic property of the LFT.

Keywords: Robust Linear Matrix Inequalities (LMI); Analog Filter Design; Linear Fractional
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1. INTRODUCTION

Analog filters design is one of the oldest subjects of interest
of System Theory (with its branches : Control and Circuit
Theory) and Signal Processing but is still a topical issue. In
fact, new challenges are still arising. In Radio Frequency
(RF) electronics application, analog filters are especially
appreciated as they do not need external energy supply
and tend to be more robust to uncertainties than digital
filters. However, due to the important growth in frequency
bands and standards in the near future, a big increase in
filter complexity is expected (Hashimoto et al., 2015). As
a result, new filter design methods are required to replace
outdated methods in order to tackle this challenge.

First filters design methods were developed for reactive
filters, based on inductances L and capacitances C, also
known as LC-filters (Belevitch, 1962). Due to poor prop-
erties of inductances for the integration on chip, they
were progressively replaced by new components (such as
SAW/BAW resonators) with better characteristics for RF
applications. But no theoretical design methods were de-
veloped, and researches have been focused on getting bet-
ter performance of components, while very simple design
methods are still used in practice. As future tunable filters
may be based on resonators and capacitors (Hashimoto
et al., 2011), new appropriate design methods are required.

In this paper, it is proposed to formulate the usual LC filter
design problem using recently developed tools of Control
? This research was supported by Région Rhône-Alpes through its
Academic Research Community ARC6.

Theory. With the development of efficient methods for
solving convex optimization problems under Linear Matrix
Inequality (LMI) constraints (Boyd et al., 1994a), new
ways of representing, analysing and synthesising systems
have emerged (Doyle et al., 1991). The aim is to illustrate
how this problem can be formulated with this approach,
and how new filter design problems can then be addressed
by using the generalizing properties of these new tools.

This paper is organised as follow. The LC filter design
problem is first reviewed. The usual design method, based
on two stages, is briefly explained. Then, a new tool of
post-modern control, the Linear Fractional Transforma-
tion (LFT), is presented. It especially allows to represent
graphically and mathematically a system in a generic
way. The Kalman-Yakubovitch-Popov (KYP) lemma is
introduced to make the link between frequency constraints
of LFT systems and LMI optimization problems. Finally,
potential benefits of formulating the usual LC filter design
problem with these tools are enumerated.

The following notations are used. The variable s stands for
the complex Laplace variable s ∈ C. 0 and Id respectively
represent the zero matrix and the identity matrix of
appropriate dimensions. For a matrix M , its transpose and
complex conjugate transpose are denoted by MT and M∗.
For a Hermitian matrix M = M∗, inequalities M > (≥) 0
and M < (≤) 0 denote positive (semi)definiteness and

negative (semi)definiteness, respectively. Finally,

[
A B
C D

]
means that the matrix is partitioned.



2. REACTIVE FILTER SYNTHESIS

2.1 RF Reactive Filter

A RF filter is a 2-port network, composed of lumped
elements, inserted between a generator and a resistive load
(Fig. 1). Specifically, a reactive RF filter is a RF filter made
of inductances L and capacitances C.

A 2-port may be represented by an impedance matrix
Z, linking the characteristic electrical quantities U =

[U1 U2]
T

and I = [I1 I2]
T

:

U = ZI with Z =

[
z11 z12
z21 z22

]
(1)

The input impedance zin allows then to represent the
behaviour of the 2-port terminated on a resistive load Rl :

zin =
u1
i1

= z11 − z12(Rl + z22)−1z21 (2)

In order to characterize the input-output power transfer
of a loaded 2-port, the scattering matrix S is introduced :[

b1
b2

]
= S

[
a1
a2

]
with S =

[
s11 s12
s21 s22

]
(3)

where a1, a2 refer to the incident waves and b1, b2 to the
reflected waves and are defined as :

2
√
Rgb1 = U1 −RgI1 2

√
Rga1 = U1 +RgI1

2
√
Rlb2 = U2 −RlI2 2

√
Rla2 = U2 +RlI2

Using convention of Fig. 1, one can note that U1 +RgI1 =
Eg and U2 +Rli2 = 0. Little calculation gives then :

s21(jω) =
U2(jω)/

√
Rl

Eg(jω)/2
√
Rg

(4)

Typical filtering constraints are set on the power gain G,
defined by the ratio of Pl, the average power delivered to
the load Rl, to Pg the available generator power (Youla,
1971) :

G(ω2) =
Pl(ω

2)

Pg(ω2)
(5)

where

Pl(ω
2) = |U2(jω)|2/Rl Pg(ω2) = |Eg(jω)|2/4Rg (6)

Comparing (4) and (5), one gets :

G(ω2) = |s21(jω)|2 (7)

Then, power frequency-domain constraints are expressed
on the square magnitude of the scattering parameter
s21, which should also satisfies stability and causality
conditions.

The filter synthesis problem is usually solved in a two-stage
fashion. First, one computes a scattering matrix with the
scattering parameter s21 satisfying stability, causality and
frequency-domain filtering constraints. This is called the
approximation step. Then one computes a circuit synthe-
sizing this scattering matrix. This is called the realisation
step. This process requires to design first a prototype low-
pass filter, and then other versions are obtained using usual
frequency and component transformations (Baher, 1984).

Remark 1. For RF applications, the generator internal
resistance and resistive load are considered equalled to the
same value R :

Rg = Rl = R

Fig. 1. Radio Frequency Filter

The value of this resistance can be set to R = 1 Ω
and impedance scaling may be done subsequently. In this
case, the reduced voltage and currents are respectively
defined by u = U/

√
R and i =

√
RI while the normalised

impedance matrix Z is then given by

Z = Z/R (8)

The normalised scattering matrix S is defined as :

(u− i) = S(u+ i) (9)

Alternatively, the normalised scattering matrix S can be
linked to the normalised impedance matrix Z. Assuming
(Z + Id)−1 exists,

S = (Z − Id)(Z + Id)−1 = −Id + 2Z(Z + Id)−1 (10)

2.2 Approximation Stage

This stage consists in approximating, along the imaginary
axis, a desired non-negative, real, frequency-domain func-
tion by a rational function, which should be the squared
magnitude frequency response of a complex rational func-
tion. This approximation is achieved by minimizing an er-
ror measure between the desired function and the rational
function. The transfer function s21 is extracted from the
squared magnitude using spectral factorisation.

The function to be approximated is a normalized ideal low-
pass filter (see left-hand side of Fig. 2) which can provide
other versions, such as ideal bandpass filter (right-hand
side of Fig. 2), using standard frequency transformations.
The four usual approximations (Butterworth, Chebyshev
I, Chebyshev II, Elliptic) can be generated using two
criteria. A Taylor series approximation can be achieved
at ω = 0 and ω = ∞, which provides flat responses.
The Chebyshev approximation results in minimising the
maximum error over pass-band or stop-band, and produces
equi-ripple filters (Parks and Burrus, 1987).

0 ω

H(ω)

0 ω

H(ω)

Fig. 2. Ideal Low-Pass and Band-Pass Filters



This approach suffers from two main drawbacks in prac-
tice. First, frequency transformations only allow to design
bandpass filters with identical transition bandwidths. In
RF applications, a transition bandwidth may often be sig-
nificantly shorter than the other (e.g. duplexers). Resulting
filters order may then be unnecessary high. Second, none
of the usual design criteria takes explicitly into account the
order of the rational function in the minimization process.
This is of special interest as the order is related with the
number of components.

2.3 Realisation Stage

The realisation stage consists in computing a circuit which
synthesizes the desired scattering parameter s21. A circuit
can be determined by the values of its components and
the configuration they are set in, namely the topology. In
practice, a design criteria of interest is the total number of
reactive components used for the synthesis, which should
be as small as possible. A circuit with the least number of
reactive components is called minimal.

In order to ensure that a realisation exists or is minimal, to
characterize the types of components used or the topology
of the circuit, several conditions on the representative
matrices (S, Z) should be verified. For the synthesis of
a reactive filter in a ladder form, most of these constraints
are satisfied when using one of the usual approximation
methods (Youla, 1971).

Remark 2. For a lossless reciprocal network, such as a
reactive filter in a ladder form, these constraints imply
that finding the scattering parameter s21 determines the
whole scattering matrix S.

Example 1. The impedance matrix Z of a circuit made of
positive inductances and capacitances (L > 0, C > 0) is a
positive real rational matrix.

Positive realness is an important property in passive filter
synthesis.

Definition 1. (Anderson and Vongpanitlerd, 1973) A ma-

trix Z̃ of rational functions is positive real if :

(1) All elements of Z are analytic in Re [s] > 0.

(2) Z̃(s) is real for real s.

(3) Z̃(s) + Z̃∗(s) ≥ 0 for Re [s] > 0.

Algebraic Realisability Conditions Realisability condi-
tions, such as positive realness, are typically expressed in
an analytic way. In practice, given a representative matrix,
it may be truly complicated to check if it satisfies or not
these conditions. For instance, one has to test an infinite
number of points in the condition (2) of definition 1.

Alternatively, using state-space representation of the ma-
trix, equivalent algebraic conditions exist for most of these
conditions (Anderson and Vongpanitlerd, 1973; Willems,
1976). This allows to solve a finite-dimensional convex
optimization problem.

Theorem 1. Positive Real Lemma (Anderson and Vong-

panitlerd, 1973) . Let Z̃ be a matrix of real rational

functions of a complex variable s, with Z̃(∞) < ∞. Let

A,B,C,D be a minimal state-space representation of Z̃.

Then Z̃ is positive real if and only if there exist real
matrices P = PT > 0, L, W such that :

PA+ATP = −LLT

PB = CT − LW
WTW = D +DT

(11)

Remark 3. If it exists, a solution of (11) may be obtained
by computing the stabilizing solution Q = −P < 0 of the
Algebraic Ricatti Equation (Anderson and Vongpanitlerd,
1973) :

ATQ+QA− (QB+CT )(D+DT )−1(BTQ+C) = 0 (12)

Unlike the analytical case, these solutions can be easily
computed, with the aid of a computer (Zhou et al., 1996).

3. ON THE LFT FORMULATION

3.1 The Linear Fractional Transformation

Definition 2. (Doyle et al., 1991) Suppose M =

[
A B
C D

]
∈

C(p1+p2)×(q1+q2) is a complex partitioned matrix. Let D1 ⊂
Cp1×q1 andD2 ⊂ Cp2×q2 . Then the upper and lower Linear
Fractional Transformations (LFTs) are the maps :

Fl(M, ·) : D2 7→ Cp1×q1 Fu(M, ·) : D1 7→ Cp2×q2

with

Fl(M,∆l) = A+B∆l(Id −D∆l)
−1C (13)

Fu(M,∆u) = D + C∆u(Id −A∆u)−1B (14)

assuming that (Id −D∆l)
−1 and (Id −A∆u)−1 exist.

The LFTs allow to mathematically and graphically repre-
sent in a natural way feedback interconnection (Fig. 3).

Fig. 3. Lower and Upper LFTs

For instance, the diagram on the left of Fig. 3 represents
the following system :[

z1
y1

]
= M

[
w1

u1

]
u1 = ∆ly1

The resulting closed-loop transfer function from w1 to z1
is then Fl(M,∆l).

The LFT framework actually enables to represent other
system interconnections (serial, parallel, inverse, ...).

Example 2. Let consider G1 = Fl(

[
A1 B1

C1 D1

]
,∆1) and

G2 = Fl(

[
A2 B2

C2 D2

]
,∆2), both LFT systems . Then, their



Fig. 4. Parallel Connection of LFT systems

parallel connection (see Fig. 4) is the new LFT system G
defined by

G = G1 +G2 = Fl

A1 +A2 B1 B2

C1 D1 0
C2 0 D2

 , [∆1 0
0 ∆2

]
Another valuable property of LFTs is that they allow to
easily represent rational functions.

Example 3. The input impedance zin of (2) (with R = 1Ω)
can be viewed as the normalised impedance matrix Z with
a negative feedback : zin = Fl(Z,−1).

Example 4. The scattering matrix S of (10) may also be
expressed as an LFT of the normalised impedance matrix

Z : S = Fl

([
−Id

√
2Id√

2Id −Id

]
, Z

)
.

3.2 Linking LFT and LMI : the KYP Lemma

A Linear Matrix Inequality (LMI) is a matrix inequality
of the form :

F (x) = F0 +

m∑
i=1

xiFi > 0 (≥ 0) (15)

where x ∈ Rm is the variable, and Fi = FT
i , i = 1, ...,m

are given symmetric matrices.

LMIs play an important role in many Control Theory
problems (Boyd et al., 1994b).

Example 5. It can be shown (Willems, 1971) that solving
the ARE of (12) with symmetric Q = QT is equivalent
to minimize a linear objective function under the LMI
constraints : [

ATQ+QA QB + CT

BTQ+ C D +DT

]
≥ 0 (16)

Optimization problem involving only LMI constraints are
computationally attractive as they are convex and can be
solved efficiently, by interior-point methods.

The KYP Lemma The Kalman-Yakubovitch-Popov
(KYP) lemma, also known as the extension of the positive
real lemma and the bounded real lemma, is an important
result for dynamical systems analysis. It allows to equiva-
lently transpose the problem of solving an infinite number
of frequency domain inequalities into a finite dimensional
LMIs feasible problem. A modern version of the KYP
Lemma (Rantzer, 1996) can be formulated as follows.

Theorem 2. KYP Lemma Consider M = MT a real

symmetric matrix and T (jω) = Fu(

[
A B
C D

]
, 1
jω Id), with

A,B,C,D real matrices of appropriate dimensions, such
that det( 1

jω Id −A) 6= 0 for ω ∈ R and (A,B) controllable.

The following two statements are equivalent :

(1) ∀ω ∈ R, T (jω)∗MT (jω) ≤ 0
(2) There exists a real symmetric matrix P = PT such

that [
ATP + PA PB

BTP 0

]
+

[
CT

DT

]
M
[
C
D

]
≤ 0

holds.

This lemma has several extensions to consider other types
of variables and constraints (for example see Iwasaki and
Hara (2005)).

4. AIM

Our aim is to formulate the reactive filter synthesis un-
der the LFT framework, and to solve it using extended
versions of the KYP lemma. This would bring substantial
benefits detailed at the end of this section. To achieve this,
two approaches might be developed.

4.1 2-stage Approach

First, the approximation problem of the usual synthesis
method can be solved with the LFT and the KYP lemma
tools. In (Rossignol et al., 2001), the problem of synthesiz-
ing a transfer function of minimum order, satisfying poly-
nomial frequency constraints, is solved using an adapted
version of the KYP lemma. In practice, constraints are
expressed as frequency bounds and no curve fitting is
required. This makes this approach more valuable and
allows to ensure to compute the minimum order.

Realisability conditions, which are inherently satisfied in
the usual approximation stage, need to be added to this
method. This may then enable to achieve the realisation
stage as in the usual approach. These realisability condi-
tions have to be formulated as LMI constraints, using for
instance extended versions of the KYP lemma.

In (Anderson and Vongpanitlerd, 1973), most of these
conditions have been expressed in terms of the state-space
representation of the representative matrices to be synthe-
sized. This paper is an attempt to illustrate the relation
between constraints on the state-space representation and
equivalent LMI constraints. Once this is achieved, the
usual realisation method can be applied.

4.2 Unified Approach

Alternatively, one can consider a unified approach using
the LFT framework. This is based on the following obser-
vation. The RF electronics filter design problem consists
in synthesising an electronics circuit, of which a represen-
tative function satisfies frequency constraints. The LFT
tool enables to represent graphically and mathematically
a system, its subsystem interconnection, and its input-
output behaviour.

Therefore, the LFT representation may be viewed as a
generic way of representing systems, and electronics filter
circuits are specific systems. In one hand, one has to
include practical constraints which are implicit in circuit
representations. In the other hand, the generic property of
the LFT representation may allow to create new intercon-
nections of practical interest, which are too complex to be
synthesized with current circuit representations.



4.3 Potential Benefits

Several benefits are expected to be obtained by formulat-
ing the reactive filter synthesis problem with new Control
tools (LFT, LMI, KYP).

First, the synthesis problem may be optimally solved, in
the sense that the resulting filter will have the minimal
number of reactive components. As already mentioned,
usual methods for designing the function s21 do not
guarantee minimality of its order, which is linked to the
number of reactive components used.

Second, the generic property of the LFT representation
may enable to extend the method to other types of filters
than LC filters. In practice, inductors have been tried to be
avoided due to their poor integration characteristics for the
benefits of resonators (namely SAW/BAW resonators).
In RF electronics, tunable filters made of capacitors and
resonators may have a crucial role in the near future
but raise formidable design problems (Hashimoto et al.,
2011). Usual simulation methods for designing resonator-
based filters are inadequate for tackling such challenge.
A theoretical method allowing to design these tunable
filters is therefore required. Additionally, the synthesis of
MIMO (Multiple Input Multiple Output) filters may also
be considered.

Third, the LFT framework enables to make the so-called µ-
analysis, widely developed in Control Theory (Zhou et al.,
1996). This may then allow to make a precise robustness
analysis of the synthesized circuit. This is of practical
interest as sources of uncertainties are numerous (values
of the components, lossy components, simplified model,
...).

Finally, this approach is not restricted to analog filters
design and may be extended to digital filters. For instance,
in (Iwasaki and Hara, 2005), the finite impulse response
filters design problem is solved using an extended version
of the KYP lemma. Infinite impulse response filters may be
obtained by using the well-known bilinear transformation.
It can also be noticed that the transfer function of an
infinite impulse response filter is a rational function of the
discrete variable z, and can therefore be represented using
the LFT framework.
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