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Abstract

Within the framework of the second order work theory, the onset of instabilities is
explored numerically in loose granular materials through three dimensional DEM
simulations. Stress controlled directional analysis are performed in Rendulic’s plane
and a particular attention is paid to transient evolutions at the microscale. Thanks
to a micromechanical analysis, the onset and development of transient mechanical
instabilities is explored. It is shown that these instabilities result from the unjamming
and bending of a few force chains associated with a local burst of kinetic energy. This
burst of kinetic energy propagates to the whole sample and provokes a generalized
unjamming of force chains. As force chains buckle, a phase transition from a quasi-
static to an inertial regime is observed. At the macroscopic scale, this results in a
transient softening and a loss of controllability. After the collapse of existing force
chains, the development of plastic strain is eventually stopped as new stable force
chains are built.
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1 INTRODUCTION

Granular materials are in the meantime both very simple and complex materials. Indeed, they can be described as simply as a
set of grains interacting together through contact laws. The discrete nature of the assembly, however results in highly non-linear
and non-regular constitutive behaviors in the sense that the direction of the strain rate depends on the loading direction and
on the previous stress history. The overall response is thus inherently dynamic and relies widely on particles rearrangements.
These dynamic effects are most of the time accounted for at the macroscale through velocity fluctuations in both quasi-static and
inertial regime (1, 2, 3), however when instabilities or failure are considered, this statistical quantity cannot account for sudden
transitions from quasi-static to inertial regime (4, 5, 6, 7). In this case, only local instantaneous velocities are relevant to describe
the rapid increase in kinetic energy.
Based on the concept of the second-order work criterion introduced in the middle of the twentieth century by Hill (8), recent
papers have demonstrated the ability of this criterion to anticipate the occurrence of material instabilities characterized by an
outburst of kinetic energy (4, 9, 6, 7, 10). It has even been shown that the vanishing of the second order work is a necessary
condition (4, 9, 7) for the existence of any types of instabilities characterized for instance by localized failure (11, 12) or by
a classical Mohr-Coulomb plastic failure. This lead to the concept of bifurcation domain which consists in the set of states
for which the second order work is negative. A bifurcation point corresponds to a potentially unstable state for which loading
programs leading to the material failure exist. However not every loading program will necessarily trigger off the underlying
instabilities.
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Within the framework of small strain continuum mechanics, Hill’s instability criterion applied to a material point states that
for a given equilibrium (�, ") reached after a given loading history, if there exists at least one stress increment d�, associated
with a strain response d" such thatW2 = d� ∶ d" < 0, the material point is unstable. The physical meaning of Hill’s criterion
corresponds to a situation in which the deformation of the mechanical system can be pursued without any input of energy from
the observer.
From the writing of the energy balance, it can be shown that the variation of kinetic energy of a given mechanical system
originally in an equilibrium state is a second order term d2Ec equal to the difference between the external work resulting from
the boundary conditions and the volume integral of the second order work (13, 4, 6). Let Ω denotes a mechanical system of
boundary )Ω. Let �f be the force per surface unit applied on )Ω and �u the displacement on )Ω. Then the variation of kinetic
energy from an equilibrium state to any new infinitely close state reads

d2Ec = |Ω|
(

W
ext
2 − W 2

)

= ∫)Ω �f ⋅ �u dS − ∫ΩW2 dV
(1)

whereW
ext
2 = 1

|Ω|
∫)Ω �f ⋅ �u dS is referred to as the mean external second order work andW 2 =

1
|Ω|

∫ΩW2 dV is the mean
(internal) second order work.
This fundamental equation written here in an updated Lagrangian formalism states that the external work is always larger than
the integral of the second order work of the system. This has two important consequences:

- In case of a quasi-static evolution (d2Ec = 0), the mean external second order work is equal to the mean internal second
order work. As the external second order work is often easier to evaluate compared to its internal counterpart, numerical
or experimental assessment of the second order work is carried out by computing the external second order work between
two infinitely close equilibrium states.

- In the case of a nil external second order work, a negative second order work associated with an equilibrium position (at
the first order dEc = 0) will automatically results in an increase in the kinetic energy of the system as d2Ec > 0. As a
result a transition from a quasi-static regime to an inertial one should be expected.

For granular materials, it has been proved that the second order work (at the scale of the continuum) can be computed from
micro-quantities such as branch vectors and contact forces in the quasi-static case (13, 14, 15, 16). However, to the best of
our knowledge, the vanishing of the second order work has never been explicitly linked to physical processes occurring at the
microscale.
Thanks to the combine use of photoelastic grains and numerical simulations, the overall behavior of granular materials was
shown to rely on a limited number of grains organized in mesostructures called force chains (17, 18, 19, 20, 21). Following
the definition as well as the algorithm given in Peters et al. (22), recent results highlighted the importance of these mesoscale
structures with respect to the overall mechanical properties of the granular materials (23, 24, 25). In particular, it has been shown,
that the strength of a granular material results from its ability to build relatively long force chains and its ability to constantly
rearrange existing ones to cope with any change in the boundary conditions. In addition, as shown by Zhu et al. (23, 26) and
Tordesillas et al. (25) in 2D for instance, the particles not included in these chains forms cycles that have an important stabilizing
role.
The aim of this paper is to investigate numerically the elementary mechanisms taking place in loose granular materials when
a loading program leading to the vanishing of the second order work has been detected. The results presented in this paper
may also be useful to provide some insight on the standard numerical procedure used to assess the mechanical stability of
a granular material thanks to the use of the second order criterion. This is done thanks to discrete element simulations on a
representative elementary volume (REV) of a granular assembly. What is the micro-signature of an instability? What is the
sequence of micromechanical mechanisms leading to the vanishing of the second order work at the continuum scale? These are
the main questions that the manuscript should address.
This paper is organized as follows. In section 2, a representative elementary volume of an idealized loose granular material
is generated and submitted to a drained triaxial test. For different stress states, its mechanical stability is assessed in section 3
following a classical stress controlled directional analysis procedure with use of the second order work criterion. A particular
care is paid to (i) the influence of the pre-stabilizing step of the procedure and (ii) the magnitude of the stress probe used in the
directional analysis. In the last section of the paper, a micromechanical analysis of the onset and development of instabilities is
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FIGURE 1 Elasto-frictional contact law used in DEM simulations.

TABLE 1 Mechanical parameters used in the elasto-frictional contact law implemented in YADE.

Parameters Value
Density 3,000 kg.m−3
Young Modulus (E) 356 MPa
Stiffness ratio (�) 0.42
Inter-particle friction angle (�) 35◦

Particle-wall friction angle 0◦

Number of particles 10,000

performed for a particular loading increment corresponding to an observed vanishing of the second order work. The physical
mechanisms at stakes are eventually identified.

2 SAMPLE PREPARATION AND TRIAXIAL TESTING

2.1 Numerical modeling
The micromechanical analysis performed throughout this paper considers non cohesive granular materials modeled as poly-
disperse assemblies of spheres. The interaction between two particles is modeled by the classical elasto-frictional contact law
proposed by Cundal et al. (27) and is illustrated in Figure 1 .
Two spherical particles are said to be in contact if they overlap. Based on the direction of the vector joining the particle centers,
a normal force Fn is defined as proportional to the overlapping distance Δun between the two particles where the contact normal
stiffness kn is proportional to the material’s Young modulus E and to the harmonic average of the two particles radii r1 and
r2 (see Fig. 1 ). In addition to the normal force, a tangential force Ft is introduced. This tangential force is proportional to the
relative tangential displacement Δut between the two particles where the horizontal contact stiffness is a fraction � of its normal
counterpart (see Fig. 1 ). Δut is defined in an incremental form as the relative tangential displacement of the contact point
between a reference configuration (when the contact is first established) and the current configuration. The last parameter of the
implemented contact law is the internal friction angle �, which defines the largest accessible ratio Ft∕Fn according to the Mohr
Coulomb theory (see Fig. 1 ). The input parameters used in this elasto-frictional contact law are reported in Table 1 . They are
chosen equal to those of Hadda et al. (15) and Wautier et al. (24).
After computing all inter-particle contact forces, the induced particles displacements are integrated based on Newton’s second
law of motion using the DEM open source code YADE (28).

2.2 Sample preparation
A cubic assembly of spheres is generated randomly with a uniform radius distribution between rmin and rmax = 3.5 rmin.
After generating a cloud of 10,000 non-overlapping spheres surrounded by six bounding planes defining a cube, the particles
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FIGURE 2 Sample visualization in the initial state.

are inflated and allowed to rearrange according to the radius expansion technique. This process is stopped when the confining
pressure applied on the bounding planes reaches 20 kPa and the unbalanced force (Funb) of the system decreases below 10−5.
By definition Funb is equal to the mean summary force on particles (or equivalently to the mean mass time acceleration of each
particle) divided by the mean contact force magnitude. As a result Funb has no units and provide an intrinsic measure of how
close to equilibrium a mechanical system is. During this process, the inter-particle friction angle is maintained to its value of
35◦ in order to prepare a loose granular material with a void index of e = 0.73. The resulting sample may be visualized in Figure
2 . Associated with the generated cubic grain assembly, a Cartesian coordinate system (ex, ey , ez) is defined such that the axis
directions coincide with the edges of the cube.

2.3 Triaxial testing
From the obtained equilibrium state, a drained triaxial loading is then imposed to the sample in the form of a two step procedure.
First, the confining pressure (�0) is increased from 20 kPa to 100 kPa by allowing the bounding walls to move. Once a new
equilibrium state is reached (Funb < 10−5), a vertical compression strain rate "̇zz = 0.01 s−1 is applied up to 6 % of deformation
while keeping the same lateral confining pressure �0. This strain rate is chosen similar to the one used in previous numerical
studies (15, 6) and is supposed to be sufficiently small so that the loading can be considered as quasi-static.
Throughout this paper the classical soil mechanics conventions are adopted with compressions counted positive. The homoge-
neous Cauchy stress tensor � is defined at the REV scale from the forces applied on the bounding walls. The stress ratio � is
then introduced as the ratio between the deviatoric stress q and the mean pressure p

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� =
q
p

q =
√

3
2
�dev ∶ �dev

�dev = � − p 1
p = 1

3
Tr(�)

. (2)

where 1 stands for the identity tensor and ":" stands for the double dot contraction product.
Likewise, a macroscopic homogeneous strain tensor " is defined from the bounding walls displacements. In order to be consistent
with the second order work definition W2 = d� ∶ d", compaction is counted positive. The volumetric strain is then simply
defined as

"v = Tr(") (3)

In Figure 3 , the stress ratio and volumetric strain responses are shown. A typical contractive behavior is observed as both � and
"v monotonously increase with the vertical compaction ("zz > 0). This behavior is typical of non compacted granular material
(recent gravel deposits or stocks of industrial materials for instance). After a sharp increase, the stress ratio slowly increases on
average from after less than 1 % of vertical strain (the critical state is not completely reached after 6 % of vertical strain). This
second phase of the mechanical response is characterized by a "bumpy" curve resulting from important grain rearrangement
processes occurring from time to time. As a result, as soon as these sudden drops in � are observed the mechanical response of
the sample becomes inherently dynamic and the quasi-static hypothesis becomes questionable over these short periods.
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FIGURE 3 Drained triaxial test response. The diamond points correspond to the mechanical states considered for the stability
analysis. The circles corresponds to the stress-strain state reached after the pre-stabilization step (see subsection 3.1)

In order to study the mechanical stability of the particular sample under different mechanical stress states, 9 samples are saved
during the triaxial loading for � ∈ {0.01, 0.20, 0.30, 0.35, 0.45, 0.50, 0.55, 0.60, 0.65}. The corresponding states are marked with
diamonds in Figure 3 .

3 MACROSCOPIC ASSESSMENT OF BIFURCATION POINTS

In this section, the mechanical stability of the 9 mechanical states saved during the triaxial loading presented in the previous
section is assessed thanks to a classical stress controlled directional analysis procedurewith use of the second order work criterion
(29, 14, 4). This numerical procedure is composed of two steps which are reviewed in detail hereafter. First, a pre-stabilization
is required to define a reference equilibrium state. Then, an incremental stress probe is imposed at the scale of the whole sample
which is accompanied by a transient mechanical response until a second equilibrium state is reached.
In addition to the directional analysis of the vanishing of the second order work criterion (section 3.2), a particular care is paid
to the influence of the pre-stabilizing step (section 3.1), to the transient response observed between the two equilibrium states
(section 3.3) and to the influence of the magnitude of the stress probe (section 3.4).

3.1 Pre-stabilization step
Even if the vertical compression rate is set at a reasonably low value, the mechanical response recorded during the triaxial
loading is inherently dynamic as it relies on particle rearrangements and the integration of Newton’s second law of motion. As
a result, a pre-stabilization step is required prior to study the mechanical stability of saved samples thanks to the second order
work criterion reviewed in the introduction.
This pre-stabilization step is achieved by keeping the lateral pressure to the constant value �0 and by imposing a vertical stress
�zz corresponding to the stress ratio considered. The equilibrium state is assumed to be reached once Funb < 10−5.
Even if the stress state is kept constant, delayed deformations are observed during this pre-stabilization step. The final stress-
strain states reached at the end of the pre-stabilization step are shown for each stress ratio in Figure 3 by blue circles. For
� ≤ 0.45 and � = 0.55, negligible delayed deformations are observed while for � ∈ {0.50, 0.60, 0.65} observed deformations are
larger than 1 %. In addition, even when no important delayed deformation is observed, some localized bursts of kinetic energy
may occur as illustrated in Figure 4 for � = 0.45. These two observations prove the occurrence of local particle reorganizations
which will affect the mechanical stability as the state variables obtained at the end are different from the initial ones as shown
in particular for � and " in Figure 3 . This impact is even more important if the stress ratio is larger than � = 0.45 as the quasi-
static regime becomes questionable. The mechanical response of the sample is then governed by sudden rearrangements in the
microstructure which yield fluctuations in the stress-strain response. These rearrangements are not instantaneous and continue
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FIGURE 4 Two typical visualization of observed local bursts of kinetic energy during the pre-stabilizing step (� = 0.45).
Particles are colored according to their kinetic energy level. Particles with Ec > 10−8 J are highlighted.

to occur during the pre-stabilization step which result at the scale of the sample in delayed permanent deformations. A parallel
can be drawn here with the concept of "delayed plasticity" introduced by Di Prisco (30) and also mentioned in Froiio et al. (31).

3.2 Directional analysis
As introduced by (32) and widely used in the literature, directional analysis is a convenient framework to track the existence
of stress increments leading to the vanishing of the second order work (33, 29, 14, 4, 34). In this study, we restrict our sta-
bility analysis to stress increments lying in the plane of axisymmetry such that d�xx = d�yy (Rendulic’s plane). In this plane
(
√

2d�xx, d�zz), a stress increment d� is fully described by its polar coordinates ||d�|| and � such that

⎧

⎪

⎨

⎪

⎩

√

2d�xx = ||d�|| cos �
d�zz = ||d�|| sin �

||d�|| =
√

d�2zz + 2 d�2xx

. (4)

In practice, finite stress increments of ||d�|| = 5 kPa are imposed in the form of a stress loading rate of 142 kPa.s−1 (correspond-
ing to 10 000 numerical time increments) followed by a stabilization phase letting the system evolves toward a new equilibrium
position as Funb < 10−5. The size of the stress increment is similar to those classically used in the literature (35, 36, 29).
At the end, for each imposed stress increment d�, a strain increment d" is obtained. A normalized second order work is then
defined at the material point scale (REV scale) as

W norm
2 = d" ∶ d�

||d"|| ||d�||
(5)

Provided that the strain increment depends linearly with the applied stress increment for each direction � (this will be investigated
in section 3.4), the normalized second order work introduced in (5) depends only on � and not ||d�||. For the considered stress
increment ||d�|| = 5 kPa, the normalized second order work envelopes for the 9 pre-stabilized samples are shown in Figure 5 .
A circular representation is used as the second order work is positive outside the red dashed circle and negative inside.
In Figure 5 , the normalized second order work envelopes on the left correspond to the quasi-static regime (� ≤ 0.45) while the
ones on the right corresponds to the dynamic regime of the triaxial test (� > 0.45). For small stress ratios, no vanishing of the
second order work is observed. As the stress ratio increases, the second order work gradually decreases for incremental stress
directions around 210◦ and an instability cone (� values such that W2 ≤ 0) is eventually obtained for � = 0.45. According to
the second order work criterion the sample enters the bifurcation domain while approaching the onset of the dynamic regime
during the triaxial loading as there exist incremental loading programs associated with negative W2. Then, for higher stress
ratio, the second order work suddenly becomes positive again for all the incremental stress directions (except for � = 0.55 for
which an instability cone is still visible). The non vanishing ofW2 for � ∈ {0.5, 0.6, 0.65} should be linked to the large delayed
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FIGURE 5 Circular second order work for different � values in quasi-static regime (left) and in dynamic regime (right).W2 = 0
is indicated by a red dashed circle.

deformations observed for these stress state in Figure 3 . The grain rearrangements result in a stable configuration for which no
stress increments lead to the vanishing of the second order work (at least for loading directions within Rendulic’s plane).

3.3 Macroscopic analysis of the onset and development of instabilities
In the previous subsection, the second order work has been systematically computed between two equilibrium states. In this
subsection, transient evolutions induced by macroscopic stress probes are analyzed at the scale of the REV. In Figure 6 , the
incremental stress and strain time responses are presented for a stress ratio � = 0.45 and for the two loading directions � = 30.5◦
(stable) and � = 210.5◦ (unstable).
For the considered stable direction (� = 30.5◦) the evolution of the incremental stress follows perfectly the prescribed loading
program in the form of a ramp over the first 10 000 numerical time iterations (t < 0.035 s). By contrast the measured stress
increments corresponding to the unstable direction � = 210.5◦ fails to follow prescribed ramp and a deviation is observed for
t ∈ [0.015, 0.04] s. Indeed, contrary to stable directions a transient loss of controllability (in the sense of Nova (12)) is observed
for unstable directions. This has to be linked to the development of large incremental strains up to a few percent whereas in the
case of stable directions, the incremental strain is limited to approximately 10−5 (see inset graph in Figure 6 ).
The considered unstable direction (� = 210.5◦) corresponds to a physical configuration inwhich the sample is slightly deconfined
simultaneously in the vertical and horizontal directions (d�zz < 0 and d�xx = d�yy < 0). For a stable material, this loading
program should result in an increase in the volume of the sample which is only the case here for t < 0.01 s (before large strains
develop). A sudden collapse of the sample in the vertical direction is observed and a densification of the sample is obtained as
the horizontal dilatancy does not counterbalance the vertical contraction in Figure 6 (d"v =

∑

i d"ii > 0).
In Figure 7 , the transient evolution of the second order work is plotted for the two loading directions � ∈ {30.5◦, 210.5◦} and
for the same stress ratio � = 0.45. It should be noted here that as the sample does not follow a quasi-static evolution, the transient
second order work shown in Figure 7 is indeed the external second order work which is an upper bound for the internal second
order work as d2Ec ≥ 0 in equation (1) (10).
Initially positive, the second order work vanishes after t = 0.014 s when the loss of controllability is observed. Then W ext

2
decreases, goes through a minimum and eventually stabilizes after t = 0.05 s around a negative value. This non monotonic
evolution should be underlined as for some stress ratios and some stress loading directions the final increase of the second order
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work may rise above zero. Indeed this evolution is explained by the onset of a softening regime (the vanishing and the decrease
of W2) which is eventually stopped as the sample gets denser (the final increase in W ext

2 ). Provided this softening regime is
rapidly stopped, the final value forW ext

2 = W2 may become positive again.
In Figure 8 , a circular representation ofW ext

2 is shown in order to link the transient evolutions of d� andW ext
2 for a stress ratio

� = 0.45.
In this Figure, the loss of controllability for unstable directions is visible as transient normalized second order work does not
follow a straight line. As the external second order work decreases, the incremental stress loading direction deviates toward
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the direction of the cone of instability slightly outside the normalized second order work envelop computed in Figure 5 (as
W ext
2 > W2 according to equation (1)) before getting back to its original position as soon as the softening regime is contained.

3.4 Influence of the stress increment on the onset of instabilities
As already pointed out in the literature concerning the numerical assessment of the mechanical stability of granular materials
(31, 29), the stress increment ||d�|| used in the directional analysis cannot be infinitely small as assumed theoretically. This
is usually assumed to be linked to the discrete nature of granular materials as the material point definition used at the basis of
continuum mechanics is not rigorously fulfilled. The particular choice in ||d�|| is however arbitrary.
In this study, the specific influence of ||d�|| on the normalized second order work envelopes shown in Figure 5 , has been
explored for the stress ratio � = 0.45. In Figure 9 , the normalized second order work envelopes are shown for six stress
increments ||d�|| ∈ {0.5, 1, 2.5, 5, 7, 10} kPa. For each stress increment, the testing procedure remains the same as in section
3.2. In particular, the same stress loading rate ||d�̇|| = 142 kPa.s−1 is used.
If no change is visible for stable directions, the magnitude of the applied stress increment has a noticeable impact on the width of
the instability cone which can even disappear for small stress increments. Indeed, the onset of instabilities requires the applied
perturbation to be large enough. Once all the underlying instabilities have been triggered off, the normalized second order work
does not depend on ||d�̇|| anymore. In the present case, a minimal value between 2.5 kPa and 5 kPa is required.
In order to explore this dependence on the stress increment at the microscale, it is interesting to define for each contact sliding
index d as

d =
tan� − ||Ft||

||Fn||

tan�
(6)

where � is the inter-particle friction angle, Ft and Fn are respectively the tangential and normal contact forces as defined in
section 2.1. This sliding index is normalized between 0 and 1, d = 0 meaning that the Mohr-Coulomb criterion of the contact
law (see Figure 1 ) is reached.
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FIGURE 10 Sliding index probability density functions before and after the application of an incremental stress for a stress
ratio � = 0.45 and the two loading directions � = 30.5◦ (left) and � = 210.5◦ (right).

In Figure 10 , probability density functions (pdf) associated with this sliding index are shown for the pre-stabilized sample
corresponding to � = 0.45. The solid line correspond to the reference pdf before the application of any stress increment while
the dashed lines correspond to pdf reached after a stress increment ||d�|| = 0.5 kPa or ||d�|| = 5 kPa. Two loading directions
are considered as � = 30.5◦ (stable direction) or � = 210.5◦ (unstable direction).
In Figure 10 , the initial pdf presents a "S" shape with a local maximum for d ≃ 0.75 and a maximum for d = 0. Indeed,
in the initial configuration, a significant number of contacts have reached or are close to the Morh-Coulomb limit. For both �
directions, the application of a stress increment ||d�|| = 0.5 kPa hardly change the contact distribution whereas a larger stress
increment of ||d�|| = 5 kPa has a noticeable impact on the pdf as fewer contacts remain close to sliding. It should be noted that
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FIGURE 11 Remaining fraction of contacts with a sliding index d smaller than 0.1 with respect to the applied incremental
stress magnitude for a stress ratio � = 0.45 and an unstable direction � = 210.5◦ (solid line) and a stable direction � = 30.5◦
(dashed line).

the shape of the pdf remains mostly unchanged for d > 0.1. As a result, a finite stress increment is required to have an impact
on the microstructure geometry which is required to observe the vanishing of the second order work (29, 31).
The comparison between the two loading directions for ||d�|| = 5 kPa shows that for the unstable direction � = 210.5◦, the
probability density falls down to 0 for d = 0which is not the case for � = 30.5◦. Indeed, an incremental load in a stable direction
will provoke a partial reorganisation of the microstructure through gain and loss of contacts, whereas an incremental load in an
unstable direction will result in a complete microstructure reorganization. In both cases many contacts close to sliding are either
lost or released and for � = 210.5◦ no contacts remain close to sliding anymore.
In order to highlight the specific influence of the incremental stress ||d�|| on contact reorganizations, the fraction of contacts
remaining close to sliding (d < 0.1) was investigated for � ∈ {30.5◦; 210.5◦} and � = 0.45 for 14 values of ||d�|| in Figure 11 .
In Figure 11 , stable and unstable directions show completely different results. For � = 30.5◦, the number of contacts remaining
close to sliding smoothly decrease with ||d�|| whereas a threshold value ||d�∗

|| = 0.9 kPa is observed for � = 210.5◦. For
||d�|| < ||d�∗

||, the final number of contacts Nf (d < 0.1) close to sliding increases monotonously by comparison with the
initial oneNi(d < 0.1). Then, for ||d�|| > ||d�∗

|| the remaining fraction of contacts close to sliding drops to a low value around
30 % and remains stable. These observations are consistent with the comments made previously and can be interpreted through
a micromechanical approach of stability based on jamming analysis (37). Indeed, an incremental loading along a stable direction
will result in incremental modifications of the microstructure whereas an incremental loading along a unstable direction will
result in a generalized unjamming/re-jamming process, provided that ||d�|| > ||d�∗

||. As a result, for unstable directions, there
exists a threshold value responsible for the triggering of the observed instability. As soon as the threshold is reached, the size
of the stress increment does not have any influence on the number of contacts close to sliding anymore. It should also be noted
that this value is found to depend on the loading rate and the direction of loading � (not shown here).
The existence of a threshold value is consistent with DEM framework in which particle overlapping is allowed and controlled
through a normal stiffness kn. As a result, contact points are not limited to single points and the loss of contact requires a finite
perturbation. A complementary study to the present work (not shown here) has been carried out to highlight the dependence of
||d�∗

|| to kn. An increase in kn reduces grain overlap and a smaller threshold is observed.

4 MICROMECHANICAL ANALYSIS OF THE ONSET AND DEVELOPMENT OF
INSTABILITIES

In the previous section, the mechanical stability of granular samples has been assessed at the scale of the REV and the onset
of instabilities has been explained as the ability of an incremental load to trigger off microstructure reorganizations. If the
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mechanical state of the considered sample is in the bifurcation domain (or very close to it) and loaded along an unstable direction,
the incremental loading induces generalized microstructure reorganizations which result in a macroscopic transient softening
responsible for a loss of controllability. In the end, a new equilibrium is reached which is characterized by a contact population
relatively far from sliding.
The purpose of this section is to provide a microscale investigation of the physical processes leading to the vanishing of the
second order work during the transient loss of controllability phase observed macroscopically in Figure 6 . In all this section,
the particular stress state � = 0.45 and the unstable loading direction � = 210.5◦ are considered. A particular attention is paid
to the chronology of events leading to the softening of the granular assembly.

4.1 Spatial distribution of kinetic energy
As previously highlighted in the literature (38, 29, 6, 4), the main ingredient enabling microstructure reorganizations in granular
materials is the particles’ kinetic energy. As a result, it is of particular interest to track the time evolution of the kinetic energy
of the individual particles while applying a stress increment. In Figure 12 , snapshots of the considered sample are shown for
different time steps for two sufficiently large stress increments ||d�|| ∈ {1, 5} kPa (see Figure 11 ). The particles are colored
according to their kinetic energy, and the most energetic ones are highlighted. An arbitrary threshold of E∗

c = 10
−8 J is chosen

corresponding to the most energetic particles in the initial state.
In both cases, a localized burst of kinetic energy appears at the same spot and approximately at the same time (once ||d�|| has
reached its targeted value in the 1 kPa case and during the transient increase of ||d�|| in the 5 kPa case). Then the local burst
of kinetic energy propagates to the whole sample. In the case where ||d�|| is below the threshold value ||d�∗

|| identified in
section 3.4, no burst of kinetic energy is visible (not shown here). Indeed, the observed threshold value in direction � = 210.5◦
corresponds to the minimal perturbation required to trigger off the burst of kinetic energy shown in Figure 12 . Once initiated,
the burst of kinetic energy can propagate to the whole sample. The sample is unstable as a whole and a suitable perturbation
will trigger off the underlying instability leading to a generalized microstructure rearrangement. This contrasts with local bursts
of kinetic energy observed during the pre-stabilization step in Figure 4 . The observed vanishing of the second order work is
thus a material property and not a structural one as the microstructure modifications do not stay localized in some regions of the
sample with a length scale similar to the one of the whole sample.
This is the reason why we can still consider this instability as a material instability. The sample is unstable as a whole and a

small perturbation will trigger off the underlying instability. A structural instability would have stayed confined in a restricted
zone of our sample with a length scale similar to the one of the whole sample.
In order to describe the onset and the propagation of the burst of kinetic energy, the time evolution of the mean kinetic energy
per particle is plot in Figure 13 for the whole sample and for the small control volume visible in Figure 12 .
In Figure 13 , an early increase in the mean kinetic energy per particle occurs simultaneously in the control volume for ||d�|| =
1 kPa and ||d�|| = 5 kPa for t ≃ 0.005 s. This corresponds to the initiation of the burst of the kinetic energy shown in Figure
12 . After t ≃ 0.015 s the kinetic energy per particle follows the same evolution in the control volume and for the whole sample.
This marks the end of the propagation of the burst of the kinetic energy. For ||d�|| = 1 kPa, the transient incremental loading is
stopped before the end of the kinetic burst propagation (blue dotted line). As a result, a small plateau is observed in the general
increase in the kinetic energy corresponding to the time needed for the instabilities to affect the whole sample. Such a plateau
is not observed for ||d�|| = 5 kPa as kinetic energy is continuously provided through evolving boundary conditions (the end of
the transient loading is reached even after the mean kinetic energy per particle reaches its maximum).

4.2 Force chains definition
Now commonly used in the literature, the force chain concept provides a relevantmesoscopic scale to account for themacroscopic
mechanical behavior of granular materials (23, 39, 24, 25). In particular, it has been shown, that the strength of a granular
material results from its ability to build relatively long force chains and to constantly rearrange the existing force chains to cope
with any change in the boundary conditions (40, 23, 24). Details on the algorithm used to identify the chained particles of a
sample can be found in Peters et al. (22). The definition of a force chain used throughout this manuscript is briefly reviewed:

- The particles belonging to a force chain have a higher principal stress than the mean particle principal stress.
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FIGURE 12 Onset and propagation of the burst of kinetic energy leading to the loss of controllability for ||d�|| = 1 kPa (a)
and ||d�|| = 5 kPa (b). The sample considered is characterized by a stress ratio � = 0.45 and is loaded in an unstable direction
� = 210.5◦. Particles with Ec > 10−8 J are highlighted. A control volume around the location of the kinetic burst is shown in
black.
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FIGURE 13 Mean kinetic energy per particle for the whole sample and around the initiation of the kinetic burst. The sample
considered is characterized by a stress ratio � = 0.45 and is loaded in an unstable direction � = 210.5◦ with a stress increment
||d�|| = 1 kPa (blue) or ||d�|| = 5 kPa (red). The end of the imposed transient loadings (see Section 3.2) are shown by dash-dot
lines.

- The principal stress direction of chained particles is aligned with the geometrical contact direction (less than 45◦
deviation).

- A force chain contains at least three contacting particles.

Based on this definition, the particles responsible for the stress transmission can be identified in the initial state and tracked while
the incremental stress is applied. By comparing the current set of chained particles to the initial one, force chain renewal can
be quantified as Nborn current chained particles were not identified as such initially and Ndied initially chained particles are no
longer identified as such. A visualization of the force chains identified in the initial and final configurations is shown in Figure
14 as well as the time evolution of the total number of chained particles (Ntot) and the time evolution of the new and former
ones.
In this figure the microstructure evolution induced by the applied incremental stress is visible. Between the initial and final states
roughly 50 % of the chained particles are renewed while the total number of chained particles remains quasi-constant (a slight
decrease from 2821 to 2661 chained particles is observed). In addition, in the final state the vertical anisotropy of the force
chains seems visually to be less pronounced than initially.

4.3 Chained particles lifespan and life expectancy
In order to detect birth and death of force chains, the notions of lifespan and life expectancy are introduced similarly as in (23).
This analysis is not carried out directly on force chains but on groups of three chained particles. For a given time t and a given
group of 3 chained particles g, the lifespan ls(t, g) is defined as

ls(t, g) =
t − tbirthg

t − ti
, ls(t, g) ∈ [0, 1] (7)

where ti = 0 is the time at which the incremental stress is applied and tbirthg is the time at which the three particles composing
g were first identified as chained particles and from which they remain continuously identified as such until the current time
t. ls(t, g) = 1 means that the group g of three chained particles have been existing since the initial configuration before the
incremental stress is applied. On the contrary, ls(t, g) = 0 means that g has just appeared.
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FIGURE 14 Visualization of force chains identified in the initial (a) and final (b) configurations for a stress ratio � = 0.45 in
an unstable direction � = 210.5◦ for ||d�|| = 5 kPa. Force chains are composed of contacting particles of same color. (c) Time
evolution of the number of chained particles (black), the number of new (green) and former (red) chained particles compared
with the initial state.

Similarly, the life expectancy le(t, g) of g computed at time t is defined as

le(t, g) =
tdeathg − t

tf − t
, le(t, g) ∈ [0, 1] (8)

where tf = 0.087 s is the time at which a new equilibrium (Funb < 10−5) is reached after the application of the incremental
stress d� and tdeathg is the time at which the three particles composing g were last identified as chained particles starting from
time t. le(t, g) = 1 means that the group g of three chained particles exists until the final stabilization of the sample. On the
contrary, le(t, g) = 0 means that g is about to disappear.
In Figure 15 , the probability density functions ps and pe are shown for different time t ∈ [ti, tf ] in order to identify whether
the current force chains are rather young or old and whether they have a long life ahead or are about to disappear.
In the beginning of the incremental loading, the force chains are stable as all groups of three chained particles are old with a non
zero life expectancy. This statement remains true when the burst of kinetic energy identified in the previous subsection initiates
and propagates to the whole sample (t ∈ [0.005, 0.013] s). From the moment that the kinetic energy reaches its maximum level
(t = 0.0388 s), groups of three particles start collapsing replaced by young force chains with a short life expectancy. Once the
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FIGURE 15 Probability density functions associated to the lifespan (blue) and life expectancy (red) of the groups of three
chained particles at different moments of the incremental loading. The sample considered is characterized by a stress ratio
� = 0.45 and is loaded in an unstable direction � = 210.5◦ with a stress increment ||d�|| = 5 kPa. A high value of ps around 1
corresponds to the presence of old force chains, a high value of pe around 1 corresponds to the presence long lasting force chains.

kinetic energy of the sample start decreasing (from t = 0.0634 s) some time after the targeted stress increment reaches its final
value (t = 0.035 s), force chains become stable again as an aging population of force chains with a long life expectancy is
encountered.
The main conclusions to be retained from this analysis are that:

- the initiation of the burst of kinetic energy is not due to the destruction of force chains;



WAUTIER ET AL 17

- the loss of controllability appears prior to the generalized collapse of force chains;

- the force chains reorganization appears simultaneously with the maximal level of kinetic energy;

- the final stabilization of the sample is reached as soon as long lasting force chains appear.

4.4 Localized force chains bending
As the loss of controllability occurs prior to the destruction of force chains, their collapse should not be regarded as the triggering
microscale mechanism responsible for the onset of the burst of kinetic energy (25). Force chains are elongated column like
structures loaded in compression. As a result, their effective failure is very likely to be related to the onset of bending, before
destruction of any force chains. Given a group of three chained particles g for which two contact directions form an angle
� ∈ [0, �], the bending rate �̇ is simply the time derivative of �. A strictly positive value �̇ > 0 characterize the bending of g.
In Figure 16 , a zoom of the time evolution of the mean kinetic energy and the mean bending rate are shown for the whole
sample and a small control volume around the location of the burst of kinetic energy (see Figure 12 ). On the first graph, the
evolution of the difference between the actual incremental stress components and their prescribed values is shown.
In this figure, both the loss of controllability, the onset of the burst of kinetic energy and the increase in the bending rate in the
control volume shown in Figure 12 occur simultaneously for t ≃ 0.008 s, approximately 0.007 s prior to a general increase in
mean kinetic energy per particle and mean bending rate for the whole sample (black solid curves in Figure 16 ). Indeed, the
localized bending of a few force chains seems to be sufficient to generate a loss of controllability at the scale of the REV.
As recently shown for 2D granular assemblies, force chain loss of stability results from the opening of contacting grain cycles
(25, 40, 26). In order to investigate this feature in 3D, the time evolutions of the number of contacts between two chained particles
(Ncc), two non-chained particles (Nnn) and a non-chained and a chained particle (Nnc) are represented in Figure 17 . As for
Figure 16 , the time evolutions are given for the whole sample and for the same control volume around the location of the burst
of kinetic energy (see Figure 12 ). The onset and the propagation of the burst of kinetic energy are indicated by two vertical
solid lines.
In Figure 17 , the number of non-chained/chained contacts (Nnc) decreases in the control volume even prior to the onset of
the burst of kinetic energy while Nnn and Ncc remain more or less constant up to the end of the propagation of the burst of
kinetic energy. This observation suggests that the localized bending highlighted in Figure 16 results from an early unjamming
of force chains within the used control volume (and consequently a local dilatancy). The evolution ofNcc ,Nnn andNnc for the
whole sample confirms this mechanism with a generalized drop in Nnc observed during the propagation of the burst of kinetic
energy. This failure mechanism is consistent with the 2D opening of the three particles loops around force chains mentioned in
Tordesillas et al. (40) or Zhu et al. (26). In the end, following the generalized collapse of force chains, the initially loose sample
gets denser and the number of contacts between non-chained particles increases. The decrease in Ncc follows qualitatively the
trend mentioned in section 4.2 for the number of chained particles. However, as the number of chained particles is reduced by
roughly 160, Ncc drops by approximately 260. This might result from changes in the topology of force chains (less branching
or shorter chains for instance).
Complementary to Figure 17 , the evolution of the mean coordination number of the particles belonging to force chains (ZFch)
is shown in Figure 18 for ||d�|| ∈ {1, 5} kPa.
In Figure 18 , the evolution of the mean kinetic energy for the whole sample is shown in dashed lines while the onset and
propagation of the burst of kinetic energy are still indicated by two vertical solid lines. As soon as the incremental load starts,ZFch
drops which is a signature for local dilatancy around force chains. This decrease in ZFch appears before any noticeable increase
in kinetic energy and its decreasing rate accelerates as the local burst of kinetic energy appears. These observations are consistent
with the failure mechanism identified previously. In addition, it should be noted that drops in ZFch occur simultaneously for
||d�|| = 1 kPa and ||d�|| = 5 kPa (both above the threshold value identified in section 3.4) so as the onset of the burst of
kinetic energy. In the case ||d�|| = 1 kPa, the drop is observed after the end of the transient incremental loading while for
||d�|| = 5 kPa, the drop occurs during the transient increase of ||d�|| from 0 to 5 kPa (see Figure 13 ). As a result, the failure
mechanism seems to be triggered off as soon as the incremental stress overcomes the threshold value ||d�∗

|| = 0.9 kPa (see
section 3.4). Then, the failure is not instantaneous and develops in an intrinsic timespan which is independent of the size of the
stress increment. The concept of delayed instability observed experimentally in soils by Di Prisco et al. (38) is recovered here
at the microscale on a shorter timescale.
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FIGURE16 Absolute error between the actual stress components and their targeted values during the incremental stress loading
(top), mean kinetic energy per particle for the whole sample and close to initiation of the kinetic burst (bottom left), mean
bending rate of the groups of three chained particles for the whole sample and around the kinetic burst (bottom right). The
sample considered is characterized by a stress ratio � = 0.45 and is loaded along an unstable direction � = 210.5◦ with a stress
increment ||d�|| = 5 kPa.

5 CONCLUSION AND OUTLOOK

Thanks to the combine use of the second order work theory at the macroscale and the force chain concept at the microscale,
physical mechanisms responsible for the onset and development of instabilities in loose granular material at the scale of the
continuum have been identified at the microscale. It was shown that an incremental stress loading leading to the vanishing of
the second order work provokes the unjamming of force chains. This results in their bending accompanied by an increase in the
kinetic energy. At the macroscale, force chains bending is visible through a softening behavior and a loss of controllability as
the actual incremental stress rotates toward the direction of the instability cone. Initially localized, this phenomenon propagates
to the whole sample in the form of a burst of kinetic energy. Once the kinetic energy of the whole sample reaches a sufficient
value, existing force chains collapse and important microstructure reorganizations are observed resulting in a macroscopic den-
sification. This densification is eventually stopped as soon as new stable force chains are built. Macroscopic softening ends and
the incremental stress rotates back to its prescribed direction.
In addition to this physical interpretation of the vanishing of the second order work, a particular attention has been paid to the
pre-stabilization step required to define a reference equilibrium state as well as to the magnitude of the stress increments required
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FIGURE 17 Time evolution of the number of contacts between two chained particles (Ncc), two non-chained particles (Nnn)
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The sample considered is characterized by a stress ratio � = 0.45 and is loaded along an unstable direction � = 210.5◦ with
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FIGURE 18 Evolution of the mean coordination number of the chained particles for the two stress increments ||d�|| = 1 kPa
(blue) and ||d�|| = 5 kPa (red). The onset and propagation of the kinetic energy burst are indicated by vertical lines while the
mean kinetic energies are shown with dashed lines. The sample considered is characterized by a stress ratio � = 0.45 and is
loaded in an unstable direction � = 210.5◦.

to trigger off instabilities. Even for quasi-static evolutions, it was shown that localized micro-inertia crisis occur during this
pre-stabilization step. As a consequence, threshold values exist for stress increments below which the sign of the normalized
second order work depends on the magnitude of stress increments. These observations are hardly ever reported in the literature
and could provide clues to carry out systematic numerical assessment of the bifurcation domain of granular materials.
As outlook, the micromechanical approach presented in this paper could provide valuable tools to further explore the influence
of some specific microstructure modifications onto the mechanical stability of granular materials. For instance, the specific role
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of rattlers (i.e. particles with no contacts in the absence of gravity) can be assessed. Even if they are useless to withstand the
initial stress state, they are mobilized as soon as force chains collapse. As a result they are expected to play a stabilizing role.
In addition, more subtle microstructure evolutions may be explored as those induced by suffusion, a specific type of internal
erosion processes. Suffusion occurs in saturated granular materials submitted to an internal flow. It has a noticeable impact on
free particles that are either flushed out or clogged. The resulting impact on the mechanical stability remains today an open
question.
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