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We propose a modeling of the homogeneous behavior of snow based on the

combined use of microtomography imaging and the resolution of Kinemat-

ically Uniform Boundary Condition (KUBC) problems derived from the ho-

mogenization theories. Snow is modeled as a porous cohesive material, and

its 3D macroscopic mechanical behavior is explored within the framework

of the elastic behavior of ice. Based on the integral range theory, a conver-

gence analysis is performed in terms of physical and not geometrical param-

eters. This provides an accurate definition of the representative elementary

volume to be used in numerical simulations.

A wide range of snow densities is explored (100 600 kg/m3) and a sim-

ple power law is proposed in order to link the Young and shear moduli of

snow to its density. Thanks to the study of three temporal series, the influ-

ence of three types of metamorphism (a temperature gradient, a wet snow

and an isothermal metamorphism) on the macroscopic elastic properties of

snow is recovered in details through numerical simulations for one of the first

times.

Keywords: homogenization, KUBC, elasticity, microtomography, finite el-

ements, snow.
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1. Introduction

Snow is a highly porous material that exists close to its melting point and exhibits a

complex microstructure constantly evolving in time. Because overall mechanical prop-

erties of snow are strongly influenced by its density [Mellor , 1974] and the topology of

its microstructure [Shapiro et al., 1997], a correct multi-scale modeling of the mechanical

properties of snow is of great interest when it comes to avalanche risk forecasting.

Recently, the generalization of X-ray tomography and its application to snow [Brzoska

et al., 1999; Schneebeli , 2004; Kaempfer et al., 2005; Flin and Brzoska, 2008; Srivastava

et al., 2010; Pinzer et al., 2012] enabled the description of its complex geometry down

to the micro-scale. Nowadays, good databases of 3D images for the different snow types

described in the international classification [Fierz et al., 2009] are available [Calonne et al.,

2012; Löwe et al., 2013].

With precise description of the ice skeleton of snow, its complex behavior can be in-

vestigated thanks to the fairly well established physical and mechanical properties of ice

[Schulson et al., 2009]. From this point, the macroscopic behavior of snow considered as

a homogeneous material can be up-scaled thanks to the use of techniques derived from

the homogenization theory based on the assumption of the separation of scales [Dormieux

and Bourgeois , 2002; Auriault et al., 2010]. In recent works, the combination of X-ray

tomography imaging, finite elements techniques and ever increasing computing power was

used to bridge the gap between the topology of the ice skeleton of snow and its mechan-

ical behavior [Schneebeli , 2004; Pieritz et al., 2004; Srivastava et al., 2010; Hagenmuller

et al., 2014; Chandel et al., 2014; Schleef et al., 2014]. However while Srivastava et al.

D R A F T May 26, 2015, 7:39am D R A F T



X - 4 WAUTIER ET AL.: 3D HOMOGENIZATION OF THE ELASTIC PROPERTIES OF SNOW

[2010] used an approach rigorously based on the homogenization theory [Van Rietbergen

et al., 1996], most of the up-scaled snow properties found in the literature were obtained

thanks to numerical simulations of “real” experiments assuming an isotropic macroscopic

behavior [Hagenmuller et al., 2014; ?]. Moreover, while snow microstructure is gener-

ally anisotropic [Calonne et al., 2012, 2014], most of the constitutive equations for snow

mechanical behavior given in the literature are only unidimensional [Mellor , 1974].

In the wake of the study performed by Calonne et al. [2011, 2012, 2014] on the homog-

enization of the transfer properties of snow, the aim of this paper is to propose a rigorous

multi-scale modeling of the elastic mechanical behavior of snow and to reckon the relative

influence of the density and the topology of the microstructure on its macroscopic prop-

erties. Quantitative results are given for a very wide range of densities (from 100 to 600

kg/m3) and the influence of different types of metamorphism is estimated.

In order to do so, boundary value problems derived from the homogenization theories

were solved numerically on 3D snow images obtained by micro-tomography. Depend-

ing on the choice of the boundary value problem, the sample’s representative elementary

volume (REV) required to deduce the macroscopic mechanical properties varies. Three

boundary value problems described in the homogenization theories are considered to give

relatively small REV. From the biggest to the smallest ones [Kanit et al., 2003], these three

approaches are named SUBC (statically uniform boundary conditions), KUBC (kinemat-

ically uniform boundary conditions) and PBC (periodic boundary conditions). In the

KUBC approach, a macroscopic homogeneous strain is imposed on the boundary. Con-

versely, in the SUBC approach a macroscopic homogeneous stress is imposed on the
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boundary. In the PBC approach, mix stress/strain boundary conditions are applied by

enforcing the periodicity of the displacement field over the three directions of space and

the periodicity of the normal stress across the sample boundaries. If the PBC approach is

supposed to be the best approach in terms of convergence with respect to the size of the

REV [Kanit et al., 2003], its application on a non-periodic porous microstructure is not

straightforward. This requires for instance to wrap the sample into a virtual bounding

box or to fill up the porosity with a soft material. In order to avoid the introduction of

artifacts, the KUBC approach was retained.

2. KUBC numerical homogenization procedure

The whole numerical homogenization procedure can be decomposed into four steps that

are summarized in Figure 1 and detailed in the following subsections.

2.1. Converting images into 3D meshes (step 1)

Thanks to the use of the Matlab open-source toolbox iso2mesh [Fang and Boas , 2009],

a tetrahedral mesh was fitted onto the original 3D binary images of typical size 6003

voxels. The toolbox was used with the cgalmesh utility option and adaptative meshes

of controlled density and quality were created from binary snow images. The resulting

meshes were composed of a typical number of 2 millions of elements and can be visualized

in Figure 1.

2.2. Boundary value problem definition in Abaqus (step 2)

Under the assumption of the separation of scales, it is possible to deduce macro-

properties of a given material by performing numerical tests on a representative elemen-
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tary volume (REV), i.e. a volume that is “big enough” with respect to the size of the

micro-structure to be considered as representative of the whole material and the physical

phenomena. Then, thanks to Hill’s lemma, the macroscopic stress tensor Σ and strain

tensor E are deduced from their microscopic counterparts (σ and ε) by computing their

mean values over the REV (V ).

E = 〈ε〉 =
1

|V |

∫
V

ε dV, Σ = 〈σ〉 =
1

|V |

∫
V

σ dV

Because of Green’s formula, the mean stress and strain can either be averaged on the

sample’s volume or on its boundary. For instance, if ε is kinematically admissible to

a continuous displacement field u(x), the equivalent strain can be computed with the

equivalent formula:

E =
1

|V |

∫
∂V

u⊗s n dS

where ⊗s is the symetrized tensorial product and n the outward normal vector on the

boundary ∂V . With this localization property, a savvy choice in the boundary conditions

enables the control of the macro stress or strain that is imposed on a given sample.

And indirectly, this choice in the boundary conditions governs the size of the REV. In

the present work, the KUBC approach was retained and practically implemented thanks

to the use of the Abaqus plugin HomTools developed by Lejeunes et al. [2011]. The

plugin enables the automatic definition of the linear relationship on ∂V between the

displacements u and the macroscopic homogeneous strain E defined as u = E · x for

x ∈ ∂V (Figure 1).
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2.3. Ice constitutive equation (step 3)

From a microscopic point of view, the ice skeleton is constituted of an assemblage of

mono-crystalline particles. While some recent studies [Riche et al., 2013] show that ice

grain orientation in snow may be anisotropic under specific circumstances, in the following

the poly-crystalline ice skeleton is considered as an homogeneous isotropic elastic material.

Thus, the ice stiffness tensor C ice is defined as :

σ = C ice : ε =
E

1 + ν

(
ε+

ν

1− 2ν
Tr(ε)1

)
,

where E and ν are the Young modulus and the Poisson ratio respectively, and 1 is the

second order identity tensor. The ice elastic properties presented in Schulson et al. [2009];

Chandel et al. [2014] show that E ranges from 0.2 GPa to 9.5 GPa. In order to leave

aside the resulting huge uncertainties, all the results in this paper are presented in a

dimensionless form by setting E equal to one. Based on the literature, the Poison’s ratio

ν is chosen equal to 0.3.

2.4. Computing the homogenized stiffness tensor (step 4)

The homogenization problem to be solved on the REV (V ) is written:

div σ = 0 for x ∈ V
u = E · x for x ∈ ∂V

ε =
1

2

(
∇ u + t∇ u

)
for x ∈ V

σ = C(x) : ε for x ∈ V

, (1)

where C(x) is the local stiffness tensor equal to 0 in the air phase and C ice in the ice phase.

With the knowledge of the microscopic stress, its homogenized macroscopic counterpart

can be computed, and the linear relationship between Σ and E gives the homogenized
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stiffness tensor Chom:

Σ =
1

|V |

∫
V

σ dV = Chom : E.

The homogenized stiffness tensor Chom exhibits only 21 independent components in the

most general case. By setting 5 out of 6 of the independent components of E equal to

0 (E = δij ei ⊗s ej where δij is the Kronecker delta), only 6 numerical simulations are

needed in order to fully compute Chom. However, based on the features of the compli-

ance matrices computed on all the 3D images, it appears reasonable to model snow as

an orthotropic material (i.e. a material with two perpendicular planes of symmetry) of

principal axes (e1,e2,e3), e3 being along the direction of gravity. By doing so, the 21 inde-

pendent components of Chom are reduced to 9: three Young moduli, three shear moduli

and three Poisson ratios (because of the symmetry of the compliance matrix) and the

inverse of Chom, i.e. the compliance matrix, is written :


E11

E22

E33

2E23

2E13

2E12

 =



1/E1
−ν12/E1

−ν13/E1
0 0 0

−ν21/E2
1/E2

−ν23/E2
0 0 0

−ν31/E3
−ν32/E3

1/E3
0 0 0

0 0 0 1/G23
0 0

0 0 0 0 1/G13
0

0 0 0 0 0 1/G12


·


Σ11

Σ22

Σ33

Σ23

Σ13

Σ12

 . (2)

With the use of the Abaqus plugin HomTools, the macroscopic homogeneous stress Σ is

automatically computed giving thus a straightforward access to the homogenized stiffness

tensor (Figure 1).

3. Convergence analysis

Because homogenization theory is based on the assumption of the separation of scales,

the fundamental notion of representative elementary volume (REV) is discussed in this

section, and the integral range theory [Lantuejoul , 1991] is used in order to link REV and

D R A F T May 26, 2015, 7:39am D R A F T



WAUTIER ET AL.: 3D HOMOGENIZATION OF THE ELASTIC PROPERTIES OF SNOW X - 9

the correlation lengths presented by Löwe et al. [2013]. A sensitivity analysis is performed

on a given snow sample in order to quantitatively define a dimensionless REV size.

3.1. Dimensionless volume parametrization

According to the integral range theory developed by Lantuejoul [1991], Kanit et al.

[2003] proposed a method for determining the typical REV size of a random heterogeneous

material at a given precision. This prediction is based on the fact that the variance D2
Z(V )

of a given physical or mechanical property Z decreases as a power law of the ratio between

the sample volume V considered and the integral range A3 of the material [Lantuejoul ,

1991]. For a porous material of porosity φ, this relation reads:

D2
Z(V ) = φ(1− φ)(Zm − Zair)2

(
A3

V

)αZ

(3)

where Zm − Zair is the property contrast between air and material phases, and αZ is

an exponent smaller than one that depends both on the property and the boundary

value problem considered. The bigger the edge effect, the smaller this exponent. It is

noteworthy to notice that the integral range A3 is a geometrical parameter that depends

on the microstructure [Lantuejoul , 1991; Kanit et al., 2003]. If the two-point correlation

function is denoted by

C(X, h) = p{x ∈ X, x+ h ∈ X},

the integral range is defined as

A3 =
1

C(X, 0)− C(X, 0)2

∫
R3

(C(X, h)− C(X, 0)2) dh. (4)

By dividing the sample volume by the integral range of the snow considered, it is possible

to restrict the volume convergence analysis of the homogenized mechanical properties
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of snow to a single arbitrary snow sample and then define a general size for the REV

as a multiple (n) of the integral range for any type of snow thanks to equation (3), i.e

V = n A3. In practice, the numerical estimate of the integral range appears to be fairly

well approximated by the product of the three correlation lengths (`1, `2, `3) along the

axes e1, e2 and e3, which can be computed following the approach proposed in Löwe et al.

[2013].

3.2. Volume convergence analysis

For practical reasons, the volume convergence analysis was not performed in terms of

variance but the dimensionless parametrization presented in the previous subsection was

used. In order to evaluate the optimal size of the REV of snow, i.e. the optimal value of

n, a volume convergence analysis has been performed on a rounded grain (RG) sample

of a density of 285 kg.m−3 and of a typical correlation length ` = 3
√
`1 `2 `3 ' 3

√
A3 of

70 µm. Cubic sub-volumes of size V = n A3 = (m `)3 were extracted from the raw binary

tomographic image and were all meshed with iso2mesh with the same meshing options.

The homogenized stiffness and compliance matrices were then computed following the

approach presented in 2.4. The Figure 1 shows the evolution of the Young moduli with

respect to m. A similar plot was also obtained concerning the shear moduli.

This figure highlights the convergence of the young moduli towards a constant value with

increasing m. A compromise between a good precision and a reasonable simulation time

(approximately 10 hours) has been made and a REV of typical length of 30 ` was retained

to perform all the simulations. The Figure 1 also shows that the volume convergence is

slower for the Young moduli of the sample than for its density. This is to be put in parallel
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with the theoretical expression of the variance given in the equation (3) and justifies the

approach followed in this paper to not perform the convergence analysis on geometrical

properties only.

3.3. Mesh convergence analysis

In parallel, a mesh convergence analysis has been performed on the sub-volume of a

typical length scale of 30 `. The evolution of the Young moduli with respect to the mesh

size is given in Figure 1. A very similar plot was also obtained concerning the shear

moduli. Again, a compromise between a good precision and a reasonable simulation time

has been made and the meshing parameters used for the previous volume convergence

analysis were kept.

4. Correlation between density and homogeneous elastic properties

The homogeneous elastic properties of a large variety of snow types were computed

following the above methodology on 29 3D images from the database of the snow research

center (CEN) (see e.g. [Calonne et al., 2012]). The numerical data used in this study are

available in the supplementary material linked to this paper.

4.1. Density influence on the snow elastic properties

Young moduli, shear moduli and Poisson’s ratio are plotted with respect to the relative

density of snow in Figures 2 and 3. Triple “T” shapes are used to show the relative

locations of the Young and shear moduli. While the large and the small bars of the triple

“T” correspond to horizontal moduli (respectively E1 and E2 or G23 and G13), the bottom

of the triple “T” corresponds to vertical moduli (E3 or G12). For the Poison’s ratio, the
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average value is plotted together with the interval that contains the six Poison’s ratio

presented in (2). In order to visualize the difference in microstructure of the different

samples, color is used in order to highlight the different types of snow according to the

international classification [Fierz et al., 2009].

In a log-log scale, the Young and shear moduli dependence with respect to density ap-

pears to be relatively linear throughout the wide range tested (from 102 to 544 kg.m−3).

A power law fit gives the first order dependence relationships with good regression coef-

ficients (R2):
Esnow

Eice

= 0.78

(
ρsnow
ρice

)2.33

, R2 = 0.96

Gsnow

Gice

= 0.96

(
ρsnow
ρice

)2.55

, R2 = 0.98

, for ρsnow
ρice
∈ [0.1; 0.6]. (5)

The numerical points reported in Figure 2 were compared with the prediction of two an-

alytical models and two energy bounds. The Young and shear moduli corresponding to

the prediction of the classical Reuss’s bound and the Hashin and Shtrikman upper bound

for isotropic material [Hashin and Shtrikman, 1963] were computed on the range of den-

sities considered. The isotropic differential and Mori-Tanaka schemes, which can still be

used for high porosity values, were also simulated. The differential scheme [Zimmerman,

1991] consists of an iterative application of the dilute scheme that implies the resolution

of an Eshelby problem where the true macroscopic strain is applied on the boundary. The

Mori-Tanaka scheme [Mori and Tanaka, 1973] consists of an Eshelby problem where an

implicit macroscopic strain is applied on the boundary in order to respect the mean strain

distribution between matrix and inclusions. Eventually, in order to evaluate the consis-

tency of our implementation of the KUBC homogenization process to snow, the numerical
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estimates of the Young modulus in ? Srivastava et al. [2010] and Schneebeli [2004] were

reported in Figure 2 for comparison.

4.2. Discussion

As visible in Figure 2, the parametrization (5) of the elastic properties of snow by a

power law gives reasonable results for the prediction of the Young and shear moduli of

snow on the whole range of densities explored. It is interesting here to draw a parallel

with the analytical models classically used for the elastic properties of cellular materials

[Knackstedt et al., 2006; Gibson and Ashby , 1999]. Indeed, for skeleton cellular materials

locally loaded in bending, the relative Young modulus of the porous material is given

by a power law of exponent n = 2 of its relative density. However for membrane cellular

materials locally loaded in bending, the relative Young modulus is given by a power law of

exponent n = 3 of its relative density. The exponent of the fitted law (5) is consistent with

the predicted behavior of these materials also characterized by a very high porosity. Under

the hypothesis that the ice grains are loaded in bending too, the macroscopic behavior of

snow is closer to a skeleton behavior than a membrane one.

Concerning the comparison with the differential and Mori-Tanaka schemes in Figure

2, the differential scheme is found to overestimate the values of the Young modulus but

gives a relatively good prediction of the exponent of the power law linking relative Young

modulus and relative density. For the shear modulus, the differential scheme is not sat-

isfactory anymore. As for Poisson’s ratio in Figure 3 the Mori-Tanaka scheme proves to

give a relatively good estimate contrary to the differential scheme. The two analytical
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schemes considered were initially developed in order to model inclusion/matrix materials

and it is not surprising that they cannot account for the connected porosity of snow.

The results of Srivastava et al. [2010] in Figure 2 computed on a limited range of

densities appear to be of the same order of magnitude as the results presented in this

paper. The results obtained by ? on a wide range of densities are not consistent with our

results. The exponential fit proposed by ? is plotted on Figure 2 and a power law with a

good regression coefficient of R2 = 0.917 has been proposed to better fit the data :

Esnow

Eice

= 5.73

(
ρsnow
ρice

)5.15

.

The major difference between our approach and those found in the literature lies in the

boundary value problem used in the homogenization procedure. While we use KUBC

boundary conditions, ? uses a uniaxial compression test that requires a much bigger size

of VER. In order to deduced the Young modulus value from numerical simulations, ?

were forced to postulate a macroscopic isotropic behavior for all their samples. Further

more, the resolution of the images used by ? is only a tenth of the resolution used to

design our finite element meshes. These differences in the testing procedure might result

in the observed differences in Figure 2.

The last comment to be made on the results shown in Figures 2 and 3 is that many sam-

ples present an anisotropic behavior that cannot be captured by the density parametriza-

tions of the macroscopic properties of snow given in (5). The degree of anisotropy of a

given type of snow can be reckoned thanks to the definition of two indicators A(E) and

A(G) such that :

A(E) =
E3

(E1 + E2)/2
, A(G) =

G12

(G23 +G13)/2
, (6)
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where E3 and G12 are the Young and shear moduli linked to the vertical direction. For

all the samples considered, we have A(E) ∈ [0.56; 1.57] and A(G) ∈ [0.77; 1.47] while a

perfectly isotropic material would exhibit anisotropy indicators equal to 1.

5. Influence of the type of metamorphism on the mechanical properties

As already shown by Srivastava et al. [2010] and Schneebeli [2004] for mechanical prop-

erties or by Calonne et al. [2014] for thermal conductivity for instance, the metamorphism

of snow, even when occurring at constant density strongly influences its macroscopic be-

havior. The full 3D homogenization approach implemented here enables the quantitative

analysis of these anisotropic mechanical properties. In this section, three types of snow

metamorphism are considered in order to reckon their influence on the mechanical prop-

erties of snow.

5.1. Temporal evolutions of snow microstructures

In Figure 4 the time evolution of the three Young moduli and the three shear moduli

are plotted for each of the three temporal evolutions considered: a temperature gradient

experiment, a wet snow metamorphism experiment and an isothermal experiment. In

this Figure the subscript 3 corresponds to the vertical direction. In order to reckon the

influence of variations in density with time, its time evolution is also plotted in Figure 4.

Temperature gradient experiment: The first temporal series considered consists

of the seven micro-tomographic images of Calonne et al. [2014]. They were obtained

during a temperature gradient experiment at -4˚C. A temperature gradient of 43 K.m−1

was applied to a sieved snow layer during 500 h and samples were regularly extracted
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from the middle of the layer, impregnated with 1-chloronaphtalene and stored at -20˚C.

They were then imaged by microtomography.

On the corresponding plot of Figure 4, it can be seen that the general fluctuations of

the relative moduli follow the small fluctuations in density observed between the different

images. In addition to that, the development of an anisotropic mechanical behavior can

be seen with the apparition of an increasing gap between the vertical Young modulus E3

and the two other ones, and between the horizontal shear modulus G12 and the two other

ones.

Wet snow metamorphism experiment: The second temporal series considered

consists of 5 micro-tomographic images taken from Flin et al. [2011]. They were obtained

during a grain coarsening experiment. Snow porosity was saturated with water kept at

0˚C and the coarsening of this wet snow was monitored over 142 h by sampling several

specimens and imaging them by X-ray microtomography.

After a fast evolving phase at the begining of the experiment, the Young and shear

moduli evolve in an isotropic way.

Isothermal experiment: The third temporal series considered consists of the first 8

micro-tomographic images of Flin et al. [2004]. 15 h after a snowfall, a natural snow layer

was kept under isothermal conditions and the metamorphism of the snow microstructure

was monitored over 3 months by sampling several specimens and imaging them by X-ray

microtomography.

On the corresponding plot of Figure 4, the time evolution of both the Young and shear

moduli follows the increasing density.
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5.2. Discussion

Temperature gradient experiment: In Figure 4, the fast initial decrease in the

values of the Young moduli might be related to the initial sublimation of the small ice

bridges between ice grains [Calonne et al., 2014]. Because of the vertical orientation of the

vapor fluxes, horizontal bridges are more likely to be broken than the vertical ones. This

is to be linked with the lower initial decrease of the vertical Young modulus E3. With the

lengthening of the ice crystals in the vertical direction combined with vertical air chimneys

due to sublimation/deposition phenomena, more ice is involved in vertical compression or

shear solicitations than in their horizontal counterparts. This microstructure evolution is

thus consistent with the relative increase in the vertical Young modulus E3 and the vertical

shear moduli G13 and G23 and with the results of Calonne et al. [2014] concerning the

physical and geometrical properties of snow (thermal conductivity, Gaussian curvature,

...). During the experiment, the anisotropy indicators A(E) and A(G) defined in (6) vary

from respectively 0.89 and 1.08 at the begining of the experiment to 1.56 and 0.83 in the

end. Overall, most of the moduli decrease from the initial to the final state, which is

consistent with the well-known fact that temperature gradient metamorphism is a cause

of weak snow layer formation.

These observations can be compared to the results obtained by Srivastava et al. [2010]

for a similar temperature gradient experiment. Their findings are consistent with ours

except the fact that they observed an increase in density at the beginning of their experi-

ment. This explains why they didn’t observe any initial decrease of the Young and shear

moduli.
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Wet snow metamorphism experiment: In Figure 4, the first increase in density is

to be related to residual liquid water that remained in the sample due to capillary forces

and froze before the sample was completely dried. Then the Young and shear moduli

remain constant and evolve in a very isotropic way (A(E) ∈ [1.00; 1.12] and A(G) ∈

[0.94; 1.00]). The observed stagnation can be quite puzzling because the microstructure

is modified in a noticeable way during this experiment. However this can be explained by

the fact that the ice bridges between ice grains are growing and, in the meantime, their

number per volume unit is decreasing. Overall, such a metamorphism seems to have little

impact on the snow mechanical properties as far as the liquid water has been drained

before refreezing. Otherwise, the increase in density due to refreezing would significantly

strengthen the structure which is consistent with the practical knowledge of melt freeze

effect on the mechanical properties of snow.

Isothermal experiment: In Figure 4, the densification of snow is quantified with

the increase in density due to the creeping of snow under its own weight. Because of the

relatively small thickness of the snow layer considered (about 10 cm), no huge anisotropy

appears with respect to the privileged vertical direction of compaction. During all the

experiment, the anisotropy indicators remain relatively constant with A(E) ∈ [0.85; 1.03]

and A(G) ∈ [0.95; 1.28]. However, as it has been observed by Flin et al. [2004], the snow

grains tend to rearrange with their longest dimension along the horizontal direction. This

might be related to the fact that the vertical Young modulus is systematically the lowest

one after 600 h. Overall, such a metamorphism results in a noticeable densification of

snow, and thus in an increase of its stiffness. Recent snow on top of the snowpack evolves
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in a relatively isotropic way under isothermal creeping. This observation is consistent

with the practical knowledge that the mechanical stability of the snowpack is increasing

with time after a snowfall, providing that no temperature gradient metamorphism is at

stake.

6. Conclusion and Outlooks

In this work, a numerical homogenization method that can capture the full 3D macro-

scopic mechanical behavior of snow was successfully developed. A rigorous use of the

theoretical results of the homogenization theory was made in the definition of the bound-

ary value problem to be solved. Contrary to most of the previous studies on the subject,

the convergence analysis was performed in a dimensionless form and in terms of physical

and not geometrical parameters.

Thanks to this powerful numerical procedure, a much wider range of density and a

greater diversity of microstructures has been explored in this paper than in previous

studies. Over the whole range of density tested, simple power laws have been proposed

in order to link the Young and shear moduli of snow to its density.

Thanks to the study of three temporal series, the influence of the three main types

of metamorphism on the macroscopic elastic properties was successfully reckoned. The

numerical results obtained are in good agreement with the qualitative effects each meta-

morphism type has on the mechanical properties of snow.

In the future, the proposed methodology might be easily transposed to the study of

other materials, provided that the 3D images of their microstructure is available and that

the constitutive behavior of their constituents is known. Our numerical procedure can
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easily be applied to investigate a more complex behavior of snow such as its 3D viscoplastic

behavior. Such a work is currently in progress.
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Figure 1. Four steps procedure used in order to transform 3D microtomograph images

of snow into finite element models and numerically solve KUBC homogenization boundary

value problems (top). Young modulus convergence analysis with respect to the dimen-

tionless size of the sample and the size of the mesh used (bottom). Concerning the volume

convergence analysis, the density convergence is also plotted
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Figure 2. Young moduli (top) and shear moduli (bottom) dependence with respect

to density. Triple “T” shapes are used in order to distinguish the moduli. Color is used

in order to highlight the different snow types according to the international classification

[Fierz et al., 2009]. The points found in ?, Srivastava et al. [2010] and Schneebeli [2004] are

reported, and comparison is made with two energy bounds and two analytical estimates.
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Figure 3. Average Poison’s ratio dependence with respect to density. Vertical bars show

the location of the highest and lowest Poison’s ratio. Color is used in order to highlight

the different snow types according to the international classification [Fierz et al., 2009].

Comparison is made with two analytical estimates and the data from ?.
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Figure 4. Time evolution of the three Young moduli (middle) and the three shear

moduli (bottom) of snow during three temporal experiments. The index 3 corresponds to

the direction of gravity. The time evolution of the snow density is also represented (top).
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