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Abstract

Background: Genome-wide association studies (GWASs) have been widely used to discover the genetic basis of
complex phenotypes. However, standard single-SNP GWASs suffer from lack of power. In particular, they do not
directly account for linkage disequilibrium, that is the dependences between SNPs (Single Nucleotide Polymorphisms).

Results: We present the comparative study of two multilocus GWAS strategies, in the random forest-based
framework. The first method, T-Trees, was designed by Botta and collaborators (Botta et al., PLoS ONE 9(4):e93379,
2014). We designed the other method, which is an innovative hybrid method combining T-Trees with the modeling
of linkage disequilibrium. Linkage disequilibrium is modeled through a collection of tree-shaped Bayesian networks
with latent variables, following our former works (Mourad et al., BMC Bioinformatics 12(1):16, 2011). We compared the
two methods, both on simulated and real data. For dominant and additive genetic models, in either of the conditions
simulated, the hybrid approach always slightly performs better than T-Trees. We assessed predictive powers through
the standard ROC technique on 14 real datasets. For 10 of the 14 datasets analyzed, the already high predicted power
observed for T-Trees (0.910-0.946) can still be increased by up to 0.030. We also assessed whether the distributions of
SNPs’ scores obtained from T-Trees and the hybrid approach differed. Finally, we thoroughly analyzed the
intersections of top 100 SNPs output by any two or the three methods amongst T-Trees, the hybrid approach, and the
single-SNP method.

Conclusions: The sophistication of T-Trees through finer linkage disequilibrium modeling is shown beneficial. The
distributions of SNPs’ scores generated by T-Trees and the hybrid approach are shown statistically different, which
suggests complementary of the methods. In particular, for 12 of the 14 real datasets, the distribution tail of highest
SNPs’ scores shows larger values for the hybrid approach. Thus are pinpointed more interesting SNPs than by T-Trees,
to be provided as a short list of prioritized SNPs, for a further analysis by biologists. Finally, among the 211 top 100
SNPs jointly detected by the single-SNP method, T-Trees and the hybrid approach over the 14 datasets, we identified
72 and 38 SNPs respectively present in the top25s and top10s for each method.
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disequilibrium modeling, Forest of latent tree models, Bayesian network with latent variables, Hybrid approach,
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Background
The etiology of genetic diseases may be elucidated by
localizing genes conferring disease susceptibility and by
subsequent biological characterization of these genes.
Searching the genome for small DNA variations that
occur more frequently in subjects with a peculiar disease
(cases) than in unaffected individuals is the key to asso-
ciation studies. These DNA variations are observed at
characterized locations - or loci - of the genome, also
called genetic markers. Nowadays, genotyping technolo-
gies allow the description of case and control cohorts (a
few thousand to ten thousand individuals) on the genome
scale (hundred thousands to a fewmillion of geneticmark-
ers such as Single Nucleotide Polymorphisms (SNPs)).
The search for associations (i.e. statistical dependences)
between one or several of the markers and the disease
is called an association study. Genome-wide association
studies (GWASs) are also expected to help identify DNA
variations that affect a subject’s response to drugs or influ-
ence interactions between genotype and environment in
a way that may contribute to the on-set of a given dis-
ease. Thus, improvement in the prediction of diseases,
patient care and achievement of personalized medicine
are three major aims of GWASs applied to biomedical
research.
Exploiting the existence of statistical dependences

between neighbor SNPs is the key to association stud-
ies [1, 2]. Statistical dependences within genetical data
define linkage disequilibrium (LD). To perform GWASs,
geneticists rely on a set of genetic markers, say SNPs,
that cover the whole genome and are observed for any
genotyped individual of a studied population. However,
it is highly unlikely that a causal variant (i.e. a genetic
factor) coincides with a SNP. Nevertheless, due to LD, a
statistical dependence is expected between any SNP that
flanks the unobserved genetic factor and the latter. On
the other hand, by definition, a statistical dependence
exists between the genetic factor responsible for the dis-
ease and this disease. Thus, a statistical dependence is
also expected between the flanking SNP and the studied
disease.
A standard single-SNPGWAS considers each SNP on its

own and tests it for association with the disease. GWASs
considering binary affected/unaffected phenotypes rely
on standard contingency table tests (chi-square test, like-
lihood ratio test, Fisher’s exact test). Linear regression is
broadly used for quantitative phenotypes.
The lack of statistical power is one of the limitations

of single-SNP GWASs. Thus, multilocus strategies were
designed to enhance the identification of a region on
the genome where a genetical factor might be present.
In the scope of this article, a “multilocus” strategy has
to be distinguished from strategies aiming at epistasis
detection. Epistatic interactions exist within a given set

of SNPs when a dependence is observed between this
combination of SNPs and the studied phenotype, whereas
no marginal dependence may be evidenced between
the phenotype and any SNP within this combination.
Underlying epistasis is the concept of biological inter-
actions between loci acting in concert as an organic
group. In this article, a multilocus GWAS approach
aims at focusing on interesting regions of the genome,
through a more thorough exploitation of LD as in single
SNP-GWASs.
When inheriting genetic material from its parents,

an individual is likely to receive entire short segments
identical to its parents’ - called haplotypes -. Thus, as a
manifestation of linkage disequilibrium - namely depen-
dences of loci along the genome -, in a short chromosome
segment, only a few distinct haplotypes may be observed
over an entire population (see Fig. 1). Chromosomes are
mosaics where extent and conservation of mosaic pieces
mostly depend on recombination and mutation rates,
as well as natural selection. Thus, the human genome
is highly structured into the so-called “haplotype block
structure” [3].
The most basic approach in the field of multilocus

strategies, haplotype testing, relies on contingency tables
to study haplotype distributions in the case and cohort
groups. The traditional haplotype-based tests used in
case-control studies are goodness-of-fit tests to detect a
contrast between the case and control haplotype distri-
butions [4]. Theoretical studies have shown that multi-
allelic haplotype-based approaches can provide superior
power to discriminate between cases and controls, com-
pared to single-SNP GWASs, in mapping disease loci [5].
Besides, the use of haplotypes in disease association stud-
ies achieves data dimension reduction as it decreases the
number of tests to be carried out.
However, one limitation is that haplotype testing

requires the inference of haplotypes - or phasing -, a
challenging computational task at genome scale [6, 7].
Another limitation is that when there are many haplo-
types, there are many degrees of freedom and thus the
power to detect association can be weak. Besides, the
estimates for the rare haplotypes can be prone to errors
as the null distribution may not follow a chi-square dis-
tribution. To cope with these issues, some works have
considered haplotype similarity to group haplotypes into
clusters. Thus, using a small number of haplotype clusters
reduces the number of degrees of freedom and allevi-
ates the inconvenience related to rare haplotypes. In this
line, a variable length Markov chain model was designed
by Browning and Browning to infer localized haplotype
clustering and subsequently carry out an haplotype-based
GWAS [8].
To accelerate haplotype-based GWASs, some authors

rely on phase known references [9]. Allele prediction
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Fig. 1 Illustration of linkage disequilibrium. Human chromosome 22. The focus is set on a region of 41 SNPs. Various color shades indicate the
strengths of the correlation between the pairs of SNPs. The darkest (red) shade points out the strongest correlations. The white color indicates the
smallest correlations. Blocks of pairwise highly correlated SNPs are highlighted in black. For instance, the block on the far right encompasses 7 SNPs
in linkage disequilibrium

is achieved using a reference population with available
haplotype information. To boost haplotype inference,
Wan and co-authors only estimate haplotypes in rele-
vant regions [10]. For this purpose, a sliding-window
strategy partitions the whole genome into overlapping
short windows. The relevance of each such window is
analyzed through a two-locus haplotype-based test. Hard-
ware accelerators are also used in the works reported
in [11], to speed up the broadly used PHASE haplotype
inference method [12].
The formidable challenge of GWASs demands algo-

rithms that are able to cope with the size and complexity
of genetical data. Machine learning approaches have been
shown to be promising complements to standard single-
SNP and multilocus GWASs [13, 14]. Machine learning
techniques applied to GWASs encompass but are not
limited to penalized regression (e.g. LASSO [15], ridge
regression [16]), support vector machines [17], ensemble
methods (e.g. random forests), artificial neural networks
[18] and Bayesian network-based analyses [19, 20]. In par-
ticular, random forest-based methods were shown very
attractive in the context of genetical association stud-
ies [21]. Random forest classification models can provide
information on importance of variables for classification,
in our case for classification between affected and unaf-
fected subjects.
In this paper, we compare a variant of the random forest

technique specifically designed for GWASs, T-Trees, and
a novel approach combining T-Trees with the modeling
of linkage disequilibrium through latent variables. The
modeling relies on a probalistic graphical framework,
using the FLTM (Forest of latent tree models) model.
The purpose of the present work is to examine how the
already high performances of T-Trees are affected when
combining T-Trees with a more refined modeling of

linkage disequilibrium than through blocks of contiguous
SNPs as is done in T-Trees. In our innovative proposal,
linkage disequilibrium is modeled into a collection of
tree-shaped Bayesian networks each rooted in a latent
variable. In this framework, these latent variables roughly
play the role of haplotypes. In the remainder of this paper,
we focus on binary phenotypes (i.e. affected/unaffected
status).
The random forest technique settles the grounds of an

ensemble method relying on the decision tree concept. In
machine learning, a decision tree is a model used for clas-
sification purpose. However, building a decision tree often
entails model overfitting, with detrimental consequences
on the subsequent use of this model. Breiman thus intro-
duced the random forest concept, to design an ensemble
method to subsequently average prediction over a set of
decision trees [22]: a random forest is thus a collection
of decision trees built from variables that best deter-
mine between two classes. In the GWAS field, the two
classes correspond to affected and unaffected statuses,
and the variables involved in the trees are good candidate
to explain the disease. Random forests have proven useful
to analyze GWAS data [23].
However, the necessity to handle high-dimensional data

has led to the proposal of variants. In [24], a two-stage
procedure only allows pre-filtered SNPs as explanatory
variables in the forest’s trees. Filtering separates informa-
tive and irrelevant SNPs in two groups, based on their
p-values. In [25], the entire genome is randomly divided
into subsets. A random forest is fit for each subset, to
compute subranks for the SNPs. The definite ranks of the
SNPs are defined based on these subranks and are then
iteratively improved.
Among the GWAS strategies focused on random

forests, the works of Botta and collaborators are specific in
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that they attempt to acknowledge linkage disequilibrium
[26]. These works have resulted in the T-Trees model,
an embedded model where the nodes in the trees of a
random forest are themselves trees. From now on, we
will refer to meta-trees having meta-nodes, together with
embedded trees and nodes. Basic biological information
is integrated in these internal trees, for which the vari-
ables (SNPs) to be chosen are selected from adjacent
windows of same width covering the whole genome. How-
ever, a more refined multilocus approach can be designed,
that drops the principle of windows, to better model
linkage disequilibrium. Our proposal is to combine the
T-Trees approach with another machine learning model,
able to infer a map of SNP clusters. Such clusters of SNPs
are meant to extend the notion of haplotype blocks to
genotype clusters.
Many efforts have been devoted to model linkage

disequilibrium. To achieve this aim at the genome
scale, machine learning techniques involving probabilis-
tic graphical models have been proposed in particular
(see [27] and [28] for surveys). In this line, decomposable
Markov random fields have been investigated through the
works on interval graph sampling and junction tree sam-
pling of Thomas and co-workers ([29] and [30], respec-
tively), those of Verzilli and co-workers [20] and Edwards’
works [31]. Investigations focused on Bayesian networks
with latent variables have resulted in two models: the
hidden Markov model of Scheet and Stephens [12] under-
lying the PHASE method on the one hand, and the forest
of latent tree models (FLTM) developed by Mourad and
co-workers [32], on the other hand.
The aim of this methodological paper is to compare

the original T-Trees method proposed by Botta and col-
laborators to the same method augmented with more
refined biological knowledge. The blocks of SNPs are
replaced with clusters of SNPs resulting from the model-
ing of linkage disequilibrium in the first layer of the FLTM
model of Mourad and co-workers. This study is necessary
to assess whether the T-Trees approach with LD inte-
gration provides similar or complementary results with
respect to the original T-Trees strategy. In addition, these
two multilocus strategies are compared to a standard
single-SNPGWAS. The comparison is performed on four-
teen real GWAS datasets made available by the WTCCC
(Wellcome Trust Case Control Consortium) organization
(https://www.wtccc.org.uk/).

Methods
The first subsection provides a gentle introduction to the
standard random forest framework. The objective is to
pave the way for further explaining the workings of the
more advanced T-Trees and hybrid FLTM / T-Trees meth-
ods. The second subsection presents T-Trees in a progres-
sive way. It leads the reader through the two embedded

levels (and according learning algorithms) of the T-Trees
model. The FLTM model is presented in the third sub-
section, together with a sketch of its learning algorithm.
The fourth subsection depicts the hybrid FLTM / T-Trees
approach. Strong didactical concerns have motivated the
unified presentation of all learning algorithms, to allow
full understanding for both non-specialists and special-
ists. A final subsection focuses on the design of the
comparative study reported in this paper.

A random forest framework to run genome-wide
association studies
Growing a decision tree is a supervized task involving
a learning set. It is a recursive process where tree node
creation is governed by cut-point identification. A cut-
point is a pair involving one of the available variables,
v∗, and a threshold value θ . Over all available variables,
this cut-point best discriminates the observations of the
current learning set with respect to the categories c1
and c2 of some binary categorical variable of interest c
(the affected/unaffectetd status in GWASs). At the tree
root, the first cut-point allows to split the initial learning
set into two complementary subsets, respectively satis-
fying v∗ ≤ θ and v∗ > θ , for some identified pair
(v∗, θ ). If the discrimination power of cut-point (v∗, θ ) is
high enough, one should encounter a majority of obser-
vations belonging to category c1 and category c2 (or
symmetrically), for both subsets respectively. However,
at some node, if all observations in the current learn-
ing set belong to the same category, the node needs no
further splitting and recursion locally ends in this leaf.
Otherwise, recursion will be continued, on both novel
learning subsets resulting from splitting. Thus will be pro-
vided two subtrees, to be grafted to the current node
under creation.
The generic scheme of the standard learning algo-

rithm for decision trees is provided in Algorithm 1. Its
ingredients are: a test to terminate recursion (line 1),
recursion termination (line 2), and recursion preceded
by cut-point identification (lines 4 to 7). We will rely on
this reference scheme to highlight the differences with
variants further considered in this paper. Recursion ter-
mination is common to this learning algorithm and the
aforementioned variants. Algorithm 2 shows the instan-
tiation of the former general scheme, in the case of
standard decision tree growing. The conditions for recur-
sion termination are briefly described in Algorithm 2
(see caption).
In the learning algorithm of a decision tree, exact

optimization is performed (Algorithm 2, line 6 to 9):
for each variable v in V and for each of the iv values
in its value domain Dom(v) = {θv1, θv2, · · · θviv}, the
discrimination power of cut-point (v, θvi) is evaluated.
If the cut-point splits the current learning set D into

https://www.wtccc.org.uk/
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Algorithm 1 Generic scheme for decision tree learning.
See Algorithm 2 for details on recursion termination.
When recursion is continued, the current learning set D
is splitted into two complementary subsets D� and Dr
(line 5), based on some cut-point CP (see text) formerly
determined (line 4). These subsets serve as novel learn-
ing sets, to provide two trees (line 6). These trees are then
grafted to the current node under creation (line 7).
FUNCTION growTree(V, c, D, Sn, St)
INPUT:
V, n labels of n discrete variables
c, the label of a binary categorical variable (c /∈ V )
D = (DV,Dc), learning set consisting of
DV, a matrix describing the n variables of V for each of the rows (i.e.
observations)
Dc, a vector describing categorical variable c for each of the
observations in DV

Sn, a threshold size (in number of observations), to control decision
tree leaf size
St, a threshold size (in number of nodes), to forbid expanding the tree
beyond this size

OUTPUT:
T , a node in the tree under construction

1: if recursionTerminationCase(DV , Dc, Sn, St)
2: then terminate recursion
3: endif

4: identify a cut-point CP to discriminate the observations in DV with
respect to categorical variable c

5: split D = (DV ,Dc) into D� = (DV�,Dc�) and Dr = (DVr ,Dcr)
according to cut-point CP

6: grow a tree T� and a tree Tr from D� and Dr , respectively
7: return a node T with T� and Tr as its child nodes

D� and Dr , the quality of this candidate cut-point is
commonly assessed based on the conditional entropy
measure : discriminatingScore(cut{-}point, D, c) =
H(D/c) − w� × H(D�/c) − wr × H(Dr/c), where
H(X/Y ) denotes the conditional entropy (H(X/Y ) =
∑

x∈Dom(X),y∈Dom(Y ) p(x, y) log
p(x)
p(x,y) ), c is the binary cat-

egorical variable, and w� and wr denote relative sample
set sizes. Thus, an optimal cut-point is provided for each
variable v in V, through the maximization of discriminat-
ingScore (Algorithm 2, line 7). Finally, the best optimal
predicate over all variables in V is identified (Algorithm 2,
line 9).
Single decision trees are subject to several limitations,

and in particular a (very) high variance which makes
them often suboptimal predictors in practice. A tech-
nique called bagging was proposed by Breiman to bring
robustness in machine learning algorithms with regard to
this aspect ([33]). Bagging conjugates bootstrapping and
aggregating. The reader is reminded that bootstrapping
is a resampling technique consisting in sampling with
replacement from the original sample set. Bootstrapping

Algorithm 2 Decision tree learning - Detailed scheme.
Recursion termination is triggered in three cases: homo-
geneity detection, insufficient size of the current learning
set, and control of the size of the tree under construction
(line 1 to 5). Homogeneity is encountered in the two fol-
lowing cases: either all observations share the same value
for each variable in V (and thus no novel cut-point can
be identified from DV ), or all observations belong to the
same category (e.g c1) in DV (i.e. the node is pure). To
detect insufficient size at a node, the number of obser-
vations in the current learning set D is compared to
threshold Sn. To control tree expansion and thus learn-
ing complexity, the number of nodes in the tree grown
so far is compared to threshold St . In each of the previ-
ous recursion termination cases, a leaf is created (line 3).
The novel leaf is labeled with the category represented in
majority at this node, or best, with the probability distri-
bution observed over DV at this node (e.g. P(c1) = 0.88;
P(c2) = 0.12).
FUNCTION growDecisionTree(V, c, D, Sn, St)
INPUT:
see INPUT section of FUNCTION growTree (Algorithm 1)

OUTPUT:
T , a node in the decision tree under construction

1: if recursionTerminationCase(DV , Dc, Sn, St)
2: then
3: create a leaf node T labeled by probability distribution
4: of categorical variable c over observations(DV ); return T
5: endif

6: foreach v ∈ V
7: OCP(v) ← optimalCutPoint(DV [v] , Dc)
8: endfor
9: OCP∗ ← argmax

OCP(v),v∈V
discriminatingScore(OCP(v))

10: ((DV�,Dc�), (DVr ,Dcr)) ← splitData ((DV ,Dc), OCP∗)
11: T� ← growDecisionTree (V , c, (DV�,DC�), Sn, St)
12: Tr ← growDecisionTree (V , c, (DVr ,DCr), Sn, St)
13: create a node T with label OCP∗ and child nodes T� and Tr
14: return T

allows to generate an ensemble of predictors learned
from slightly different versions of the original learning
set. Thus, in a prediction framework, robustness is
brought through the aggregation of predictions across
the predictors in the ensemble. Bagging was one of the
motivations to design the ensemble technique yielding a
random forest.
On the other hand, other searchers investigated the idea

of building tree-based models through a stochastic tree-
growing algorithm instead of a deterministic one, as in
decision trees. The idea of combining bagging with ran-
domization led to the random forest model [22]. In the
random forest model consisting of T trees, two kinds of
randomization are introduced [34, 35]: (i) global, through
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Algorithm 3 Generic scheme common to variants of the
random forest model. The generic function growRFTree
is sketched in Algorithm 7 (Appendix).
FUNCTION buildRandomForest(V, c, D, T, Sn, St, K)

INPUT:
V, n labels of n discrete variables
c, the label of a binary categorical variable (c /∈ V )
D = (DV,Dc), learning set consisting of
DV, a matrix describing the n variables of V for each of the p rows
(i.e. observations)
Dc, a vector describing categorical variable c for each of the p
observations in DV

T, number of trees in the random forest to be built
Sn, a threshold size (in number of observations), to control decision
tree leaf size
St, a threshold size (in number of nodes), to forbid expanding a tree
beyond this size
K, number of variables in V, to be selected at random at each node, to
compute the cut-point

OUTPUT:
F , a random forest

1: F ← ∅
2: for i in 1 to T
3: Di ← bootstrapping(D)

4: Ti ← growRFTree(V , c, Di, Sn, St , K)

5: F ← F ∪ Ti
6: endfor

the generation of T bootstrap copies; (ii) local, at the node
level, for which the computation of the optimal cut-point
is no more performed exactly, namely over all variables in
V, but instead over K variables selected at random in V.
The second randomization source both aims at decreas-
ing complexity for large datasets, and diminishing the
variance.
Two of the three methods compared in the present

study, T-Trees and the hybrid FLTM/T-Trees approach,
are variants of random forests. For further reference,
Algorithm 3 outlines the simple generic sketch that gov-
erns the growing of an ensemble of tree-based models, in
the random forest context. It has to be noted that a novel
set of K variables is sampled at each node, to compute the
cut-point at this node. It follows that the instantiations of
generic Algorithm 1 (growTree) into growDecisionTree
(Algorithm 2), and growRFTree adapted to the random
forest framework (Appendix, Algorithm 7), only differ in
the cut-point identifications. Table 1(A) and 1(B) show the
difference between growDecisionTree and growRFTree.
For the report, the full learning procedure growRFTree is
depicted in Algorithm 7 in Appendix.
For a gradual introduction to the hybrid FLTM / T-

Trees approach, we will refer to various algorithms in the
remaining of the paper. The relationships between these
algorithms are described in Fig. 2.

Table 1 Differences between the implementations of cut-point
identification at a current node, for various instantiations of
growTree

(A) growDecisionTree. (B) growRFTree. (C) growExtraTree. Functions
growDecisionTree, growRFTree and growExtraTree are the instantiations of
the generic function growTree (Algorithm 1), in the standard decision tree learning
context, the random forest learning context, and the Extremely randomized tree
(Extra-tree) context, respectively. Functions growDecisionTree and growRFTree
are respectively detailed in Algorithm 2 (main text) and Algorithm 7 (Appendix).
Complexity decreases across the three compared functions from exact optimization
on the whole set V of variables, through exact optimization restrained to a random
subset Valeat of V, and to optimization over the cut-points selected at random for
the variables in a random subset Valeat

The T-Trees approach
The novelty in the T-Trees approach is that it treats more
than one variable at each of the nodes, in the context of
association studies [36]. In the GWAS context, the rea-
son to modify the splitting process lies in the presence
of dependences within the SNPs (i.e. within the variables
in V ), called linkage disequilibrium. This peculiar struc-
ture of the data entails an expectation of limited haplotype
diversity, locally on the genome. Based on the physical
order of the SNPs along the genome, the principle of T-
Trees approach is to partition the set of variables V into
blocks of B contiguous and (potentially highly) correlated
variables. Each split will then be made on a block of SNPs
instead of a single SNP, taking advantage of the local infor-
mation potentially carried by the region covered by the
corresponding block. However, addressing node splitting
based on several variables was quite a challenge. For this
purpose, Botta and collaborators customized a random
forest model where each node in any tree embeds itself
a tree. This “trees inside trees” model is abbreviated in
T-Trees. Figure 3 describes the structure of a T-Trees
model. Basically, the splitting process used in any node (or
rather meta-node) of the random forest is now modified
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Fig. 2 Synoptic view of the relationships between the algorithms introduced in the article. Rectangles filled with the darkest (blue) color shade
indicate generic algorithms. Rectangles filled with the lightest (yellow) color shade indicate detailed instances of the algorithms

as follows: it involves a block of B variables, selected
from K candidate blocks, instead of a single variable
selected from K candidate variables as in random forests.
In the case of GWASs, each block consists of B con-
secutive SNPs. For each meta-node, an embedded tree
is then learned from a subset of k variables selected at
random from the former block of B variables. Thus, it
has to be noted that an additional source of randomiza-
tion is brought to the overall learning algorithm: k plays
in embedded tree learning the same role as the afore-
mentioned parameter K plays in learning the trees at the
random forest level. Only, to lower the complexity, k is
much smaller than K (e.g. K is in the order of magnitude
103, k is less than few tens). Above all, overall T-Trees
learning tractability is achieved through the embedding of
trees that are weak learners. Aggregating multiple weak
learners is often the key to ensemble strategies’ efficiency
and tractability [37]. The weak embedded learner used
by Botta and co-workers is inspired from the one used
in the ensemble Extremely randomized tree framework
proposed by Geurts and co-workers [38]. Following these
authors, the abbreviation for Extremely randomized tree
is Extra-tree.
In the Extra-tree framework, a key to diminishing the

variance is the combination of explicit randomization
of cut-points with ensemble aggregation. Just as impor-
tantly, explicit randomization of cut-points also intends
to diminish the learning complexity for the whole ensem-
ble model, as compared to the standard random forest
model. We now focus of the basic brick, the (single) Extra-
tree model, when embedded in the T-Trees context. The
Extra-tree model drops the idea of identifying an optimal
cut-point for each of the k variables selected at random
among the B variables in a block. Instead, this method

generates the k candidate cut-points at random and then
identifies the best one. Table 1(C) highlights the differ-
ences with the cut-point identifications in growDecision-
Tree and growRFTree (Table 1(A) and 1(B)). However,
embedding trees presents a challenge for the identifica-
tion of the cut-point at a meta-node (for each meta-node
of the random forest, in the T-Trees context). So far,
we know that, at a meta-node n with current learning
set Dn, the solution developed in the T-Trees framework
selects at random K blocks B1 · · · BK of B variables
each, and accordingly learns K Extra-trees ET1 · · · ETK .
In turn, each Extra-tree ETb is learned based on k vari-
ables selected from block Bb. Now the challenge consists
in being able to split the current learning set Dn, based on
some cut-point involving a meta-variable to be inferred.
This novel numerical feature has to reflect the variables
exhibited in Extra-tree ETb. Botta and co-workers define
this novel numerical feature ν as follows: for Extra-tree
ETb, the whole current learning set Dn (of observations)
has been distributed into ETb’s leaves; each leaf is then
labeled with the probability to belong to, say, category c1
(e.g. 0.3); therefore, for each observation o in Dn reaching
leaf L, this meta-variable is assigned L’s label (e.g. ν(o) =
0.3); consequently, the domain of the meta-variable can
be defined (Dom(ν) = {ν(o), o ∈ observations(Dn)});
finally, it is straightforward to identify a threshold θb that
optimally discriminates Dn over the domain value of the
meta-variable. The previous process described to iden-
tify the threshold θb for a meta-variable plays the role of
function OptimalCutPoint in the generic scheme of ran-
dom forest learning (line 8 of Algorithm 7, Appendix). We
wish to emphasize here that the vast performance assess-
ment study of the T-Trees method conducted by Botta
[36] evidenced high predictive powers (i.e. AUCs over 0.9 -



Sinoquet BMC Bioinformatics  (2018) 19:106 Page 8 of 24

a

b

d e

c

Fig. 3 The embedded structure of the T-Trees model. The focus is set on the expansion of one meta-tree. a First meta-node N1. b Extra-tree
embedded in meta-node N1. c Details of the Extra-tree embedded in meta-node N1. The value indicated in each leaf is the probability to be a case
in this leaf. The five values 0.0008, 0.040, 0.351, 0.635 and 0.999 define the value domain of the meta-variable that corresponds to meta-node N1.
d Threshold 0.635 is the best threshold among the five values of the meta-variable to discrimate between affected and unaffected subjects. Node
N1 is splitted accordingly. As regards the left subtree expansion of N1, a novel meta-node N2 is created. Right subtree expansion of N1 ends in a
meta-leaf (number of subjects below threshold 2000). eWhole meta-tree grown with its two embedded trees

The concept of AUC will be further recalled in Section
Methods / Study design / Road map). Since the T-Trees
method was empirically shown efficient, the explanation
for such high performances lies in the core principles
underlying T-Trees design: (i) transformation of the orig-
inal input space into blocks of variables corresponding to
contiguous SNPs potentially highly correlated, due to link-
age disequilibrium and (ii) replacement of the classical
univariate linear splitting process by a multivariate non-
linear splitting scheme of several variables belonging to a
same block.

The FLTM approach
In contrast with the “ensemble method” meaning of
“forest” in the two previous subsections, the Forest of
Latent Tree Models (FLTM) we now focus on is a tree-
shaped Bayesian network with discrete observed and
latent variables.

A Bayesian network is a graphical model that encodes
probabilistic relationships among n variables, each
described for p observations. The nodes of the Bayesian
network represent the variables, and the directed edges
in the graph represent direct dependences between vari-
ables. A probability distribution over the p observations
is associated to each node. If the node corresponding
to variable v has parents Pav, this distribution is condi-
tional (P(v/Pav)). Otherwise, this distribution is marginal
(P(v)). The collection of probability distributions over all
nodes is called the parameters.
The FLTMmodel was designed byMourad and collabo-

rators for the purpose of modeling linkage disequilibrium
(LD) at the genome scale. Indeed, the frontiers between
regions of LD are fuzzy and a hierarchical model allows to
account for such fuzziness. LD is learned from an n × p
matrix (i.e. n SNPs × p individuals). FLTM-based LD
modeling consists in building a specific kind of Bayesian
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network with the n observed variables as tree leaves and
latent variables as internal nodes in the trees. The struc-
ture of an FLTMmodel is depicted in Fig. 4.
Learning a latent tree is challenging in the high dimen-

sional case. There existO
(
23n2

)
candidate structures for a

latent tree derived from n observed variables [39]. Learn-
ing the tree structure can only be efficiently addressed
through iterative ascending clustering of the variables
[40]. A similarity measure based on mutual informa-
tion is usually used to cluster discrete variables. On the
other hand, parameter learning requires time-consuming
procedures such as the Expectation-Maximization (EM)
algorithm in the case of missing data. Dealing with latent
variables represents a subcase of the missing data case.
The FLTM learning algorithm is sketched and commented
in Fig. 5.
To allow a faithful representation of linkage disequi-

librium, a great flexibility of FLTM modeling was an
objective of Mourad and collaborators’ works: (i) No fixed
cluster size is required; (ii) The SNPs allowed in the same
cluster are not necessarily contiguous on the genome,
which allows long range disequilibrium modeling (iii) In
the FLTM model, no two latent variables are constrained
to share some user-specified cardinality. The reason of the
FLTM learning algorithm tractability is four-fold: (i) Vari-
ables are allowed in the same cluster provided that there
are located within a specified physical distance on the
genome. Handling a sparse similarity matrix is afford-
able whereas using a pairwise matrix would not; (ii) Local
learning of latent class model (LCM) has a complexity lin-
ear in the number of LCM’s child nodes; (iii) A heuristics
in constant time provides the cardinality required by EM
for the latent variable of each LCM; (iv) There are at most
3 n latent variables in a latent tree built from n observed
variables.

The hybrid FLTM / T-Trees approach
Now the ingredients to depict the hybrid approach devel-
oped in this paper are in place. In T-Trees, the blocks of
B contiguous SNPs are a rough approximation of linkage
disequilibrium. In contrast, each latent variable in layer 1

Fig. 4 The forest of latent tree models (FLTM). This forest consists of
three latent trees, of respective heights 2, 3 and 1. The observed
variables are shown in light shade whereas the dark shade points out
the latent variables

of the FLTMmodel pinpoints a region of LD. The connec-
tion between the FLTM and T-Trees models is achieved
through LD mapping. The block map required by T-Trees
in the original proposal is replaced with the cluster map
associated with the latent variables in layer 1. It has to be
emphasized that this map consisting of clusters of SNPs is
not the output of a mere clustering process: in Fig. 5e, a
latent variable and thus its corresponding cluster are val-
idated following a procedure involving EM learning for
Bayesian network parameters.
The hybrid approach is fully depicted and commented

in Algorithms 4, 5 and 6. Hereinafter, we provide a broad
brush description. In Algorithm 4, the generic random
forest scheme of Algorithm 3 achieving global random-
ization is enriched with the generation of the LD map
through FLTM modeling (lines 1 and 2). This map is
one of the parameters of the function growMetaTree
(Algorithm 4, line 6). The other parameters of growMeta-
Tree will respectively contribute to shape the meta-trees
in the random forest (Sn, St , K ) and the embedded trees
(sn, st , k) associated to the meta-nodes. Both parameters
K and k achieve local randomization. In addition, func-
tion growMetaTree differs from growRFTree (Appendix,
Algorithm 7) in two points: it must expand an embed-
ded tree through function growExtraTree (Algorithm 5,
line 8) for each of K clusters drawn from the LD map;
it must then infer data for the meta-variable defined
by each of the K Extra-trees, to compute the opti-
mal cut-point for each such meta-variable (optimalCut-
PointTTrees, Algorithm 5, line 9). Algorithm 6 fully
details function growExtraTree, in which identification
of cut-points achieves a further step of randomization
(line 8).
In a random forest-based approach, the notion of vari-

able importance used for decision trees is modified to
include in Nodes(v) the set of all nodes, over all T trees,
where v is used to split. As such, this measure is however
dependent on the number T of trees in the forest. Nor-
malization is used to divide the previous measure (over
the T trees) by the sum of importances over all variables.
Alternatively, dividing by the maximum importance over
all variables may be used.
In the GWAS context, the differences between standard

single-SNP GWAS, the T-Trees approach and the hybrid
FLTM / T-Trees approach are schematized in Fig. 6.

Study design
In this last subsection, we first present the data used in our
comparative analysis. Then, details are provided regarding
software implementation, including considerations about
the validation of the software parallelization. We next
describe the parameter setting for the methods involved
in the comparative study. Finally, we provide the road map
of our methodological analysis.
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a b

c e

d

f a

Fig. 5 Principle of the learning algorithm of the FLTM model. Illustration for first iteration. a Given some scalable clustering method, the observed
variables are clustered into disjoint clusters. b For each cluster C of size at least 2, a latent class model (LCM) is straightforwardly inferred. An LCM
simply connects the variables in cluster C to a new single latent variable L. c The cardinality of this single latent variable is computed as an affine
function of the number of child nodes in the LCM, controled with a maximum cardinality. d The EM algorithm is run on the LCM, and provides the
LCM’s parameters (i.e. the probability distributions of the LCM’s nodes). e Now the probability distribution is known for L, the quality of the latent
variable is assessed as follows: the average mutual information between L and any child in C, normalized by the maximum of entropies of L and any
child in C, is compared to a user-specified threshold (τ ); with mutual information defined asMI(X , Y) = ∑

x∈Dom(X)

∑
y∈Dom(Y) P(x, y) log P(x,y)

P(x)P(y) ,

and entropy defined as H(X) = −∑
x∈Dom(X) P(x) logP(x). f If the latent variable is validated, the FLTM model is updated: in the FLTM under

construction, a novel node representing L is connected to the variables in C; the former probability distribution P(ch) of any child variable ch in C is
replaced with P(ch/L). The probability distribution P(L) is stored. Finally, the variables in C are no more referred to in the data, latent variable L in
considered instead. The updated graph and data are now ready for the next iteration. This process is iterated until all remaining variables are
subsumed by one latent variable or no new valid latent variable can be created. For any latent variable L, and any observation j, data can be inferred
through sampling based on probability distribution P(L/C) for j’s values of child variables in cluster C.

Simulated data
To simulate realistic genotypic data and an associ-
ation between one of these SNPs and the disease
status, we relied on one of the most widely-used soft-
ware programs, HAPGEN (http://mathgen.stats.ox.ac.uk/
genetics_software/hapgen/hapgen2.html) [41]. To control
the effect size of the causal SNPs, three ingredients were
combined: severity of the disease expressed as genotype
relative risks (GRRs) for various genetic models (GMs),
minor allele frequency (MAF) of the causal SNP. The
genetic model was specified among additive, dominant
or recessive. Three genotype relative risks were consid-
ered (1.2, 1.5 or 1.8). The range of the MAF at the causal
SNP was specified within one of the three intervals [0.05-
0.15], [0.15-0.25] or [0.25-0.35]. The disease prevalence
(percentage of cases observed in a population) specified
to HAPGEN was set to 0.01. These choices are justified as
standards used for simulations in association genetics.

HAPGEN was run on a reference haplotype set of the
HapMap phase II coming from U.S. residents of northern
and western European ancestry (CEU). Datasets of 20000
SNPs were generated for 2000 cases and 2000 controls.
Each condition (GM, GRR,MAF) was replicated 30 times.
For each replicate, we simulated 10 causal SNPs. Stan-
dard quality control for genotypic data was carried out:
we removed SNPs with MAF less than 0.05 and SNPs
deviant from Hardy-Weinberg Equilibrium with a p-value
below 0.001.

Real data
The GWAS data we used was made available by the
WTCCC (Wellcome Trust Case Control Consortium)
organization (https://www.wtccc.org.uk/). The WTCCC
provides GWAS data for seven pathologies: bipolar disor-
der (BD), coronary artery disease (CAD), Crohn’s disease
(CD), hypertension (HT), rheumatoid arthritis (RA), Type

http://mathgen.stats.ox.ac.uk/genetics_software/ hapgen/hapgen2.html
http://mathgen.stats.ox.ac.uk/genetics_software/ hapgen/hapgen2.html
https://www.wtccc.org.uk/
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Fig. 6 Outline of the study. In the single SNP GWAS, SNPs are tested
one at a time for association with the disease. In the T-Trees method,
the cut-point in any meta-node of the T-Trees random forest is
computed based on blocks of, say, 20 contiguous SNPs. In the hybrid
FLTM / T-Trees approach, FLTM modeling is used to provide a map of
clusters; the cut-point in any meta-node of the hybrid random forest
is calculated from clusters of SNPs output by the FLTM model

Algorithm 4 The upper level of the hybrid FLTM / T-
Trees approach. Function growMetaTree is sketched in
Algorithm 5.
FUNCTION hybrid-FLTM-TTrees(V, c, D, T, Sn, St, K, sn, st, k)

INPUT:
V, n labels of n discrete variables
c, the label of a binary categorical variable (c /∈ V )
D = (DV,Dc), learning set consisting of
DV, a matrix describing the n variables of V for each of the p rows
(i.e. observations)
Dc, a vector describing categorical variable c for each of the p
observations in DV

T, number of meta-trees in the random forest to be built
Sn, a threshold size (in number of observations), to control meta-tree
leaf size
St, a threshold size (in number of meta-nodes), to forbid expanding a
meta-tree beyond this size
K, number of clusters in LD map, to be selected at random at each
meta-node, to compute the meta-node cut-point
sn, a threshold size (in number of observations), to control embedded
tree leaf size
st, a threshold size (in number of nodes), to forbid expanding an
embedded tree beyond this size
k, number of variables in an LD cluster, to be selected at random at
each node, to compute the node cut-point

OUTPUT:
F , an ensemble of T meta-trees

1: LDMap ← runFLTM(V , D) /* set of disjoint clusters, partitio- */
2: /* ning V, and modeling linkage disequilibrium (LD) */

3: F ← ∅
4: for i in 1 to T
5: Di ← bootstrapping(D)

6: Ti ← growMetaTree(V , c, Di, Sn, St , LDMap, K , sn, st , k)
7: F ← F ∪ Ti
8: endfor

1 diabetes (T1D) and Type 2 diabetes (T2D). The data
from the two cohort controls provided by the WTCCC
was also included. For each pathology, we carried out a
comparative study on two datasets corresponding to two
chromosomes.
The NHGRI-EBI Catalog of published genome-wide

association studies (https://www.ebi.ac.uk/gwas/) allowed
us to select these two chromosomes: for each pathol-
ogy, we retained the chromosomes respectively showing

Algorithm 5 Meta-tree learning in the hybrid FLTM /
T-Trees framework - Detailed scheme. Notation: given a
cluster c� of variables in V, M[ [c�] ] denotes the matrix
constructed by concatenating the columns M[v], with v ∈
c� (see line 8). At line 9, for Extra-tree ETc�, function
optimalCutPointTTrees proceeds as follows: the whole
current learning set of observations Di is distributed into
ETc�’s leaves; each leaf is then labeled with the probability
to belong to, say, the category c1 of the binary categorical
variable c. Thus the value domain Dom(νc�) of the numer-
ical meta-variable νc� corresponding to Extra-tree ETc�
can be defined: for each observation o in Di reaching leaf
L , the meta-variable νc� is assigned L ’s label; therefore,
Dom(νc�) = {νc�(o), o ∈ observations(Di)}. A threshold
θc� is then easily identified, that optimally discriminates
the observations in Di with respect to binary categorical
variable c. This provides OCP(c�), the optimal cut-point
associated to the meta-variable νc� (line 9).
FUNCTION growMetaTree(V, c, Di , Sn , St, LDMap, K, sn , st, k)

INPUT:
see INPUT section of FUNCTION hybrid-FLTM-TTrees (Algorithm 4)
Di = (DVi ,Dci), learning set consisting of
DVi , a matrix describing the n variables of V for each of the rows (i.e.
observations)
Dci , a vector describing categorical variable c for each of the observations
in DVi

LDMap, a set of disjoint clusters, partitioning V, and modeling linkage
disequilibrium (LD)

OUTPUT:
T , a meta-node in the meta-tree under construction

1: if recursionTerminationCase(DVi, Dci , Sn, St)
2: then
3: create a leaf node T labeled by probability distribution
4: of categorical variable c over observations(DVi); return T
5: endif

6: select at random a subset Clustersaleat of K clusters in LDMap
7: foreach c� in Clustersaleat
8: ETc� ← growExtraTree(c�, c, (DVi[ [c�] ] ,Dci), sn, st , k)
9: OCP(c�) ← optimalCutPointTTrees(observations(DVi), ETc�)
10: endfor
11: OCP∗ ← argmax

OCP(c�),c�∈Clustersaleat
discriminatingScore(OCP(c�))

12: ((DVi� ,Dci� ), (DVir ,Dcir )) ← splitData((DVi ,Dci),OCP∗)
13: T� ← growMetaTree (V , c, (DVi�,Dci� ), Sn, St , LDMap, K , sn, st , k)
14: Tr ← growMetaTree (V , c, (DVir ,Dcir ), Sn, St , LDMap, K , sn, st , k)
15: create a node T with label OCP∗ and child nodes T� and Tr
16: return T

https://www.ebi.ac.uk/ gwas/
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the highest and lowest numbers of published associated
SNPs so far. Table 2 recapitulates the description of the 14
WTCCC datasets selected. A quality control phase based
on specifications provided by the WTCCC Consortium
was performed [42]. In particular, SNPs were dismissed
based on three rules: missing data percentage greater than
5%, missing data percentage greater than 1% together
with frequency of minor allele (MAF) less than 5%;
p-value for exact Hardy-Weinberg equilibrium test less
than 5.7 × 10−7; p-value threshold for trend test (1 ddl)
equal to 5.7 × 10−7 and p-value threshold for general test
(2 ddl) equal to 5.7 × 10−7.

Implementation
The T-Trees (sequential) software written in C++was pro-
vided by Botta. A single run is highly time-consuming
for GWASs in the orders of magnitude we have to deal
with. For example, on a processor INTEL Xeon 3.3 GHz,
running T-Trees on chromosome 1 for Crohn’s disease
requires around 3 days. In these conditions, a 10-fold
cross-validation (to be further described) would roughly
require a month. On the other hand, around 5 GB are
necessary to run T-Trees with the parameter values rec-
ommended by Botta [36], which restrains the number of
executions in parallel. The only lever of action left was
to speed up T-Trees software through parallelization. We
parallelized Botta’s code using the OpenMP application
programming interface for parallel programming (http://
www.openmp.org/).

Table 2 Description of the 14 GWAS datasets selected

Pathology Chromosome Number Number of Number of associated
of SNPs individuals SNPs published

BD Chr03 31554 4806 37

Chr21 6645 3

CAD Chr05 29946 4864 11

Chr06 28085 −
CD Chr01 37267 4686 31

Chr20 11586 1

HT Chr10 26635 4890 8

Chr14 14640 −
RA Chr06 28085 4798 59

Chr19 5845 2

T1D Chr02 38730 4901 16

Chr13 17999 1

T2D Chr10 26635 4862 51

Chr21 6645 3

The last column refers to the associated SNPs published in the NHGRI-EBI Catalog of
published genome-wide association studies (https://www.ebi.ac.uk/gwas/). BD:
bipolar disorder. CAD: coronary artery disease. CD: Crohn’s disease. HT:
hypertension. RA: rheumatoid arthritis. T1D: Type 1 diabetes. T2D: Type 2 diabetes

Algorithm 6 Extra-tree learning in the hybrid FLTM / T-
Trees framework - Detailed scheme.
FUNCTION growExtraTree (c�, c, Di, sn, st, k)
INPUT:
see INPUT section of FUNCTION hybrid-FLTM-TTrees (Algorithm 4)
c�, the labels of discrete variables grouped in a cluster
Di = (Dc�i, Dci), learning set consisting of
Dc�i, a matrix describing the discrete variables in c� for each of the
rows (i.e. observations)
Dci, a vector describing categorical variable c for each of the
observations in Dc�i

OUTPUT:
T , a node in the Extra-tree under construction

1: if recursionTerminationCase(Dc�i, Dci, sn, st)
2: then
3: create a leaf node T labeled by probability distribution
4: of categorical variable c over observations(Dc�i); return T
5: endif

6: select at random a subset Valeat of k variables in cluster c�
7: foreach v in Valeat
8: RCP(v) ← randomCutPoint(Dc�i[v] , Dci)
9: endfor

10: ORCP∗ ← argmax
RCP(v),v∈Valeat

discriminatingScore(RCP(v))

11: ((Dc�i� ,Dci� ), (Dc�ir ,Dcir )) ← splitData ((Dc�i,Dci), ORCP∗)
12: T� ← growExtraTree (c�, c, (Dc�i� ,Dci� ), sn, st , k)
13: Tr ← growExtraTree (c�, c, (Dc�ir ,Dcir ), sn, st , k)
14: create a node T with label ORCP∗ and child nodes T� and Tr
15: return T

For the purpose of this study we also developed the third
version of our FLTM learning algorithm [43]. It was writ-
ten in C++ and relies on the ProBT library dedicated to
Bayesian networks (http://www.probayes.com/fr/, http://
www.probayes.com/fr/recherche/probt/, [44, 45]). In this
version, the user is proposed a choice of three clustering
methods. The one used in the present work is DBSCAN
(Density-Based Spatial Clustering of Applications with
Noise) [46]. In clustering methods belonging to the
density-based category, a cluster is defined as a dense
component able to grow in any direction density leads
to. In this category, DBSCAN was chosen as it meets
two essential criteria: non-specification of the number of
clusters and ability to scale well. The theoretical runtime
complexity of DBSCAN is O(n2), where n denotes the
number of items to be grouped into clusters. Nonetheless,
the empirical complexity is known to be lower. DBSCAN
requires two parameters: R, the maximum radius of
the neighborhood to be considered to grow a cluster,
and Nmin, the minimum number of neighbors required
within a cluster. Details about the DBSCAN algorithm
are available in [47] (page 526, http://www-users.cs.umn.
edu/~kumar/dmbook/ch8.pdf).
Finally, we wrote scripts (in Python) to automatize the

comparison of the results provided by the three GWAS

http://www.openmp.org/
http://www.openmp.org/
https://www.ebi.ac.uk/gwas/
http://www.probayes.com/fr/
http://www.probayes.com/fr/recherche/probt/
http://www.probayes.com/fr/recherche/probt/
http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf
http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf
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strategies: single-SNP GWAS, T-Trees, and hybrid FLTM/
T-Trees approach.

Validation of the software parallelization
Parallelization is known to potentially entail biases in
results. We therefore took great care to check whether
this was the case for the parallelization of T-Trees soft-
ware. We recall that T-Trees is stochastic, with four
sources of randomization. Thus, we controled random-
ization through fixing random grains and we compared
the sequential and parallelized versions of T-Trees on five
datasets. The comparison shows that importance mea-
sures are practically indentical, with some rare minor dis-
crepancies (results not shown). In any case, SNP ranking
is conserved from sequential to parallelized version.

Parameter setting
T-Trees and the hybrid FLTM / T-Trees approach share
7 parameters (T, Sn, St , K, sn, st , k). We tuned them after
the experiments and remarks reported in [36]. In T-Trees,
the size of the blocks of SNPs was set to 20. The FLTM
learning algorithm requires 6 parameters (α, β , cardmax, τ ,
nb{-}EM{-}restarts, δ). All 13 parameters are depicted
in Table 3. The values of α, β , τ and nb{-}EM{-}restarts
were set after the indications in [32]. The value of cardmax
was set according to our own experimental feedback. The
value for δ was chosen to control the running time in
the case of high dimensional data. In addition, the clus-
tering procedure DBSCAN plugged into FLTM learning
requires 2 parameters (R, Nmin). To avoid questionable
empirical setting of the R parameter, for each of the
14 datasets analyzed, we ran the FLTM learning algo-
rithm for a wide range of possible values of R. For each
dataset, we retained the FLTM model with the R param-
eter that optimized an entropy-based criterion. Table 3
recapitulates these 15 parameters and indicates the
parameter setting or the parameter interval chosen for the
present study.

Roadmap
Our methodological analysis consisted of four main tasks.

Comparison of the performances of T-Trees and the hybrid
approach on simulated data
We computed the percentage of the causal SNPs found
among the top results, over all replicates related to
the same condition (GM, GRR, MAF). We successively
computed this percentage for the top 25, top 50, top 100,
top 200 and top 1000 results.

Comparison of the predictive powers of T-Trees and the
hybrid approach on real data
ROC (Receiver operator characteristic) curves help quan-
tify and compare the powers of classifiers [48]. In the

context of disease prediction, positives (P) and negatives
(N) respectively stand for affected and unaffected. The
ROC curve involves four proportions: TPs (true posi-
tives), FNs (false negatives), TNs (true negatives), and
FPs (false positives). The ROC curve plots sensitivity
(TP/P = TP/(TP+FN)) against 1− specificity (TN/N =
TN/(TN + FP)). Assuming positive statuses rank higher
than negative statuses, the area under the curve (AUC)
is equal to the probability that the prediction tool under
analysis will rank a randomly chosen affected subject
higher than a randomly chosen unaffected one. A high
AUC is expected for a good classifier. We compared the
AUCs obtained for T-Trees and the hybrid FLTM / T-
Trees approach on 14 datasets, following a 10-fold cross
validation scheme. In this scheme, the initial dataset D is
split into 10 smaller datasets of equal size {Di, 1 ≤ i ≤ 10}.
The model is trained on nine tenths of the data (training
set) and tested on the remaining tenth (testing set). This
process is iterated ten times. The ith iteration involves test-
ing set Di. It is important to note that in the hybrid FLTM
/ T-Trees approach, the LD map provided by FLTM is the
same for all 10 iterations.

Comparison of the distributions of variable importances
obtained from T-Trees and the hybrid approach on real data
A third task consisted in comparing the distributions of
variable importances for the two random forest-based
methods. Besides descriptive statistics, a peer analysis
relying on Wilcoxon rank sum test and Pearson correla-
tion was performed.

Analysis of the SNP sets jointly identified by any two among
the three, or the threemethods compared on real data
In contrast to single-SNP GWASs, random forest-based
GWASs entail heavy computational burden. Therefore, it
is not affordable to assess the statistical significance of
the importance measure based on an empirical distribu-
tionH0, to provide a p-value. Dealing with p-values on the
one hand, and importance values on the other hand, our
comparative study focused on the 100 top ranked SNPs,
for each of the single-SNP, T-Trees, and hybrid FLTM /
T-Trees approaches.

Results and discussion
This section presents and discusses the results obtained
following the road map abovedepicted.

Comparison of the performances of T-Trees and the hybrid
approach on simulated data
Figure 7 allows to compare the performances of T-Trees
and the hybrid approach under each of the 27 condi-
tions simulated. For the additive and dominant genetic
models, we find that the hybrid approach almost always
outperforms T-Trees when small sets of top results are
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Table 3 Parameter setting for the experimentations. The T-Trees parameters were tuned according to the experiments and remarks
reported in [36]. In the hybrid FLTM / T-Trees approach, k was automatically adjusted to the current cluster size. The values of the FLTM
parameters were set after indications from [32], except for cardmax and δ which were tuned according to our own experience. The
cardinality of a latent variable L is computed as an affine function of the number of child SNPs, nc : card(L) = min(α + β × nc , cardmax).
To avoid questionable empirical setting of DBSCAN’s R parameter, for each of the 14 datasets analyzed, we ran the FLTM learning
algorithm for a wide range of possible values of R. For each dataset, we retained the FLTM model with the R parameter that optimized
an entropy-based criterion. The value of the other DBSCAN’s parameter, Nmin , was set to the minimum

Method Parameter Description Value

T-Trees and hybrid approach Size for the blocks of contiguous SNPs (T-Trees) 20

T Number of meta-trees in the random forest 1000

Sn Threshold size (in number of observations), to control
meta-tree leaf size

2000

St Threshold size (in number of meta-nodes), to forbid
expanding a meta-tree beyond this size

∞

K (T-Trees)
K (hybrid)

Number of contiguous blocks of SNPs, or number of
clusters in LDMap, to be selected at random at each
meta-node, to compute its cut-point

1000

sn Threshold size (in number of observations), to control
embedded tree leaf size

1

st Threshold size (in number of nodes), to forbid expand-
ing an embedded tree beyond this size

5

k Number of variables in a block (T-Trees) or cluster
(hybrid), to be selected at random, at each node, to
compute its cut-point

size of block or of cluster

FLTM α Three parameters to model the cardinality of each 0.2
β latent variable as an affine function with a maximum 2
cardmax threshold 10

τ Threshold to control the quality of latent variables 0.3

nb−EM−restarts Number of random restarts for the EM algorithm 10

δ Maximal physical distance (bp), to allow two SNPs in
the same cluster

50 × 103

DBSCAN R Maximum radius of the neighborhood to be consid-
ered to grow a cluster

value selected in 0.05 to 0.9, step 0.05

Nmin Minimum number of points required within a cluster 2

examined. Then, sooner or later, the discrepancy between
the methods diminishes. For a first illustration, we exam-
ine condition (GM: add, GRR: 1.5, MAF: 0.25-0.35).
Regarding the top 25 set, the hybrid approach slightly out-
performs T-Trees, with a percentage of simulated causal
SNPs retrieved equal to 71.7% (versus 70.8% for T-Trees).
The discrepancy is higher for the top 50 set, for which
the hybrid method is able to retrieve 89.4% of the causal
SNPs, in contrast to the relatively low percentage of 79.3%
for T-Trees. As from the top 100 set, both methods show
quasi similar performances. Under this condition, the top
100 set contains around 94% of the causal SNPs. For a
second illustration, we now focus on condition (GM: add,
GRR: 1.5, MAF: 0.15-0.25). The percentage of simulated
causal SNPs retrieved in the top 25 set is 62.2% for the
hybrid method. This percentage is only 52.7% for T-Trees.
Both methods present a top 1000 percentage around 90%
(respectively 91.0% and 90.2% for the hybrid method and
T-Trees). Under this condition, a difference between the

two methods exists up to the top 100 set (90.3% versus
83.7%).
For the additive and dominant models, we observe a

more or less smooth degradation of the performances as
the MAF and GRR decrease. However, the hardest case
(GRR: 1.2, MAF: 0.05-0.15) is an exception, for which
even the top 100 to top 1000 percentages are low (below
30%). In constrast, as expected, in all conditions, the
performances are poor for the recessive model.
Regarding the recessive model, the trend is mitigated,

with T-Trees performing better than the hybrid approach
or vice versa. Over the 9 (GRR,MAF) conditions, there are
only two cases for which the hybrid approach slightly out-
performs T-Trees. In 2 of the most 3 difficult conditions,
(GRR: 1.2, MAF: 0.15-0.25) and (GRR: 1.5, MAF: 0.05-
0.15), the hybrid approach outperforms T-Trees up to top
100 set included (with the exception of top 25 for the first
condition previously mentioned). Table 4 recapitulates the
main trends observed.
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Fig. 7 Comparison of the performances of T-Trees and the hybrid approach on simulated data. We computed the percentage of the causal SNPs
found among the top results, over all replicates related to the same condition (GM, GRR, MAF). GM: genetic model (add, dom, rec); GRR: genetic
relative risk; MAF: minor allele frequency of the causal SNP; H: hybrid approach, T: T-Trees approach. We successively computed this percentage for
the top 25, top 50, top 100, top 200 and top 1000 results

To conclude, these first experiments show that combin-
ing T-Trees with the modeling of linkage disequilibrium
improves the original T-Trees method.

Comparison of the predictive powers of T-Trees and the
hybrid approach on real data
The parallelization of T-Trees allowed to decrease the
running time from around 3 days to around 3 hours.
Thus, the 10-fold cross-validation time was reduced from
around one month to less than 40 hours. The AUCs for
T-Trees and the hybrid FLTM / T-Trees approach are dis-
played in Table 5. The first conclusion to draw is that
both methods perform similarly, with, on average, a slight
improvement of the hybrid method over T-Trees in 10
cases over 14. Globally, the absolute difference in AUCs

between the two methods ranges from 0.6 to 3.0%. For the
10 situations showing improvement, the average improve-
ment amounts to 1.74% and the standard deviation is
0.85%. It was not a foregone result that we could improve
the performance of T-Trees as it was already high. We
conclude that the sophistication of T-Trees through finer
linkage disequilibriummodeling is shown beneficial in the
majority for the 14 datasets analyzed.

Comparison of the distributions of variable importances
obtained from T-Trees and the hybrid approach on real
data
For a complementary analysis, we compared the distribu-
tions of variable importances across the SNPs, obtained
from T-Trees and the hybrid FLTM / T-Trees approach.
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Table 4 Main trends observed in the comparison of the performances of T-Trees and the hybrid approach on simulated data. See
Fig. 7 for abbreviations and details

As the trends for the additive and dominant genetic models are comparable for each of the 9 conditions simulated (GRR, MAF), we only focus here on the additive and
recessive models

Additional file 1 in Supplementary data provides the
results of this thorough analysis. Table 1 in Additional
file 1 displays the minimum, maximum, average and
standard deviation values obtained for both T-Trees and
hybrid approaches. The extract shown in Table 6 is repre-
sentative of the trend observed over the 14 datasets. For
T-Trees, importance measures vary from non-detectable

Table 5 Comparison of performances for T-Trees and the hybrid
FLTM / T-Trees approach

Pathology Chromosome AUC T-Trees AUC hybrid FLTM /
T-Trees approach

BD Chr03 0.928 0.934

Chr21 0.933 0.958

CAD Chr05 0.953 0.934

Chr06 0.968 0.947

CD Chr01 0.943 0.952

Chr20 0.917 0.944

HT Chr10 0.910 0.940

Chr14 0.921 0.932

RA Chr06 0.957 0.950

Chr19 0.946 0.962

T1D Chr02 0.956 0.939

Chr13 0.935 0.957

T2D Chr10 0.942 0.961

Chr21 0.927 0.936

The bold face characters highlight the highest AUC observed between T-Trees and
the hybrid approach

to orders of magnitude of 10−2 for 7 datasets and
10−1 for the 7 other datasets. As regards the hybrid
approach, importancemeasures vary from non-detectable
to orders of magnitude 10−2 and 10−1 respectively for
6 and 8 datasets. Except for one dataset, (CD, Chr20),
the maximal importance values are in the same order of
magnitude for both methods. Besides, for T-Trees and the
hybrid approach, averages across SNPs are always in the
same order of magnitude (10−5, exceptionally 10−4 for 3
datasets ((BD, Chr21), (RA, Chr19) and (T2D, Chr21)).
The orders of magnitude for the standard deviations are
in the range [10−4-10−3]. Again, the trend observed is
similarity in the orders of magnitude for T-Trees and the
hybrid approach, except for 3 datasets ((BD, Chr03), (BD,
Chr21) and (CD, Chr20)).

However, complementary statistics shed more light on
the distributions compared. From Table 2 in Additional
file 1 (Supplementary data), we observe that the corre-
lation coefficient varies from 0.13 to 0.98. Moreover, the
Wilcoxon test rejects the null hypothesis of similarity for
the two distributions, in all 14 cases. An extract of this
table is shown in Table 7. Since, according to theWilcoxon
test, the mean ranks between the distributions differ, the
conclusion to draw is that, in particular, the top SNPs are
likely to differ between the two methods compared.
Tables 3 to 16 in Additional file 1 (Supplementary data)

help decipher the origin of the discrepancies between
the T-Trees and hybrid approaches’ distributions. For
each dataset (pathology, chromosome), the correspond-
ing table compares the 25%, 50%, 75% and 100% quantiles
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Table 6 Range of variation, average and standard deviation for
the distributions of variable importances across the SNPs,
obtained from T-Trees and the hybrid FLTM / T-Trees approach.
Excerpt of Table 1 in Additional file 1 (Supplementary data)

Pathology Method Minimum Maximum Average Standard
Chromosome deviation

TD2, Chr10 T-Trees 0 0.019 3.8e-05 2.5e-04

hybrid 0 0.089 3.2e-05 6.4e-04

RA, Chr19 T-Trees 0 0.372 1.7e-04 4.9e-03

hybrid 0 0.391 2.1e-04 5.3e-03

CD, Chr20 T-Trees 0 0.030 5.9e-05 8.6e-05

hybrid 0 0.119 8.6e-05 1.2e-03

Convention : 0 stands for non-detectable at 10−8 threshold. The two first datasets
are representative of the general trend observed over the 14 datasets analyzed:
same order of magnitude for maxima, averages and standard deviations,
respectively. Besides, dataset (T2D, Chr10) is among the datasets showing the
smallest maxima. Dataset (RA, Chr19) shows the highest maxima. (CD, Chr20)
represents the unique case of discrepencies between the orders of magnitude of
the maxima (in favor of the hybrid approach). Dataset (CD, Chr20) is also one of the
three cases showing a discrepancy in the standard deviations’ orders of magnitude

obtained for T-Trees and the hybrid approach. Impor-
tantly, a focus is also set on the 6 quantiles that correspond
to the top 300, top 200, top 100, top 50, top 20 and
top 10 SNPs output by each method. A first observa-
tion is that up to the 50% quantile, for both methods,
the importance measures vary in the range of from non-
detectable (i.e. below 10−8) to the order of magnitude
10−5 at most (exceptionally 10−4 at most for T-Trees and
datasets (BD, Chr21) and (RA, Chr19)). We also observe a
constant trend: up to 75% quantile included, the hybrid’s
method quantiles are always lower than T-Tree’s quan-
tiles. In contrast, for 12 datasets out of 14, the hybrid’s
method quantiles are higher than T-Trees’ quantiles as
from some threshold quantile. To fix ideas, we show in
Table 8 the quantiles relative to dataset (RA, Chr19). In
this case, more “important” SNPs are likely to be found in
the hybrid’s top 300 SNPs than in the T-Trees’ top 300s
(quantilehybrid = 1.5 × 10−2 versus quantileT−Trees =
6.0 × 10−3).

Table 7 Wilcoxon rank sum test and Pearson correlation
coefficient, to compare the distributions of variable importances
across the SNPs, obtained from T-Trees and the hybrid FLTM /
T-Trees approach. Excerpt of Table 2 in Additional file 1
(Supplementary data)

Pathology, Wilcoxon rank sum test Pearson correlation
chromosome coefficient

T1D, Chr13 W = 212926668, p-value < 2.2e-16 0.9770057

HT, Chr10 W = 442501186, p-value < 2.2e-16 0.7079702

CD, Chr20 W = 83225566, p-value < 2.2e-16 0.3365107

T1D, Chr02 W = 883236380, p-value < 2.2e-16 0.1247845

The four cases shown here encompass the wide range of variation observed for the
Pearson correlation coefficient. The Wilcoxon test always indicates that the two
distributions are not similar

As biologists expect a short list of prioritized SNPs to
be further analyzed, it is important to study whether one
of the two methods yields higher importance values than
the other for the top SNPs. Table 9 subsumes the ten-
dencies observed from Tables 3 to 16 in Additional file 1
(Supplementary data).
Hintertho we knew that the two distributions of the

variable importances differed between T-Trees and the
hybrid approach. The conclusion to draw now is that,
except for 2 datasets out of 14, the hybrid method outputs
top ranked SNPs with relatively higher importances than
in T-Trees, which is our focus in GWASs. Therefore, the
search space seems to be more efficiently explored. Poten-
tially, the hybrid approach allows us to group the SNPs in
clusters in a manner more efficient to target the putative
associated SNPs. In T-Trees, artificial blocks of 20 con-
tiguous SNPs attempt to approximate linkage disequilib-
rium. In the hybrid FLTM / T-Trees approach, clustering
based on linkage disequilibrium produces singletons and
clusters of pairwise highly correlated SNPs. First, it has
to be emphasized that regarding the draws of SNPs con-
tributing to Extra-trees, T-Trees and the hybrid approach
are put on an equal footing: k was set to either the block’s
size (T-Trees) or was dynamically adapted to any cluster’s
size (hybrid approach). Thus, in this GWAS framework,
any SNP in a block (respectively cluster) will be consid-
ered to contribute to the Extra-tree built for this block
(respectively cluster). However, in T-Trees, the artificial
delimitation into blocks may lessen the chance of testing
SNPs from the same real haplotype block within the Extra-
tree scope. It is likely that the multivariate split produced
from a cluster of SNPs tagging the putative influential
SNP, or best capturing association with the phenotype,
will be the optimal split (Algorithm 5, line 11), for any such
cluster draw (at any meta-node of the T meta-trees). In T-
Trees, a block is also likely to be drawn at any meta-node
of the T meta-trees. However, if the SNPs that best tag the
influential SNP, or best capture association with the phe-
notype, are spread over two or more blocks, none of these
blocks is likely to produce an optimal multivariate split.
Prediction performance measured through the AUC of

a ROC curve relies on data describing both true and
predicted statuses for the individuals. We now examine
whether, for a given dataset, a method with a higher
AUC than the other method (Table 5) would also be the
approach showing inflated top SNPs’ importance quan-
tiles (Table 9). Indeed, in 10 cases out of 14, we observe
consistency between Tables 5 and 9. Inconsistencies are
pinpointed for datasets (CAD, Chr05), (CAD, Chr06),
(RA, Chr06) and (T2D, Chr21). First, for 6 out of 10
cases for which the AUC is the highest for the hybrid
approach, we observe that the highest importances dis-
tribution tail for the hybrid approach is over that of
T-Trees as from top200 or top300 quantile. In contrast,
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Table 8 Comparison of ten quantiles for the distributions of the variable importances, across the SNPs, for T-Trees and the hybrid FLTM
/ T-Trees approach. Illustration with the case of Rheumatoid arthritis, chromosome 19

top300 top200 top100 top50 top20 top10 max

25% 50% 75% 99.99439% 99.99626% 99.99813% 99.99907% 99.99963% 99.99981% 100%

Quantiles T-Trees

1.7e-05 5.0e-05 1.1e-04 6.0e-03 1.4e-02 2.8e-02 2.0e-01 3.0e-01 3.4e-01 3.7e-01

Quantiles hybrid approach

1.8e-06 1.7e-05 6.1e-05 1.5e-02 2.6e-02 1.0e-01 2.5e-01 3.3e-01 3.6e-01 3.9e-01

The bold face characters highlight the highest value observed between T-Trees and the hybrid approach

when the hybrid approach distribution is over T-Trees’
as only from top10 quantile, we observe a higher AUC
for T-Trees (inconsistencies for (CAD, Chr05) and (RA,
Chr06)). In the intermediary top quantiles (top100), the
situation is mitigated, with dataset (CAD, Chr06) showing
the lowest AUC for the hybrid approach (inconsistency)
whereas it is the contrary for dataset (T1D, Chr13). To
attempt to explain the fourth inconsistency, (T2D, Chr21),
we compare this case with that of (T1D, Chr02). In the
second case, T-Trees’ importance values are inflated as
from top25% quantile (except for top300 quantile) and
T-Trees’ AUC is the highest. The inconsistency of dataset
(T2D, Chr21) might be explained by the fact that even
though T-Trees’s importance values are also inflated as

from top25% quantile, top300 and top200 quantiles are
missing. However, the explanation is not so simple as it
would well explain the inconsistency for (CAD, Chr06)
(both inflated distribution as from top100 quantile and
lowest AUC for the hybrid approach) but not the con-
sistency of (T1D, Chr13) (inflated distribution as from
top100 quantile for the hybrid approach and highest AUC
for the hybrid approach). With this latter unique restric-
tion, for the datasets analyzed, we are inclined to draw
two conclusions: the method with the highest importance
distribution tail would also show the highest predictive
power; the importances of the variables in the rank inter-
vals top300 and top200 might be crucial for the method’s
predictive power.

Table 9 Quantile from which the quantiles for one method are always greater than those of the other method, regarding the
distributions of variable importances, across the SNPs, for T-Trees and the hybrid FLTM / T-Trees approach. For example, for (T1D,
Chr13) dataset, the hybrid quantiles are always greater than the T-Trees quantiles as from top100 quantile. Moreover, the hybrid
quantiles are an order of magnitude higher as from top20 quantile

Pathology Chromosome Constantly higher as of quantile One order of magnitude higher as of quantile

T-Trees hybrid approach

BD Chr03 top200 —

Chr21 top300 —

CAD Chr05 top10 —

Chr06 top100 —

CD Chr01 top300 —

(except for top100)

Chr20 top200 top200 (except for top100 and top50)

HT Chr10 top200 —

Chr14 top300 —

(except for top100)

RA Chr06 top10 —

Chr19 top300 —

T1D Chr02 top25% —

(except for top300)

Chr13 top100 top20

T2D Chr10 top300 —

Chr21 top25% —

(except for top300 and top200)
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An additional conclusion is that both methods can be
used to pinpoint various top SNPs, in a complementary
way. However, complementarity can also be used to rein-
force confidence in top SNPs. In the sequel, we will then
focus on the SNPs identified in common by several of the
compared methods, including the single-SNP GWAS.

Analysis of the SNP sets jointly identified by any two among
the three, or the three methods compared on real data
We reported the SNPs jointly identified in the top 100s
by any two or all three methods studied : single-SNP
GWAS versus T-Trees, single-SNP GWAS versus hybrid
approach, T-Trees versus hybrid approach, and the
three methods. Additional file 2 (Supplementary data)
describes these results for each of the 14 pairs (pathology,
chromosome) analyzed. Figure 8 plots the cardinalities of
the 3 pairwise intersections and of the three-way inter-
section for the 14 datasets analyzed. The Venn diagrams
in Additional file 3 (Supplementary data) provide an intu-
itive insight of the trends observed across the 14 datasets
analyzed. For an illustration, Fig. 9 focuses on the Venn
diagrams of (BD, Chr03), (CD, Chr01) and (T2D, Chr10).
(T2D, Chr10) is the dataset observed with the highest
number of top 100 SNPs common to the three methods
(23), over the 14 datasets. Together with datasets (CD,
Chr20) and (T2D, Chr10), dataset (BD, Chr03) shows the
largest number of top 100 SNPs common to single-SNP
GWAS and T-Trees (31). The largest number of top 100
SNPs common to Single-SNP GWAS and the hybrid
approach (30) is observed for (CD, Chr01). Finally, (T2D,

Chr10) is again the dataset for which the number of top
100 SNPs common to T-Trees and the hybrid approach
is the highest (60). The reader interested in a more thor-
ough analysis of the number of top 100 SNPs common
to any or the three methods is reported to the end of
Additional file 3.
It was expected that the number of top 100 SNPs com-

mon to each T-Tree-based strategy and the Single-SNP
GWAS would be smaller than the number of SNPs shared
with the other T-Tree-based strategy. Indeed, the two
categories of approaches, T-Trees-based and Single-SNP,
resort on quite different detection mechanisms. Random
forest-based methods are certainly complementary to the
Single-SNP approach. On the other hand, as the powers
are quite similar and relatively high for T-Trees and the
hybrid approach as shown in the section relative to AUC
comparison, we can also conclude that both methods are
complementary. Any top 100 SNP detected by one of the
two T-Trees-based methods is anyway amongst the most
relevant to discriminate between cases and controls. Fur-
thermore, a SNP jointly pinpointed by T-Trees and the
hybrid approach should be prioritized for further bio-
logical analysis. Interestingly, among the latter SNPs, top
100s jointly identified by the three methods must be paid
attention to. The number of such SNPs varies in the range
[8, 23] over the 14 datasets analyzed.
Table 1 in Additional file 4 (Supplementary data)

describes the characteristics of the SNPs jointly identified
in the top 100s by each of the three methods. Additional
file 4 then discusses these results in details. In the sequel,

Fig. 8 Number of SNPs jointly identified in the top 100s by any two or all three methods studied, for 14 pairs (pathology, chromosome): single-SNP
GWAS versus T-Trees, single-SNP GWAS versus hybrid approach, T-Trees versus hybrid approach, and the three methods. The labels on the x-axis
represent the pairs (pathology, chromosome number)
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Fig. 9 Venn diagrams for three datasets, describing the SNPs jointly identified in the top 100s by any two or all three methods studied: single-SNP
GWAS versus T-Trees, single-SNP GWAS versus hybrid approach, T-Trees versus hybrid approach, and the three methods. (T2D, Chr10) is the dataset
observed with the highest number of top 100 SNPs common to the three methods (23), over the 14 datasets. Dataset (BD, Chr03) is one of the three
datasets that show the largest number of top 100 SNPs common to single-SNP GWAS and T-Trees (31). The largest number of top 100 SNPs
common to Single-SNP GWAS and the hybrid approach (30) is observed for (CD, Chr01). Finally, (T2D, Chr10) is the dataset for which the number of
top 100 SNPs common to T-Trees and the hybrid approach is the highest (60)

a SNP jointly identified in the top n SNPs by each of the
three GWAS strategies is called a top*n SNP. For instance,
a SNP identified in the top 20 SNPs by each method is
called a top*20 SNP. For each dataset, we are interested
in identifying the maximal integerm (m ≤ 100), such that
the top*100 SNPs are also top*m SNPs.
A summary of Additional file 4 is provided in Table 10.

We observe that each time a top*1 SNP is detected (that
is for datasets (BD,Chr03), (CAD,Chr05), (CD,Chr01),
(RA,Chr06), (RA,Chr19) and (T2D,Chr21)), it is signifi-
cantly associated with the disease, according to the Single-
SNP GWAS strategy. Besides, 62 other top*m SNPs are
also characterized with a significant p-value. In addition,
Table 10 allows to prioritize top*100 SNPs for further
biological investigation: among the 211 top*100 SNPs
detected over the 14 datasets, we identified 72 top*25
SNPs including 38 top*10 SNPs. Thus, an additional
insight of our study is the interest to select top*m SNPs to
prioritize a list of SNPs.
Finally, Table 11 displays the number of top 100 SNPs

common to T-Trees and the hybrid approach. For 8
datasets over 14, the correlation coefficient of the cor-
responding variable importances is greater than 0.93.
Regarding the 6 other datasets, the correlation coefficient
varies between 0.58 and 0.87.

Current limitation for applicability of the hybrid approach
on a genome-wide scale
The bottleneck to extend the hybrid approach to genome-
scale is the FLTM algorithm. In the machine learn-
ing domain, learning a latent tree is challenging in the
high dimensional case. There exist O

(
23n2

)
candidate

structures to build a latent tree derived from n observed
variables [39]. Learning the tree structure can only be effi-
ciently addressed through iterative ascending clustering

of the variables. Mourad and co-workers examined var-
ious such clustering-based approaches and their limita-
tions [40]. In the latter work, 15 methods were compared,
including FLTM (named CFHLC in the paper cited) ([40],
page 183). FLTM was the method with the highest scal-
ability. On the other hand, it has to be noted that in its
very first version (i.e. a window-based version), FLTMwas
also tested on still larger datasets as in [40] (e.g. describ-
ing 100,000 variables [32]). For information, the WTCCC
dataset (Crohn’s disease, chromosome 1) describes 37,267
SNPs. It is important to emphasize that the FLTM algo-
rithm used in the present paper does not coerce the
latent trees’ structure to binary structure, does not impose
a user-defined shared cardinality for all latent variables,
and does not require contiguity (on the genome) for the
variables to be clustered. A flexible and thus faithful mod-
eling of linkage disequilibrium comes at a cost in the
present (yet optimized) version of FLTM: high memory
consumption and high running time not allowing scalabil-
ity to genome scale.

Conclusions and perspectives
In this paper, we put forth an hybrid approach combin-
ing two machine learning models, T-Trees and FLTM,
to enhance genome-wide association studies. We com-
pared the performances of the integrated approach and of
T-Trees based on simulated realistic genetical data. The
integrated approach was shown to perform slightly bet-
ter than T-Trees for the additive and dominant genetic
models. There is no subtantial advantage shown for the
recessive model, except in few cases. We then performed
a comparative analysis of the predictive powers and SNPs’
scores distributions, for T-Trees and the hybrid FLTM
/ T-Trees approach, on real datasets. The sophistication
of T-Trees through finer linkage disequilibrium modeling
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Table 11 Correlation analysis for the variable importances of the
common top 100 SNPs identified by T-Trees and the hybrid FLTM
/ T-Trees approach

Pathology Chromosome Number of common Correlation
top 100 SNPs coefficient

BD Chr03 47 0.99305

Chr21 43 0.87334

CAD Chr05 36 0.99160

Chr06 42 0.81184

CD Chr01 42 0.99484

Chr20 25 0.94999

HT Chr10 55 0.98335

Chr14 51 0.58097

RA Chr06 35 0.93001

Chr19 32 0.99948

T1D Chr02 38 0.73068

Chr13 40 0.97849

T2D Chr10 60 0.70314

Chr21 37 0.69802

derived from FLTM is shown beneficial: on the datasets
analyzed, the already high predicted power observed for
T-Trees is increased in the majority. The distributions
of SNPs’ scores generated by T-Trees and the hybrid
approach are shown statistically different. In particular, in
a vast majority of cases, the hybrid method outputs top
ranked SNPs with relatively higher importances than in
T-Trees. Thus are pinpointed more interesting SNPs than
in T-Trees, to be provided as a short list of prioritized
SNPs, for a further analysis by biologists. Not only did we
show that both methods can be used to pinpoint various
top SNPs, in a complementary way. Complementarity can
also be used to reinforce confidence in top SNPs. There-
fore, we analyzed the pairwise and three-way intersections
of SNPs ranked in the top 100s, for the standard single-
SNPGWAS, T-Trees and the hybridmethod. In particular,
among the 211 top 100 SNPs jointly detected by the three
methods, over the 14 datasets analyzed, we identified 72
and 38 SNPs respectively present in the top25s and top10s
for each method.
In future work, we will extend the comparative study of

T-Trees and the hybrid approach to more GWAS datasets.
In particular, we will examine whether a method with
a higher predictive power than the other method also
tends to show inflated top SNPs’ importance quantiles.
This paper was fully dedicated to the thorough compari-
son of T-Trees and the FLTM / T-Trees approach. In the
future, we plan the design of a vast study, to compare the
hybrid approach to a panel of other approaches derived
from machine learning such as logistic and penalized

regressions, gradient boosting machines, ensemble meth-
ods, artificial neural networks, support vector machines
and Bayesian network-based analysis. Besides, since the
FLTM model is the key to the improvement brought
by the hybrid approach over T-Trees, several directions
focused on FLTM learning need be explored for future
work. At a methodological level, we first plan to study
(at a larger scale) whether the choice of the clustering
algorithm used in FLTM learning impacts the conclusions
of the present study. Second, a challenging perspective
for future methodological work is to integrate consen-
sus clustering in FLTM learning, especially as the down-
stream analysis at stake is a GWAS. Again, we plan to
assess whether consensus clustering impacts the conclu-
sion of the present study. Finally, at a technical level, the
bottleneck to apply the hybrid approach on a genome-
wide scale is the scalability of the FLTM learning algo-
rithm. Efforts will be deployed to break this technological
limitation.

Appendix

Algorithm 7 Decision tree learning in the random forest
framework - Detailed scheme.
FUNCTION growRFTree(V, c, Di, Sn, St, K)

INPUT:
V, n labels of n discrete variables
c, the label of a binary categorical variable (c /∈ V )
Di = (DVi,Dci), learning set consisting of
DVi, a matrix describing the n variables of V for each of the rows
(i.e. observations)
Dci, a vector describing categorical variable c for each of the
observations in DVi

Sn, a threshold size (in number of observations), to control decision
tree leaf size
St, a threshold size (in number of nodes), to forbid expanding the
decision tree beyond this size
K, number of variables in V, to be selected at random at each node, to
compute a cut-point

OUTPUT:
T , a node in the decision tree under construction

1: if recursionTerminationCase(DVi, DCi, Sn, St)
2: then
3: create a leaf node T labeled by probability distribution
4: of categorical variable c over observations(DVi); return T
5: endif

6: select at random a subset Valeat of K variables in V
7: foreach v in Valeat
8: OCP(v) ← optimalCutPoint(DVi[v] , Dci)
9: endfor

10: OCP∗ ← argmax
OCP(v),v∈Valeat

discriminatingScore(OCP(v))

11: ((DVi� ,Dci� ), (DVir ,Dcir )) ← splitData((DVi,Dci), OCP∗)
12: T� ← growRFTree(V , c, (DVi� ,Dci� ), Sn, St , K)

13: Tr ← growRFTree(V , c, (DVir ,Dcir ), Sn, St , K)

14: create a node T with label OCP∗ and child nodes T� and Tr
15: return T
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