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Compressions of a polycarbonate honeycomb

André Galligo, Jean Rajchenbach and Bernard Rousselet

Abstract

The in-plane compressive response of a polycarbonate honeycomb with circu-
lar close-packed cells is considered first experimentally then analytically. Un-
der quasi-static uniaxial compression, we observed behaviors strongly depend-
ing on the orientation: for one of the two main orientations the compression is
homogeneous, while for the other the deformation localizes in a very narrow
band of cells. More surprisingly, for not crushing but extreme compression,
when the load is released, the deformation is reversed, the localization disap-
pears and the polycarbonate returns to its original shape. In order to explain
this strange phenomena, we develop a geometric model of this honeycomb to-
gether with an expression of the bending energy. We focus on a basic mechani-
cal element made of an elastica triangle. We also compare our description with
previous experimental studies and simulations made with similar material. Fi-
nally, to illustrate mathematically this type of behavior, we present a simple
model for buckling deformations with two degrees of freedom.
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1 Introduction

Honeycombs are widely used material and it is important to understand the
mechanism governing their responses to compressions. Here we consider a
polycarbonate honeycomb with circular close-packed cells, (as shown in the
following pictures) that we submitted to a in-plane quasi-static uniaxial com-
pression, with different orientations. Since the common tangents to the circles
of the plane initial configuration form an hexagonal mesh, there are two differ-
ent natural directions of compression, namely when the vertical compression
axis is either parallel or perpendicular to a tangent. In the first case, the cir-
cles are positioned in columns, in the second case they are in a staggered ar-
rangement. We observed that, as expected, in the first case the deformation was
homogeneous, compressing all the rows. However, in the second case we ob-
served a localization along few horizontal rows. More surprisingly the second
kind of deformations were also reversible, contradicting usual expectations.

To understand these phenomena, we first compared our observations with
other published experiments, mainly the excellent work of S. Papka et S. Kyr-
iakides [3], which is accompanied with coherent simulations performed by a
detailed computer model. While their aim was to describing the different steps
of a complete crushing of a material, the first steps of their described experi-
ments coincide with ours. So our first contribution is the observation of what
happens when one releases the load after the localization is achieved, and the
surprising fact is that the process is reversible.

Our second contribution is the description of a geometric model for the
deformation of the circular close-packed cells and the corresponding hexagonal
mesh, controlled by the evolution of the total bending energy of the mechanism.
For that purpose, we propose an alternative decomposition of the material in an
aggregate of curved triangles instead of the obvious aggregate of circles. We
also develop spline approximate models of their geometry. All of this allows
us to provide a rational explanation of the considered phenomena.

The last section will be dedicated to the presentation and the mathematical
analysis of a simple mechanical model with two degrees of freedom. The target
will be to somehow illustrate, with a much simpler model, the observed local-
ization of the deformations which combines a kind of buckling with a rotation;
in particular the process is reversible.

We thank the CNRS Fédération Doeblin, for its support during the prepara-
tion of this work.
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1.1 Experiments

We submitted a circular polycarbonate honeycomb to a in-plane quasi-static
uniaxial compression, along two compression directions either parallel or per-
pendicular to a cell tangent. We observed two completely different behaviors:
from the one hand a homogeneous deformation and for the other hand a local-
ization.

Figure 1 shows the first and last step of a compression (before a release of
the load); we observe that the middle rows of the cells are strongly bent on the
left or on the right and almost crushed. In other words the deformation localizes
along the middle rows.

We also notice a quasi invariance by some horizontal translations.

Fig. 1 Compression of a circular honeycomb in a staggered stack

The very surprising fact is that when we stop the compression at this point
and leave the material free to relax, it returns to its initial configuration.

In an important paper [3], S. Papka et S. Kyriakides studied the crushing of
the same kind of polycarbonate honeycombs that we are considering.

We refer to the figure 2 of page 243 of the article [3] of S. Papka et S.
Kyriakides which describes the sequence they observed through 8 successive
images of deformed configurations, corresponding to response to a long com-
pression. The picture labeled (0) to (3) are completely conform to our obser-
vations, with the same kind of localization phenomena (before we release the
load).

S. Papka et S. Kyriakides also mentioned accurate measures of the geomet-
ric characteristics of the cells of the honeycomb, pointing out variations of wall
thickness and “ovalisation”, illustrated by a picture that we sketch in the left
panel of Figure 2. These facts were also confirmed in an article [1] by L.L.
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Hu, T.X. Yu, Z.Y. Gao and X.Q. Huang, who also provided a convincing photo
taken with a microscope.

We emphasize that, on the picture, we can notice that near the stick points,
the ovals coincide at an higher order than an usual tangent point. We based our
modelization on this important observation.

displacement

Fig. 2 Left panel: Sketches of the microscopic geometry near a stick point. Right panel: Non
linear behavior of the response.

S. Papka et S. Kyriakides recorded the compressive response in order to
describe the different steps of the crushing, in the right panel of Figure 2 we
sketched a graph summarizing for our own experiment (before the final crush-
ing) the non-linear evolution of the stress against the displacement. The number
on this graph correspond to those of Figure 2.0.2.

Finally, we also report that they provided a computer model of the com-
pression process. Their problem was discretized using the software ABAQUS
with quadratic beam elements; the simulation of crushing of a honeycomb was
conform to the observations summarized in the figure cited above and allowed
to describe precisely the process.

2 Geometric Modelization

We consider that the basic polycarbonate material of the curved walls is
isotropic and hyper elastic which implies that it admits reversible elementary
deformations.

We will assume that the length of each arc of curve between two stick points
does not vary during a deformation and that the deformations keep the sections
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in the same plane, so all the study will be conducted in 2D. An invariance by
horizontal translations is also assumed.

We consider that the glue between the “circular” packed cells play a key
role that we formalize through the two following geometric hypothesis: Dur-
ing all the compression and release process we consider that the curvatures at
the sticking points are zero. At the beginning of the compression, the 3 semi-
tangents at the stick points of a curved triangle meet in a same point. This
property remains true for small deformations or when the triangle admits a
symmetry axis. Assuming this simplifying property, we can associate to the
polycarbonate an abstract hexagonal mesh (made of small tangent segments)
which resembles an hexagonal honeycomb and follows the deformation of the
polycarbonate.

It makes sense to view the polycarbonate honeycomb not as an aggregate of
packed circles, but as an aggregate of curved triangles (represented by Bezier
splines) that can be deformed, provided that any two adjacent semi-tangents
coincide.

j os i
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Fig. 3 Model of curved triangle, undeformed and deformed.

We now present an explanation of the unexpected phenomena observed in
our experiments.

Let us emphasize, with the illustration of Figure 2, that the initial curved
triangles are positioned differently relatively to the load, so that after the first
step of the compression the remaining axial symmetries are different.

Let us consider in both cases, (stacks in columns or staggered) the effects of
a compression.
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Fig. 4 Two distinct directions of conserved symmetry.

2.0.1 Stack ““in columns’

e The compression respects the horizontal symmetry of each curved triangle,
of each oval, and of each hexagon formed by the tangents.

o The stack of hexagons made by the tangents deform (reversibly) to a flat-
tened stack of hexagons.

2.0.2 ”Staggered* stack

o After a certain load the "horizontal* side of the triangle reaches a maximum
allowed length, then either it stops deforming or it buckles and a vertex
bends (randomly on the left or on the right), then the triangle rotates in that
direction.

e This behavior localizes along few rows where imperfections create a weak-
est resistance to buckling.

e In this process these curved triangles eventually rotate by an angle of Z, and
behaves in a way similar to the one described for the curved triangles in a
stack “in columns”.

The whole phenomena is illustrated on the sequence of four images shown
in Figure 2.0.2, their ordering 1 to 4 correspond to those of Figure 2. To em-
phasize the described process, we chose three different colors to single out the
behavior of each of the curved triangles surrounding an oval in a localizing
row. Note that a central symmetry is clearly conserved.

When the load is released, each flattened curved triangle reacts elastically,
in particular the ones in the upper and lower rows which did not buckle or ro-
tate recover their original form. In the localized rows, the vertices which were
forced to meet are anew separated, can relax, the process is then inverted and
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Fig. 5 Deformations and rotations around an oval.

the curved triangles in the localization row rotate in the opposite direction.

3 A simple model for buckling deformations

In this section we present a model with 2 degrees of freedom made of 3 bars
linked with 2 hinges; one bar is linked to a fixed hinge whereas the third one is
linked to an hinge which can move horizontally and on which a horizontal load
is applied. The system may be described with 3 angles of the bars with respect
to the unloaded configuration @1, ¢, ¢3; see the figure below. The work of the
applied load is Pw; where the horizontal displacements of the hinges are:
up=0,u; =L (1 —cos(¢)), up =1 (1 —cos(¢1)) +L(1—cos(¢)),
w=1(1—cos(¢1))+L(l—cos(¢))+13(1—cos(¢3)).

The horizontal ones are: xg = 0,x1 = [ sin(¢1) x2 = bpsin(¢,),x3 = 0 and
we have: x; —x; = I3sin(¢3); ¢ = arcsin(7L), ¢, = arcsin(3) and 03 =
arcsin(*2 13"1 ).

We assume that torsion springs are active on hinges A| and A;; we denote
with 0y, 6, the relative angle of rotation of each bar with respect to its neighbor;
01 (x1,x2) = @1 (x1,x2) — @3(x1,x2), G2 (x1,x2) = P2 (1, x2) + P3(x1,2x2).

Assuming the torsion springs to be linear elastic, the strain energy is
%(Kl 612 + K> 622) Then the total energy involving the work of the applied load
is
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V(xl ,X2) = %[K] (91 (X] ,X2))2 +K2(92(X] ,XZ))z] - PW(X] ,xz). (1)
With this energy, we get the equilibrium equation: gTV =0, gTV =0.

To simplify the computations, we assume here that I = ?2 =l =1 and
that K1 = K2 = 1. Then by symmetry, the equilibrium can be reached only if
X2 = X1 O X = —Xj.

For P < 1, then x = 0 is the only stable equilibrium. For 1 < P < 3, then
x =0 is an unstable equilibrium and two stable equilibriums appears for x, = x;

and P = &) o |x1| almost equal to /(6(P —1). For P > 3, two stable

X1
equilibriums appears for x, = —x; and |x;| almost equal to \/(2(P—3)/3. It
corresponds to the configuration shown in the next figure.
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