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In this paper, we find all integers c having at least two representations as a difference between a Pell number and a power of 2.

Introduction

It is well-known that the sequence {P n } n≥0 of Pell numbers is defined by P 0 = 0, P 1 = 1, P n+2 = 2P n+1 + P n , n ≥ 0.

The first Pell numbers are 0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, . . . In this paper, we are interested in the Diophantine equation

P n -2 m = c (1..1)
for a fixed c and variable m and n. In particular, we are interested in those integers c admitting at least two representations as a difference between a Pell number and a power of 2. This is a variation of the equation a x -b y = c, (1..2) in non-negative integers (x, y) where a, b, c are given fixed positive integers. The history of equation (1..2) is very rich and goes back to 1935 when Herschfeld [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF], [START_REF] Herschfeld | The equation 2 x -3 y = d[END_REF] studied the particular case (a, b) = (2, 3). Extending Herschfeld's work, Pillai [START_REF] Pillai | On a x + b y = c[END_REF], [START_REF] Pillai | A correction to the paper On a x + b y = c[END_REF] proved that if a, b are coprime positive integers then there exists c 0 (a, b) such that if c > c 0 (a, b) is an integer, then equation (1..2) has at most one positive integer solution (x, y). Since then, variations of equation (1..2) has been intensively studied. Some recent results related to equation (1..1) are obtained by the third author and his collaborators in which they replaced Pell numbers P n by the Fibonacci numbers F n (see [START_REF] Ddamulira | On a problem of Pillai with Fibonacci numbers and powers of 2[END_REF]), Tribonacci numbers (see [START_REF] Bravo | On a problem of Pillai with Tribonacci numbers and powers of 2[END_REF]), and k-generalized Fibonacci numbers (see [START_REF] Ddamulira | On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2[END_REF]). The aim of this paper is to prove the following result.

Theorem 1.1. The only integers c having at least two representations of the form P n -2 m are c ∈ {-4, -3, -2, -1, 0, 1, 4}. Furthermore, all the representations of the above integers as P n -2 m with integers n ≥ 0 and m ≥ 0 are given by

-4 = P 4 -2 4 = P 0 -2 2 ; -3 = P 5 -2 5 = P 3 -2 3 = P 1 -2 1 ; -2 = P 2 -2 2 = P 0 -2 1 ; -1 = P 1 -2 1 = P 0 -2 0 ; 0 = P 2 -2 1 = P 1 -2 0 ; 1 = P 3 -2 2 = P 2 -2 0 ; 4 = P 4 -2 3 = P 3 -2 0 .
(1..3)
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We organize this paper as follows. In Section 2., we recall some results useful for the proof of Theorem 1.1. The proof of Theorem 1.1 is done in the last section.

Auxiliary results

The next tools are related to the transcendental approach to solve Diophantine equations. For a nonzero algebraic number γ of degree d over Q, whose minimal polynomial over Z is a d j=1 X -γ (j) , we denote by

h(γ) = 1 d   log |a| + d j=1 log max 1, γ (j)  
the usual absolute logarithmic height of γ.

Lemma 2.1. Let γ 1 , . . . , γ s be a real algebraic numbers and let b 1 , . . . , b s be nonzero rational integer numbers. Let D be the degree of the number field Q(γ 1 , . . . , γ s ) over Q and let A j be a positive real number satisfying A j = max{Dh(γ j ), | log γ j |, 0.16} for j = 1, . . . , s.

Assume that

B ≥ max{|b 1 |, . . . , |b s |}. If γ b 1 1 • • • γ bs s = 1, then |γ b 1 1 • • • γ bs s -1| ≥ exp(-C(s, D)(1 + log B)A 1 • • • A s ), where C(s, D) := 1.4 • 30 s+3 • s 4.5 • D 2 (1 + log D).
Lemma 2.2. Assume that τ and µ are real numbers and M is a positive integer. Let p/q be the convergent of the continued fraction of the irrational τ such that q > 6M , and let A, B, µ be some real numbers with A > 0 and B > 1. Let ε = ||µq|| -M • ||τ q||, where || • || denotes the distance from the nearest integer. If ε > 0, then there is no solution of the inequality

0 < mτ -n + µ < AB -k
in positive integers m, n and k with m ≤ M and k ≥ log(Aq/ε) log B .

Proof of Theorem 1.1

Assume that there exist positive integers n, m, n 1 , m 1 such that (n, m) = (n 1 , m 1 ), and

P n -2 m = P n 1 -2 m 1 .
Because of the symmetry, we can assume that m ≥ m 1 . If m = m 1 , then P n = P n 1 , so (n, m) = (n 1 , m 1 ), contradicting our assumption. Thus, m > m 1 . Since

P n -P n 1 = 2 m -2 m 1 , (3..1)
and the right-hand side is positive, we get that the left-hand side is also positive and so n > n 1 . Thus, n ≥ 2 and n 1 ≥ 1. We use the Binet formula

P k = α k -β k 2 √ 2 for all k ≥ 0,
where (α, β) := (1 + √ 2, 1 -√ 2) are the roots of the characteristic equation of the Pell sequence. It is well-known that α k-2 ≤ P k ≤ α k-1 for all k ≥ 1.

Using the equation (3..1), we get

α n-4 ≤ P n-2 ≤ P n -P n 1 = 2 m -2 m 1 < 2 m , (3..2a) α n-1 ≥ P n > P n -P n 1 = 2 m -2 m 1 ≥ 2 m-1 , (3..2b) therefore 1 + log 2 log α (m -1) < n < log 2 log α m + 4. (3..3)
If n < 150, then m ≤ 200. We ran a computer program for 2 ≤ n 1 < n ≤ 150 and 1 ≤ m 1 < m < 200 and found only the solutions from list (1..3). From now, we assume that n ≥ 150.

Note that the inequality (3..3) implies that m 2 < n. So, to solve equation (3..1), we need an upper bound for n.

3.A. Bounding n

Using the Binet formula in the Diophantine equation (3..1), we get

α n 2 √ 2 -2 m = β n 2 √ 2 + α n 1 -β n 1 2 √ 2 -2 m 1 ≤ α n 1 + 2 2 √ 2 + 2 m 1 ≤ α n 1 √ 2 + 2 m 1 < 2 max{α n 1 , 2 m 1 }.
Multiplying by 2 -m , using the relation (3..2a) and using the fact that 2 < α, we get

( √ 2) -1 α n 2 -m-1 -1 < 2 max α n 1 2 m , 2 m 1 -m < max{α n 1 -n+5 , 2 m 1 -m+1 }. (3..4)
For the left-hand side, we apply Theorem 2.1 with the data

s = 3, γ 1 = √ 2, γ 2 = α, γ 3 = 2, b 1 = -1, b 2 = n, b 3 = -m -1.
Throughout we work with K := Q( √ 2) with D = 2. Since max{1, n, m + 1} ≤ 2n we take B := 2n. Furthermore, we take

A 1 := 2h(γ 1 ) = log 2, A 2 := 2h(γ 2 ) = log α, A 3 := 2h(γ 3 ) = 2 log 2. Put Λ = ( √ 2) -1 α n 2 -m-1 -1.
If Λ = 0, then α 2n ∈ Q, which is false. Thus, Λ = 0. Then, by Theorem 2.1, the left-hand side of (3..4) is bounded as

log |Λ| > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n)(log 2)(log α)(2 log 2).
Comparing with (3..4), we get

min{(n -n 1 -5) log α, (m -m 1 -1) log 2} < 8.3 × 10 11 (1 + log 2n),
which gives min{(n -n 1 ) log α, (m -m 1 ) log 2} < 8.4 × 10 11 (1 + log 2n). Now the argument splits into two cases.

Case 1. min{(n -n 1 ) log α, (m -m 1 ) log 2} = (n -n 1 ) log α.

In this case, we rewrite (3..1) as

α n-n 1 -1 2 √ 2 α n 1 -2 m = β n -β n 1 2 √ 2 -2 m 1 < 2 m 1 + 1 ≤ 2 m 1 +1 , which implies α n-n 1 -1 2 √ 2 α n 1 2 -m -1 < 2 m 1 -m+1 . (3..5)
We put

Λ 1 = α n-n 1 -1 2 √ 2 α n 1 2 -m -1. Clearly, Λ 1 = 0, for if Λ 1 = 0, then (α n-n 1 -1)α n 1 = √ 2 × 2 m .
Conjugating this relation in K, we get that

(α n-n 1 -1)α n 1 = -(β n-n 1 -1)β n 1 . (3..6)
The absolute value of the left-hand side is at least α n -α n 1 ≥ α n-2 ≥ α 188 , while the absolute value of the right-hand side is at most (|β| n-n 1 + 1)|β| n 1 < 2, which is a contradiction. We apply Theorem 2.1 by taking s = 3, and

γ 1 = α n-n 1 -1 2 √ 2 , γ 2 = α, γ 3 = 2, b 1 = 1, b 2 = n 1 , b 3 = -m.
The minimal polynomial of

γ 1 divides 8x 2 -8P n-n 1 x -((-1) n-n 1 + 1 -Q n-n 1 ),
where {Q k } k≥0 is the Pell-Lucas companion sequence of the Pell sequence given by

Q 0 = 2, Q 1 = 1, Q k+2 = 2Q k+1 + Q k for
all k ≥ 0, for which the Binet formula of its general term is

Q k = α k + β k for all k ≥ 0.
Thus, we obtain

h(γ 1 ) ≤ 1 2 log 8 + log α n-n 1 + 1 2 √ 2 < 1 2 log(4 √ 2α n-n 1 ) < 1 2 (n -n 1 + 2) log α < 4.2 × 10 11 (1 + log 2n).
(3..7) So, we can take A 1 := 8.4 × 10 11 (1 + log 2n). Further, as before, we can take A 2 := log α and A 3 := 2 log 2. Finally, since max{1, n 1 , m} ≤ 2n, we can take B := 2n. We then get that

log |Λ 1 | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n) × (8.4 × 10 11 (1 + log n))(log α)(2 log 2). Thus, log |Λ 1 | > -1.1 • 10 24 (1 + log 2n) 2 .
Comparing this with (3..5), we get that (m -m 1 ) log 2 < 1.1 • 10 24 (1 + log 2n) 2 .

Case 2. min{(n -n 1 ) log α, (m -m 1 ) log 2} = (m -m 1 ) log 2.

In this case, we rewrite (3..1) as

α n 2 √ 2 -2 m 1 (2 m-m 1 -1) = β n + α n 1 -β n 1 2 √ 2 < α n 1 + 2 2 √ 2 < α n 1 , so ( √ 2(2 m-m 1 -1)) -1 α n 2 -m 1 -1 -1 < α n 1 2 m -2 m 1 ≤ 2α n 1 2 m ≤ 2α n 1 -n+4 < α n 1 -n+5 . (3..8) Let Λ 2 = ( √ 2(2 m-m 1 -1)) -1 α n 2 -m 1 -1 -1.
Clearly, Λ 2 = 0, for if Λ 2 = 0 implies α 2n ∈ Q, which is not possible. We apply again Theorem 2.1. In this application, we take again s = 3, and

γ 1 = √ 2(2 m-m 1 -1), γ 2 = α, γ 3 = 2, b 1 = -1, b 2 = n, b 3 = -m 1 -1. The minimal polynomial of γ 1 is x 2 -2(2 m-m 1 -1) 2 . Thus h(γ 1 ) = log √ 2(2 m-m 1 -1) < (m -m 1 + 1) log 2 < 8.5 × 10 11 (1 + log 2n).
So, we can take A 1 := 1.7 × 10 12 (1 + log 2n). Further, as before, we can take A 2 := log α and A 3 := 2 log 2. Finally, since max{1, n, m 1 + 1} ≤ 2n, we can take B := 2n.

We then get that

log |Λ 2 | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n) × (1.7 × 10 12 (1 + log 2n))(log α)(2 log 2). Thus, log |Λ 1 | > -2.1 • 10 24 (1 + log 2n) 2 .
Comparing this with (3..8), we get that (n -n 1 ) log α < 2.2 • 10 24 (1 + log 2n) 2 .

Thus, in both Case 1 and Case 2, we have min{(n -n 1 ) log α, (m -m 1 ) log 2} < 8.4 • 10 11 (1 + log 2n) max{(n -n 1 ) log α, (m -m 1 ) log 2} < 2.2 • 10 24 (1 + log 2n) 2 .

(3..9)

We now finally rewrite equation (3..1) as

(α n-n 1 -1) 2 √ 2 α n 1 -2 m 1 (2 m-m 1 -1) = β n -β n 1 2 √ 2 < |β| n 1 = 1 α n 1 .
Dividing both sides by 2 m -2 m 1 , we get

α n-n 1 -1 √ 2(2 m-m 1 -1) α n 1 2 -m 1 -1 -1 < 1 α n 1 (2 m -2 m 1 ) ≤ 2 α n 1 2 m ≤ 2α 4-n-n 1 ≤ α 4-n , (3..10) because α n 1 ≥ α > 2.
To find a lower-bound on the left-hand side, we use again Theorem 2.1 with s = 3, and

γ 1 = α n-n 1 -1 √ 2(2 m-m 1 -1) , γ 2 = α, γ 3 = 2, b 1 = 1, b 2 = n 1 , b 3 = -m 1 -1.
Using h(x/y) = h(x) + h(y) for any two nonzero algebraic numbers x and y, we have

h(γ 1 ) ≤ h α n-n 1 -1 √ 2 + h(2 m-m 1 -1) < 1 2 (n -n 1 + 2) log α + (m -m 1 ) log 2 < 2.5 • 10 24 (1 + log 2n) 2 ,
where in the above chain of inequalities, we used the argument from (3..7) as well as the bound (3..9). So, we can take A 1 := 5 • 10 24 (1 + log 2n) 2 and certainly A 2 := log α and A 3 := 2 log 2. We need to show that if we put

Λ 3 = α n-n 1 -1 √ 2(2 m-m 1 -1) α n 1 2 -m 1 -1 -1, then Λ 3 = 0. But Λ 3 = 0 leads to (α n-n 1 -1)α n 1 = √ 2(2 m -2 m 1 ),
which upon conjugation in K leads to (3..6), which is impossible. Thus, Λ 3 = 0. Theorem 2.1 gives

log |Λ 3 | > -1.4 • 30 6 • 3 4.5 • 2 2 (1 + log 2)(1 + log 2n) × (5 × 10 24 (1 + log 2n) 2 )(log α)(2 log 2),
which together with (3..10) gives (n -4) < 6 • 10 36 (1 + log 2n) 3 , leading to n < 7 • 10 42 .

3.B. Reducing n

We now need to reduce the above bound for n and to do so we make use of Lemma 2.2 several times.

To begin with, we return to (3..4) and put

Γ := n log α -m log 2 -log(2 √ 2).
For technical reasons we assume that min{n -n 1 , m -m 1 } ≥ 20. We go back to the inequalities for Λ, Λ 1 , Λ 2 . Since we assume that min{n

-n 1 , m -m 1 } ≥ 20 we get |e Γ -1| = |Λ| < 1 4 . Hence,
|Λ| < 1 2 and since the inequality |x| < 2|e x -1| holds for all x ∈ -1 2 , 1 2 , we get

|Γ| < 2 max{α n 1 -n+5 , 2 m 1 -m+1 } ≤ max{α n 1 -n+6 , 2 m 1 -m+2 }.
Assume Γ > 0. We then have the inequality

0 < n log α log 2 -m - 3 2 < max α 6 log 2 α -(n-n 1 ) , 4 log 2 2 -(m-m 1 ) < max{286α -(n-n 1 ) , 6 • 2 -(m-m 1 ) }.
We apply Lemma 2.2 with

τ = log α log 2 , µ = - 3 2 , (A, B) = (286, α) or (6, 2).
Let τ = [a 0 , a 1 , . . .] = [1, 3, 1, 2, 6, 1, 2, 11, 2, 2, 1, . . .] be the continued fraction of τ . We choose M := 7 • 10 42 and consider the 89-th convergent p q = p 89 q 89 = 348317200801236358620935022888502708006954949997 273930475375768068118103206105181460963472890299 .

It satisfies q = q 89 > 6M . Further, it yields ε > 0.49, and therefore either

n -n 1 ≤ log(286q/ε) log α < 132, or m -m 1 ≤ log(6q/ε) log 2 < 126.
In the case of Γ < 0, we consider the following inequality:

m log 2 log α -n + log(2 √ 2) log α < max α 6 log α α -(n-n 1 ) , 4 log α 2 -(m-m 1 ) < max{225α -(n-n 1 ) , 5 • 2 -(m-m 1 ) },
instead and apply Lemma 2.2 with

τ = log 2 log α , µ = log(2 √ 2) log α , (A, B) = (225, α) or (5, 2).
Let τ = [a 0 , a 1 , . . .] = [0, 1, 3, 1, 2, 6, 1, 2, 11, 2, 2, 1, . . .] be the continued fraction of τ (note that the current τ is just the reciprocal of the previous τ ). Again, we choose M = 4.2 • 10 43 , and in this case we consider the 90-th convergent p q = p 90 q 90 = 116053085442077720965142600370109382756030794793 91268753856671834783420178148248093030868562298 , which satisfies q = q 90 > 6M . This yields again ε > 0.49, and therefore either

n -n 1 ≤ log(225q/ε) log α < 132, or m -m 1 ≤ log(5q/ε) log 2 < 126.
These bounds agree with the bounds obtained in the case that Γ > 0. As a conclusion, we have either n -n 1 ≤ 131 or m -m 1 ≤ 125 whenever Γ = 0. Now, we have to distinguish between the cases n -n 1 ≤ 131 and m -m 1 ≤ 125. First, let assume that n -n 1 ≤ 131. In this case, we consider inequality (3..5) and assume that m -m 1 ≥ 20. We put

Γ 1 = n 1 log α -m log 2 + log α n-n 1 -1 2 √ 2 .
Then inequality (3..5) implies that

|Γ 1 | < 4 2 m-m 1 .
If we further assume that Γ 1 > 0, we then get

0 < n 1 log α log 2 -m + log((α n-n 1 -1)/(2 √ 2) log 2 < 4 (log 2)2 m-m 1 < 6 2 m-m 1 .
Again we apply Lemma 2.2 with the same τ as in the case when Γ > 0. We use the 89-th convergent p/q = p 89 /q 89 of τ as before. But in this case we choose (A, B) := (6, 2) and use So, Γ 1 = n 1 log α -(m + 1) log 2, or (n 1 + 2) log α -(m -1) log 2 when k = 1, 4 respectively. Thus we get that

µ k = log((α k -1)/(2 √ 
τ - m + 1 n 1 < 4 2 m-m 1 n 1 , or τ - m -1 n 1 + 2 < 4 2 m-m 1 (n 1 + 2) , respectively. Assume that m -m 1 > 150. Then 2 m-m 1 > 8 × (8 × 10 42 ) > 8 × (n 1 + 2), therefore 4 2 m-m 1 n 1 < 1 2n 2 1 and 4 2 m-m 1 (n 1 + 2) < 1 2(n 1 + 2) 2 .
By a criterion of Legendre, it follows that (m + 1)/n 1 or (m -1)/(n 1 + 2) are convergents of τ , respectively. So, say one of (m+1)/n 1 or (m-1)/(n 1 +2) is of the form p k /q k for some k = 0, 1, . . . , 84. Here, we use that q 84 > 8 × 10 42 > n 1 + 2. Then

1 (a k + 2)q 2 k < τ - p k q k .
Since max{a k : k = 0, . . . , 84} = 100, we get

1 102q 2 k < 4 2 m-m 1 q k and q k divides one of {n 1 , n 1 + 2}. Thus, 2 m-m 1 ≤ 4 × 102(n 1 + 2) < 4 × 102 × 8 × 10 42
giving m -m 1 ≤ 152. Now let us turn to the case that m -m 1 ≤ 125 and let us consider inequality (3..8). We put

Γ 2 = n log α -m 1 log 2 + log(1/(2 √ 2(2 m-m 1 -1))),
and we assume that n -n 1 ≥ 20. We then have

|Γ 2 | < 2α 5 α n-n 1 . Assuming Γ 2 > 0, we get 0 < n log α log 2 -m 1 + log((1/(2 √ 2(2 m-m 1 -1))) log α < 2α 5 (log 2)α n-n 1 < 237 α n-n 1 .
We apply again Lemma 2.2 with the same τ , q, M , (A, B) := (237, α) and

µ k = log((1/(2 √ 2(2 k -1))) log 2 for k = 1, 2, . . . 125.
We get ε > 0.003, therefore n -n 1 < log(237q/0.003) log α < 137.

A similar conclusion is reached when Γ 2 < 0. To conclude, we first get that either n -n 1 ≤ 131 or m -m 1 ≤ 125. If n -n 1 ≤ 131, then m -m 1 ≤ 171, and if m -m 1 ≤ 125 then n -n 1 ≤ 136. In conclusion, we always have n -n 1 < 137 and m -m 1 < 172.

Finally we go to (3..10). We put

Γ 3 = n 1 log α -m 1 log 2 + log α n-n 1 -1 2 √ 2(2 m-m 1 -1) .
Since n ≥ 200, inequality (3..10) implies that

|Γ 3 | < 2 α n-4 = 2α 4 α n . Assume that Γ 3 > 0. Then 0 < n 1 log α log 2 -m 1 + log((α k -1)/(2 √ 2(2 l -1))) log 2 < 2α 4 (log 2)α n < 99 α n ,
where (k, l) := (n -n 1 , m -m 1 ). We apply again Lemma 2.2 with the same τ , M , q, (A, B) := (99, α) and µ k,l = log((α k -1)/(2 √ 2(2 l -1))) log 2 for 1 ≤ k ≤ 137, 1 ≤ l ≤ 171.

We have problem at (k, l) = (1, 1), (4, 1)(as for the case of Γ 1 ) and additionally for (k, l) = (8, 2) since

α 8 -1 2 √ 2(2 2 -1 = 4α 4 ;
We discard the cases (k, l) = (4, 1), (12, 1), (8, 2) for the time being. For the remaining ones, we get ε > 0.0002, so we obtain n ≤ log(99q/0.0002) log α < 139.

A similar conclusion is reached when Γ 3 < 0. Hence, n < 150. Now we look at the cases (k, l) = (1, 1), (4, 1), (8, 2). The cases (k, l) = (1, 1), (4, 1) can be treated as we did before when we showed that n -n 1 ≤ 137 implies m -m 1 ≤ 171. The case when (k, l) = (8, 2) can be dealt with similarly as well. Namely, it gives Since n ≥ 150, we have α n > 2 × 99 × (8 × 10 42 ) > 2 × 99 × (n 1 + 4), which shows that the right-hand side of inequality (3..11) is at most 2/(n 1 + 4) 2 . By Legendre's criterion, we get that (m 1 + 2)/(n 1 + 4) = p k /q k for some k ∈ [0, 84]. We then get by an argument similar to a previous one that α n ≤ 99 × 102 × (8 × 10 42 ),

giving n ≤ 123. So, the conclusion is that n < 150 holds also in the case of the pair (k, l) = (8, 2). However, this contradicts our working assumption that n ≥ 150. Theorem 1.1 is therefore proved.
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