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ERGODIC MEASURES WITH INFINITE ENTROPY

ELEONORA CATSIGERAS AND SERGE TROUBETZKOY

Abstract. We construct ergodic, probability measures with in-
finite metric entropy for generic continuous maps and homeomor-
phisms on compact manifolds. We also construct sequences of such
measures that converge to a zero-entropy measure.

1. Introduction

LetM be a C1 compact manifold of finite dimensionm ≥ 1, equipped
with a Riemannian metric dist. The manifold M may or may not have
boundary. Let C0(M) be the space of continuous maps f : M → M
with the metric:

‖f − g‖C0 := max
x∈M

dist(f(x), g(x)), ∀ f, g ∈ C0(M).

We denote by Hom(M) the space of homeomorphisms f : M → M
with the metric:

‖f − g‖Hom := max
{
‖f − g‖C0 , ‖f−1 − g−1‖C0

}
∀ f, g ∈ Hom(M).

We note that the topology induced in Hom(M) by the above metric
is the subspace topology induced by C0(M). Nevertheless, the metrics
are different.

Since the metric spaces C0(M) and Hom(M) are complete, the Baire
category theorem holds, namely the countable intersection of open
dense sets is dense. A subset S ⊂ C0(M) (or S ⊂ Hom(M)) is called
a Gδ-set if it is the countable intersection of open subsets of C0(M)
(resp. Hom(M)). We say that a property P of the maps f ∈ C0(M)
(or f ∈ Hom(M)) is generic, or that generic maps satisfy P , if the
set of maps that satisfy P contains a dense Gδ-set in C0(M) (resp.
Hom(M)).

The main result of this article is the following theorem.
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(ANR-11-LABX-0033), French “Investissements d’Avenir” programmes.
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Theorem 1. The generic map f ∈ C0(M) has an ergodic Borel prob-
ability measure µ such that hµ(f) = +∞ and there exists p ≥ 1 such
that µ is mixing for the map fp.

Remark. In the case that M is a compact interval, Theorem 1 was
proved in [CT, Theorem 3.9 and p.33, paragraph 2]. The statements
and proofs of [CT] also hold for continuous maps of the circle S1. In
fact, each f ∈ C(S1) can be represented by a continuous map f in
[0, 1] such that f(0) = f(1). In the proof of genericity of the proper-
ties studied in [CT], no restrictions on the images of the endpoints 0
and 1 are imposed. In particular the proof of the denseness condition
was obtained by perturbing the map only in the interior of a finite
number of compact subintervals contained in [0, 1]. Finally, if the one-
dimensional compact manifold M is not connected, the arguments of
[CT] applied to a recurrent connected component of M , extend the
results to C(M). This is why in this paper we will prove Theorem 1
only for m-dimensional manifolds for m ≥ 2.

Yano proved that generic continuous maps of compact manifolds with
or without boundary have infinite topological entropy [Ya]. Therefore,
from the variational principle, there exists invariant measures with met-
ric entropies as large as required. Nevertheless, this property alone
does not imply the existence of invariant measures with infinite met-
ric entropy. In fact, it is well known that the metric entropy function
µ→ hµ(f) is not upper semi-continuous for C0-generic systems. More-
over, we prove that it is strongly non upper semi-continuous in the
following sense:

Theorem 2. For a generic map f ∈ C0(M) there exists a sequence of
ergodic measures µn such that for all n ≥ 1 we have hµn(f) = +∞ and

lim
n→+∞

∗ µn = µ with hµ(f) = 0,

where lim∗ denotes the limit in the space of probability measures en-
dowed with the weak∗ topology.

Theorem 2 holds for any m-dimensional manifold, including m = 1.
In this paper we will prove it for m ≥ 2, but the proof for m = 1 is
easily obtained by repeating our proof after some trivial substitutions
that are explained at the beginning of Section 5.

Even if we had a priori some f -invariant measure µ with infinite
metric entropy, we do not know if this property alone implies the ex-
istence of ergodic measures with infinite metric entropy as Theorems
1 and 2 state. Actually, if µ had infinitely many ergodic components,
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the proof that the metric entropy of at least one of those ergodic com-
ponents must be larger or equal than the entropy of µ, uses the upper
semi-continuity of the metric entropy function (see for instance [Ke,
Theorem 4.3.7, p. 75]).

Yano also proved that generic homeomorphisms on manifolds of di-
mension 2 or larger, have infinite topological entropy [Ya]. Thus one
wonders if Theorems 1 and 2 hold also for homeomorphisms. We give
a positive answer to this question for m ≥ 2. If M is one-dimensional
then a homeomorphisms of M has zero topological entropy, so the fol-
lowing two theorems do not hold for one-dimensional manifolds.

Theorem 3. If dim(M) ≥ 2, then the generic homeomorphism f ∈
Hom(M) has an ergodic Borel probability measure µ satisfying hµ(f) =
+∞ and there exists p ≥ 1 such that µ is mixing for the map fp.

Theorem 4. If dim(M) ≥ 2, then for a generic homeomorphism f ∈
Hom(M) there exists a sequence of ergodic measures µn such that for
all n ≥ 1 we have hµn(f) = +∞ and

lim
n→+∞

∗ µn = µ with hµ(f) = 0.

To prove Theorems 1, 3 and 4 in dimension two or larger, we con-
struct a familyH, called models, of continuous maps in the cube [0, 1]m,
including some homeomorphisms of the cube onto itself, which have a
complicated behavior on a Cantor set (Definition 2.5). To prove The-
orem 2 in dimension one, the family H of model maps in M we use
is the set of continuous maps that have an “atom doubling cascade”,
according to [CT, Definition 35].

In any dimension m ≥ 1, a periodic shrinking box is a compact set
K ⊂ M that is homeomorphic to the cube [0, 1]m and such that for
some p ≥ 1: K, f(K), . . . , f p−1(K) are pairwise disjoint and fp(K) ⊂
int(K) (Definition 4.1).

The main steps of the proofs of Theorems 1 and 3 are the following
results.

Lemma 3.1: For m ≥ 1, any model Φ ∈ H in the cube [0, 1]m

has a Φ-invariant mixing measure ν such that hν(Φ) = +∞.
Lemmas 4.2 and 4.5: For m ≥ 1, generic maps in C0(M), and

generic homeomorphisms of M , have a periodic shrinking box.
Lemmas 4.7 and 4.8: If m ≥ 1 generic maps f ∈ C0(M), and

if m ≥ 2 also generic homeomorphisms of M , have a periodic
shrinking box K such that the return map fp|K is topologically
conjugated to a model Φ ∈ H.
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We prove and use Lemma 3.1 only for m ≥ 2 since the case m = 1
was proven in [CT, Theorem 38]. The other results in the above list
will be fully proven here even in the case m = 1 independently of [CT].
A good sequence of periodic shrinking boxes is a sequence {Kn}n≥1 of
periodic shrinking boxes which accumulate (with the Hausdorff dis-
tance) on a periodic point x0, and moreover their iterates f j(Kn) also
accumulate on the periodic orbit of x0, uniformly for j ≥ 0 (see Defini-
tion 5.1). The main tools used in the proofs of Theorems 2 and 4 are
the statements of Theorems 1 (for m ≥ 1) and 3, Lemmas 4.2, 4.5, 4.7
and 4.8, together with

Lemma 5.7: For m ≥ 1 a generic map f ∈ C0(M), and for
m ≥ 2 a generic homeomorphism f has a good sequence {Kn}
of boxes, such that the return map fpn|Kn is topologically con-
jugated to a model Φn ∈ H.

2. Construction of the family of models.

We call a compact set K ⊂ Dm := [0, 1]m or more generally K ⊂M
(where M is an m-dimensional manifold with m ≥ 1) a box if it is
homeomorphic to Dm. Models are certain continuous maps of Dm that
we will define in this section.

We denote by Emb(Dm) the space of embeddings Φ : Dm → Dm

(i.e., Φ is a homeomorphism onto its image included in Dm), with the
topology induced as a subspace of C0(Dm).

Definition 2.1. For m = 1 a model is a map that has an “atom
doubling cascade” according to [CT, Definition 35] and the family H
is the set of all model maps.

From here to the end of this section we construct the family H of
model map for m ≥ 2.

Definition 2.2. (Φ-relation from a box to another).
Let Φ ∈ C0(Dm). Let B,C ⊂ int(Dm) be two boxes. We write

B
Φ→ C if Φ(B) ∩ int(C) 6= ∅.

Observe that this condition is open in C0(Dm).
Let A be a finite family of boxes. Denote

A2∗ := {(B,C) ∈ A2 : B
Φ→ C},

A3∗ := {(D,B,C) ∈ A3 : D
Φ→ B, B

Φ→ C}.

For all n ≥ 0 we will define atoms of generation n for a map Φ ∈
C0(Dm) by Definition 2.3.
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Definition 2.3. Atoms of generations 0 ≤ n ≤ k (See Figure 2)
Fix Φ ∈ C0(Dm) and collections of boxes A0,A1, . . .Ak contained in
the interior of Dm. For n ≥ 1 and for (D,B,C) ∈ A3∗

n−1 we define

Ωn(B) := {G ∈ An : G ⊂ int(B)},

Ωn(D,B) := {G ∈ Ωn(B) : D
Φ→ G},

Γn(D,B,C) := {G ∈ Ωn(D,B) : G
Φ→ C}.

Suppose that the following conditions hold for all 1 ≤ n ≤ k;

i) The family An consists of 2n
2

pairwise disjoint boxes.
ii) For all B ∈ An we have:

#{C ∈ An : B
Φ→ C} = 2n, #{D ∈ An : D

Φ→ B} = 2n.

a) #Ωn(B) = #Ωn(B′) ∀B,B′ ∈ An−1, and An =
⋃
B∈An−1

Ωn(B).

b) For all (D,B) 6= (D′, B′) ∈ A2∗
n−1,

#Ωn(D,B) = #Ωn(D′, B′) and Ωn(D,B) ∩ Ωn(D′, B′) = ∅.
Besides, Ωn(B) =

⋃
D:(D,B)∈A2∗

n−1
Ωn(D,B) for all B ∈ An−1.

c) For all (D,B,C) 6= (D′, B′, C ′) ∈ A3∗
n−1,

#Γn(D,B,C) = #Γn(D′, B′, C ′) and Γn(D,B,C)∩Γn(D′, B′, C ′) = ∅,

and for all (D,B) ∈ A2∗
n−1,

(1) Ωn(D,B) =
⋃

C : (B,C)∈A2∗
n−1

Γn(D,B,C),

Figure 1. The atom A of generation 0 and two atoms
B,C of generation 1 for a map Φ of D2.
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Figure 2. An atom A of generation 0, two atoms B,C
of generation 1, and 16 atoms of generation 2. In
particular the two atoms G,H of generation 2 satisfy
Γ2(C,B,C) = {G,H}.

d) For each (D,B,C) ∈ A3∗
n−1 and for each G ∈ Γn(D,B,C)

Φ(G) ∩ E = ∅ ∀ E ∈ An \ Ωn(B,C).

We call the members of An atoms of generation n or n-atoms,

Remark 2.4. From the conditions (i), (ii) and (a) to (d) of Definition
2.3 we deduce the following properties of the families of atoms for
Φ ∈ C0(Dm):
• #Ωn(B) = 22n−1 for all B ∈ An−1. In fact, the families Ωn(B) are
pairwise disjoint because any two different atoms of generation n are
disjoint. Therefore, from condition a), we obtain

#An = (#An−1)(#Ωn(B)) = 2(n−1)2

(#Ωn(B)) = 2n
2

,

hence #Ωn(B)) = 22n−1.

• #Ωn(D,B) = 2n, for all (D,B) ∈ A2∗
n−1. In fact, from condition b),

Ωn(B) =
⋃

D : (D,B)∈A2∗
n−1

Ωn(D,B), ∀ B ∈ An−1,

where the families of atoms in the above union are pairwise disjoint.
Thus, for any B ∈ An−1 we have

#Ωn(B) =
(
#{D ∈ An−1 : D

Φ→ B}
)
·
(
#Ωn(D,B)

)
=
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2n−1 ·
(
#Ωn(D,B)

)
= 22n−1,

hence
(
#Ωn(D,B)

)
= 2n.

• #Γn(D,B,C) = 2 ∀ (D,B,C) ∈ A3∗
n−1. In fact, from conditions

(ii) and (c), for each 2-tuple (D,B) ∈ A2∗
n−1 the collection Ωn(D,B)

is partitioned into 2n−1 pairwise disjoint sub-collections Γn(D,B,C),

where the atoms C ∈ An−1 are such that B
Φ→ C. Since #Ωn(D,B) =

2n (proved above), we deduce that #Γn(D,B,C) = 2.
For example, in Figure 2 we have Γ2(C,B,C) = {F,G}.
• As a straightforward consequence of conditions a), b) and c) we obtain

(2) An =
⋃

(D,B,C)∈A3∗
n−1

Γn(D,B,C),

where the families of atoms in the union are pairwise disjoint.
• For each (D,B,C) ∈ A3∗

n−1, for each G ∈ Γn(D,B,C) and for all

E ∈ An, either G
Φ→ E, and this occurs if and only if E ∈ Ωn(B,C),

or Φ(G) ∩ E = ∅, and this occurs if and only if E 6∈ Ωn(B,C).
In fact, from condition d), if Φ(G) ∩ E 6= ∅ then E ∈ Ωn(B,C). So,

recalling condition (ii) of Definition 2.3, we obtain

2n = #{E ∈ An : G
Φ→ E} ≤

#{E ∈ An : Φ(G) ∩ E 6= ∅} ≤ #Ωn(B,C) = 2n.

Hence, all the above inequalities are equalities and the assertion is
proved.
• For any pair (G,E) ∈ A2

n:

G
Φ→ E if and only if ∃ (D,B,C) ∈ A3∗

n−1 such that

G ∈ Γn(D,B,C), E ∈ Ωn(B,C),

This is a restatement of the above assertion.
• #A3∗

n = 2n
2+2n

In fact, all the 3-tuples (D,B,C) ∈ A3∗
n can be constructed by choos-

ing freely D ∈ An, later choosing B ∈ An such that D
Φn→ B, and finally

choosing C ∈ An such that B
Φn→ C. Taking into account equalities i)

and ii) of Definition 2.3, we deduce

#A3∗
n = #{(D,B,C) ∈ A3

n : D
Φn→ B,B

Φn→ C} =

(#An) · (#{B ∈ An : D
Φn→ B}) · (#{C ∈ An : B

Φn→ C}) =

2n
2

2n2n = 2n
2+2n.
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Notation. In certain statements we refer to families of atoms for sev-
eral different maps. When necessary we will use the following notation:
A ∈ An(Φ) or (B,D) ∈ A2∗

n (Φ), etc., where Φ is the map to which the
family of atoms is referred.

Definition 2.5. (Models)
We call Φ ∈ C0(Dm) a model if Φ(Dm) ⊂ int(Dm), and there exists a

sequence {An}n≥0 of finite families of pairwise disjoint boxes contained
in int(Dm) that are atoms of generations n ≥ 0 for Φ such that

(3) lim
n→+∞

max
A∈An

diamA = 0.

Denote by H the family of all the models in C0(Dm).

For each fixed n ≥ 1 the four conditions a) to d) of Definition 2.3,
are open conditions. So, for fixed n ≥ 0, and for any given map Φ
having families A0,A1, . . . ,An of atoms of generations 0, 1, . . . , n, the
set of maps that have the same families of atoms of generation up to
n as Φ (for that fixed n and not necessarily for all n) is an open set.
Moreover, the condition Φ(Dm) ⊂ int(Dm) is open.

Definition 2.6. For any Φ ∈ H, we denote by HΦ the family of maps
in C0(Dm) that have the same atoms of all generations as Φ. Note that
HΦ ⊂ H.

Remark 2.7. We deduce that, for any given Φ ∈ H, the family HΦ ⊂
H is a nonempty Gδ-set in C0(M). In other words, H contains a
nonempty Gδ-set if it is nonempty.

On the other hand, if there exists Φ ∈ H ∩ Emb(Dm) then HΦ

is not necessarily composed by embeddings of Dm. Nevertheless, it
contains HΦ ∩ Emb(Dm), which is a nonempty Gδ-set in Emb(Dm).
Thus H ∩ Emb(Dm) contains a nonempty Gδ-set in Emb(Dm) if H ∩
Emb(Dm) 6= ∅.

Note that the nonempty Gδ-set HΦ (if Φ ∈ H 6= ∅) is not necessarily
dense in C0(Dm)!

Construction of models.
The rest of this section is dedicated to the proof of the following lemma.

Lemma 2.8. The family H of models contains the nonempty Gδ-set
HΦ (defined in Definition 2.6) in C0(Dm) for any chosen Φ ∈ H.

The family H∩Emb(Dm) contains the nonempty set HΦ∩Emb(Dm),
which is a Gδ-set in Emb(Dm), for any chosen Φ ∈ H ∩ Emb(Dm).

Proof. Lemma 2.9 stated below implies that H∩Emb(Dm) 6= ∅, and so
H 6= ∅. Repeating the argument of Remark 2.7 proves Lemma 2.8. �
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Lemma 2.9. For all f ∈ Emb(Dm) such that f(Dm) ⊂ int(Dm), there
exists ψ ∈ Hom(Dm) and Φ ∈ H ∩ Emb(Dm) such that

ψ|∂Dm = id|∂Dm and ψ ◦ f = Φ.

We now outline the strategy of the proof of Lemma 2.9. The homeo-
morphisms ψ and Φ are constructed as limits of respective convergent
sequences ψn ∈ Hom(Dm) and Φn ∈ Emb(Dm), such that ψn ◦ f = Φn

for all n ≥ 0. The embedding Φn, by an inductive hypothesis, has
atoms of generations 0, 1, . . . , n, and Φn+1 will be constructed so it co-
incides with Φn outside the interiors of all the atoms of generation n
for Φn. Hence, the collections of atoms of generation 0, 1, . . . , n for Φn

is also a collection of atoms of the same generations for Φn+1 (see the
proof of assertion a) of Lemma 2.12).

To change Φn in the interior of each atom A of generation n for Φn, we
will change the homeomorphism ψn only inside some adequately defined
boxes f(R) such that R ⊂ int(A) is a box (recall that f is an embed-
ding). We will so construct ψn+1|f(R) such that ψn+1|∂f(R) = ψn|∂f(R),
and finally extend ψn+1(x) := ψn(x) for all x in the complement of the
union of all the boxes f(R).

Such new homeomorphism ψn+1, if adequately constructed inside the
boxes f(R), will allow us to define the atoms of generation n + 1 for
Φn+1 = ψn+1◦f . These atoms of generation n+1 for Φn+1 will be many
little boxes in the interior of each box f−1(f(R)) = R ⊂ A, where A is
an atom of generation n both for Φn and for Φn+1.

Lemma 2.9 will be proved by induction in several technical lem-
mas. One inductive hypothesis in the proof is that for a fixed n ≥ 0
we have constructed an embedding Φn along with associated atoms of
generations 0, 1, . . . , n. For each (P,Q) ∈ A2∗

n , we will choose a con-
nected component S(P,Q) of Φn(P ) ∩ Q. For each (D,B,C) ∈ A3∗

n

we choose two disjoint boxes G0(D,B,C), G1(D,B,C) contained in
int(S(D,B) ∩ Φ−1

n S(B,C)). By an additional inductive hypothesis on
Φn a choice of the connected components S(D,B) and S(B,C) is as-
sumed to exist such that the interior of this intersection is nonempty.

Definition 2.10. We provisionally adopt an abusive notation for the
families of such boxes G·(·, ·, ·). Even if such boxes are not probably
atoms of generation n + 1 for Φn, we use the same notation as if they
were. This is due to the purpose, realized later in the proof of Lemma
2.9, of modifying Φn to construct a new embedding Φn+1 for which the
same atoms up to generation n for Φn are also atoms up to generation
n for Φn+1, and besides the boxes G·(·, ·, ·) are the atoms of generation
n + 1 for Φn+1. In brief, we first choose the boxes, candidates to be
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the atoms of generation n+ 1 for a new embedding Φn+1, and later we
construct Φn+1. Let

An+1 := {Gj(D,B,C) : j ∈ {0, 1}, (D,B,C) ∈ A3∗
n (Φn)};

Ωn+1(B) := {Gj(D,B,C) : j ∈ {0, 1}, (D,B,C) ∈ A3∗
n (Φn)}

for each fixed B ∈ An(Φn);

Ωn+1(D,B) := {Gj(D,B,C) : j ∈ {0, 1}, B Φn→ C}

for each fixed (D,B) ∈ A2∗
n (Φn);

(4) Γn+1(D,B,C) := {Gj(D,B,C) : j ∈ {0, 1}}

for each fixed (D,B,C) ∈ A3∗
n (Φn). We will use this abusive notation

in Lemmas 2.11 and 2.12 as well as in Remark 2.13.

Lemma 2.11. For all (B,C) ∈ A2∗
n (Φn) and for all E ∈ An+1, E ⊂

Φ−1
n (S(B,C)) if and only if E ∈ Γn+1(D,B,C) for some D ∈ An such

that D
Φn→ B.

Proof. By the construction in Remark 2.10, for all E ∈ An+1 we have
E ∈ Γn+1(D,B,C) = {Γ0(D,B,C),Γ1(D,B,C)} for some (D,B,C) ∈
A3∗
n . This means that E = Gj(D,B,C) ⊂ int(S(D,B)∩Φ−1

n (S(B,C)))
for some j = 0, 1. Therefore, E ⊂ Φ−1

n (S(B,C)) if and only if there

exists D ∈ An such that D
Φn→ B and E ∈ Γn+1(D,B,C). �

Lemma 2.12. Suppose that

int(S(D,B) ∩ Φ−1
n S(B,C)) 6= ∅ ∀ (D,B,C) ∈ A3∗

n (Φn).

Let Φn+1 ∈ Emb(Dm) be such that Φn+1(x) = Φn(x) for all x 6∈
∪{(B,C)∈A2∗

n (Φn)} int(Φ−1
n S(B,C)). Then,

a) For all 0 ≤ j ≤ n and for any two atoms B,C ∈ A2
j(Φn), we have

Φn(B) = Φn+1(B); hence B
Φn→ C if and only if B

Φn+1→ C.

b) #An+1 = 2(n+1)2
and E ∩ F = ∅ for all E,F ∈ An+1 such that

E 6= F.

c) The family An+1 is partitioned into the pairwise disjoint subfamilies
Ωn+1(B) where B ∈ An. Besides #Ωn+1(B) = 22n+1 and Ωn+1(B) =
{G ∈ An+1 : G ⊂ int(B)} for all B ∈ An.

d) For all B ∈ An the family of boxes Ωn+1(B) is partitioned into the
pairwise disjoint subfamilies Ωn+1(D,B) where D ∈ An is such that

D
Φn+1→ B. Besides, for all (D,B) ∈ A2∗

n (Φn+1), we have #Ωn+1(D,B) =

2n+1 and Ωn+1(D,B) = {G ∈ Ωn+1(B) : D
Φn+1→ G}.
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e) For all (D,B) ∈ A2∗
n (Φn+1), the family of boxes Ωn+1(D,B) is

partitioned into the pairwise disjoint subfamilies Γn+1(D,B,C), where

C ∈ An is such that B
Φn+1→ C.

Besides, for all (D,B,C) ∈ A3∗
n (Φn+1), we have #Γn+1(D,B,C) = 2

and Γn+1(D,B,C) = {G ∈ Ωn+1(D,B) : G
Φn+1→ C}.

f) For all (D,B,C) ∈ A3∗
n (Φn+1), for all G ∈ Γn+1(D,B,C), and for

all E ∈ An+1,

Φn+1(G) ∩ E 6= ∅ only if E ∈ Ωn+1(B,C).

Proof. a) Let us prove assertion a) under the more general hypothesis
Φn+1(x) = Φn(x) for all x 6∈ ∪B∈An int(B). (Note the x 6∈ int(S(D,B)∩
Φ−1
n S(B,C)) implies x 6∈ B.)
By hypothesis Φn,Φn+1 ∈ End(Dm) and Φn|∂A = Φn+1|∂A for the

boxes A ∈ Aj for all 0 ≤ j ≤ n (recall that, from condition a) of
definition 2.3, each atom of generation n for Φn is contained in the
interior of an atom of generation 0 ≤ j ≤ n). Then Φn+1(A) = Φn(A)
for all B ∈ ∪0≤j≤nAj. Part a) follows immediately.

b) By construction, E = Gj(D,C,B), F = Gj′(D
′, B′, C ′). If E 6=

F then, either (D,C,B) = (D′, C ′, B′) and j 6= j′, or (D,C,B) 6=
(D′, C ′, B′). In the first case, by construction

G0(D,C,B) ∩G1(D,C,B) = ∅,
in other words E∩F = ∅. In the second case, either D 6= D′ or B 6= B′

or C 6= C ′. By construction Gj(D,B,C) ⊂ Φn(D) ∩ B ∩ Φ−1
n (C) and

Gj′(D
′, B′, C ′) ⊂ Φn(D′) ∩ B′ ∩ Φ−1

n (C ′). Since members of An are
pairwise disjoint, and Φn ∈ Emb(Dm), we deduce that Gj(D,B,C) ∩
Gj′(D

′, B′, C ′) = ∅, hence E ∩ F = ∅ as required.
By the construction in Remark 2.10:

An+1 =
⋃

(D,C,B)∈A3∗
n

Γn+1(D,B,C),

where the families in the union are pairwise disjoint and each one has
2 different boxes of An+1. Therefore, taking into account the last as-
sertion of Remark 2.4, we deduce that

#An+1 = 2 · (#A3∗
n ) = 2 · 2n2+2n = 2(n+1)2

.

c) Using the notation at the end of Remark 2.10 ofAn+1 and Ωn+1(B),
we have

An+1 =
⋃
B∈An

Ωn+1(B).

Besides, for all G ∈ An+1, G ⊂ int(B) if and only if G ∈ Ωn+1(B),
because by construction, G ⊂ int(S(D,B)) ⊂ int(B) for some B ∈ An.
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Since members of An are pairwise disjoint, we deduce that Ωn+1(B) ∩
Ωn+1(B′) = ∅ if B 6= B′. We conclude that the above union of different
subfamilies Ωn+1(B) is a partition of An+1, as required.

Note that

Ωn+1(B) =
⋃

D∈An,D
Φn→B

⋃
C∈An,B

Φn→C

Γn+1(D,B,C),

where the families in the union are pairwise disjoint and each of them
has two different boxes. Therefore, taking into account that An is a
family of atoms for Φn (by hypothesis), equality ii) of Definition 2.3
implies:

#Ωn+1(B) = 2 · (#{D ∈ An, D
Φn→ B}) ·#{C ∈ An, B

Φn→ C} =

2 · 2n · 2n = 22n+1.

d) By the construction at the end of Remark 2.10,

Ωn+1(B) =
⋃

D∈An,D
Φn→B

Ωn+1(D,B).

Besides, Ωn+1(D,B) ∩ Ωn+1(D′, B) = ∅ if D 6= D′ in An, since differ-
ent atoms of generation n are pairwise disjoint, and G ∈ Ωn+1(D,B)
implies G ⊂ Φn(D) which is disjoint with Φn(D′) since Φn is an em-
bedding.

By the construction in Remark 2.10,

Γn+1(D,C,B) = {G0(D,C,B), G1(D,C,B)},
where the two boxes G·(D,C,B) inside the family Γn+1(D,C,B) are
disjoint, hence different. Thus the cardinality of Γn+1(D,C,B) is 2.

Also, Ωn+1(D,B) =
⋃
C∈An,B

Φn→C
Γn+1(D,B,C). Besides,

Γn+1(D,B,C) ∩ Γn+1(D,B,C ′) = ∅
if C 6= C ′ in An, because two different atoms of generation n are
pairwise disjoint and G ∈ Γn+1(D,B,C) implies G ⊂ Φ−1

n (C).
From the above assertions and from equality (ii) of the definition of

atoms of generation n, we deduce that

#Ωn+1(D,B) = 2 · (#{C ∈ An : B
Φn→ C}) = 2 · 2n = 2n+1.

Finally, for all G ∈ Ωn+1(B) there exists (unique) D ∈ An such that

G ⊂ S(D,B) ⊂ Φn(D) = Φn+1(D). Hence D
Φn+1→ G if and only if

G ∈ Ω(D,B).
e) Above we proved that Ωn+1(D,B) is partitioned into the pairwise

disjoint subfamilies Γn+1(D,B,C), where C is such that (B,C) ∈ A∗2n .
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We have also noticed that #Γn+1(D,B,C) = 2. Finally, by the
construction of Remark 2.10, for all G ∈ Ωn+1(D,B) there exists C ∈
An such that G ∈ S(D,B) ∩ Φ−1

n (S(B,C). Therefore Φn+1(G) ⊂
Φn+1(Φ−1

n (S(B,C)). This latter set coincides with Φn(Φ−1
n (S(B,C))

because, by hypothesis, Φn and Φn+1 are embeddings and coincide
outside the interiors of all the sets Φ−1

n (S(B,C). We deduce that

Φn+1(G) ⊂ Φ−1
n (S(B,C)) ⊂ Φn(Φ−1

n (S(B,C)))

⊂ S(B,C) ⊂ Φn(B) ∩ C ⊂ C.

Thus, the interior of Φn+1(G), which is nonempty because G is a box
and Φn+1 is an embedding, is contained in the interior of C ∈ An.
Since members of An are pairwise disjoint, we conclude that, for all

G ∈ Ω(D,B), G ∈ Γn+1(D,B,C) if and only if G
Φn+1→ C, as required.

f) IfG ∈ Γn+1(D,B,C) thenG ⊂ (S(D,B)) ⊂ Φn(D)∩B. Therefore

Φn+1(G) ⊂ Φn+1(B) = Φn(B).

Besides, we have proved above that

Φn+1(G) ⊂ C.

Assume that Φn+1(G) ∩ E 6= ∅ for some E ∈ An+1. Since E ∈
Ωn+1(B′, C ′) for some (B′, C ′) ∈ A2∗

n , we have

E ⊂ S(B′, C ′) ⊂ Φn(B′) ∩ C ′.

Since Φn+1(G) ∩E 6= ∅, we deduce that Φn(B) ∩Φn(B′) ∩C ∩C ′ 6= ∅.
Since But distinct atoms of generation n are disjoint and Φn is one to
one, we conclude that B = B′, C = C ′ and E ∈ Ωn+1(B,C). �

Remark 2.13. Lemma 2.12a) immediately implies that for 0 ≤ j ≤ n:
- the families A2∗

j and A3∗
j for Φn and for Φn+1, coincide, and

- the members of the same families Aj are also atoms of respective
generations 0, 1, . . . , n for Φn+1.

Parts b) to e) of Lemma 2.12 ensure that the family An+1 of boxes
constructed in Remark 2.10, satisfy conditions i), a), b), c) and d) of
Definition 2.3 for Φn+1. Thus, the members of An+1 are good candi-
dates to be atoms of generation n+ 1 for Φn+1.

To actually obtain atoms of generation n+1 for Φn+1 we will further
modify the map in the interior of the sets S(D,B) ∩ Φ−1

n S(B,C)) for
all (D,B,C) ∈ A3∗

n (Φn), in such a way that for the new embedding
Φn+1 the boxes of An+1 also satisfy condition ii) of Definition 2.3.

Lemma 2.14. Still keeping the notation of Remark 2.10, let L̃n+1 ⊂
Dm be a finite set with cardinality 2(n+1)2

2n+1, with a unique point
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ẽi(E) ∈ L̃n+1 for each (i, E) ∈ {1, 2, . . . 2n+1} × An+1. Assume that

ẽi(E) ∈ int(E) ∀ (i, E) ∈ {1, 2, . . . 2n+1} × An+1.

Then, there exists a permutation θ : L̃n+1 → L̃n+1 such that

a) For all (i, E) ∈ {1, 2, . . . 2n+1} × Γn+1(D,B,C) for some
(D,B,C) ∈ A3∗

n (Φn),

θ(ẽi(E)) = ẽi′(E
′)

for a unique i′ ∈ {1, 2, . . . , 2n+1} and a unique E ′ ∈ Ωn+1(B,C).
b) For all (D,B,C) ∈ A3∗

n (Φn)r, for all E ∈ Γn+1(D,B,C) and for all
F ∈ Ωn+1(B,C) there exists unique

(i, i′) ∈ {1, 2, . . . 2n+1}2

such that θ(ẽi(E)) = ẽi′(F ).
c) For all (B,C) ∈ A2∗

n (Φn)

θ
({
ẽi(E) : E ∈

⋃
D∈An, (D,B)∈A2∗

n

Γn+1(D,B,C), i ∈ {1, 2, . . . 2n+1}
})

=

{
ẽi′(F ) : F ∈ Ωn+1(B,C), i′ ∈ {1, 2, , . . . 2n+1}

}
= L̃n+1 ∩ S(B,C).

Proof. From the construction of the family An+1 (see Remark 2.10), we
deduce that for all E ∈ An+1 there exists unique j ∈ {0, 1} and unique
(D,B,C) ∈ A3∗

n such that

E = Gj(D,B,C) ∈ Γn+1(D,B,C)

(recall Equality (4)) and thus we will write

ẽi(Gj(D,B,C)) = ẽi(E)

for all (i, E) ∈ {1, 2, . . . , 2n+1} × An+1.
By hypothesis An is the family of atoms of generation n for Φn, thus

we can apply the equalities ii) of Definition 2.3. So, for each B ∈ An,

we can index the different atoms D ∈ An such that D
Φn→ B as follows:

(5) {D ∈ An : D
Φn→ B} = {D−1 (B), D−2 (B), . . . D−2n(B)},

where D−k1
(B) 6= D−k2

(B) if k1 6= k2 (they are disjoint atoms of genera-
tion n).

Analogously

(6) {C ∈ An : B
Φn→ C} = {C+

1 (B), C+
2 (B), . . . C+

2n(B)},
where C+

l1
(B) 6= C+

l2
(B) if l1 6= l2.

Now, we index the distinct points of L̃n+1 as follows:

êi,j(k,B, l) := ẽi(Gj(D,B,C)) = ẽi(Gj(D
−
k (B), B, C+

l (B))),
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for all (i, j, B, k, l) ∈ {1, 2, . . . , 2n+1} × {0, 1} × An × {1, 2, . . . , 2n}2.

Define the following correspondence θ : L̃n+1 → L̃n+1:

θ(êi,j(k,B, l)) = êi′,j′(k
′, B′, l′), where

• B′ := C+
l (B),

• k′ is such that B = D−k′(C) (such k′ exists and is unique because

B
Φn→ C, using (5)),

• l′ = i (mod 2n),
• j′ = 0 if i ≤ 2n and j′ = 1 if i > 2n,
• i′ = k + j · 2n.

Let us prove that θ is surjective; hence it is a permutation of the

finite set L̃n+1.

Let êi′,j′(k
′, B′, l′) ∈ L̃n+1 be given, where

(i′, j′, B′, k′, l′) ∈ {1, 2, . . . , 2n+1} × {0, 1} × An × {1, 2, . . . , 2n}2.

Construct
• i := l′ + j′ · 2n. Then l′ = i (mod 2n), j′ = 0 if i ≤ 2n and j′ = 1 if
i > 2n.
• B := D−k′(B

′). Then B
Φn→ B′. So, there exists l such that B′ =

C+
l (B).
• k := i′ (mod 2n), j := 0 if i′ ≤ 2n and j := 1 if i′ > 2n. Therefore
i′ = k + 2nj.

By the above equalities we have constructed some θ−1 such that
θ ◦ θ−1 is the identity map. So, θ is surjective, hence also one-to-one in

the finite set L̃n+1, as required.
Now, let us prove that θ satisfies assertions a), b), c) of Lemma 2.14.

a) Fix ẽi(E) ∈ L̃n+1. By construction θ(ẽi(E)) = ẽi′(E
′) ⊂ int(E ′)

for some (i, E) ∈ {1, 2, . . . , 2n+1} × An+1. Since members of An+1 are
pairwise disjoint (recall Lemma 2.12-b)), the box E ′ is unique. Besides,
by hypothesis, ẽi′(E

′) 6= ẽj′(E
′) if i′ 6= j′. So, the index i′ is also

unique. Therefore, to finish the proof of a), it is enough to check that
E ′ ∈ Ωn+1(B,C) if E ∈ Γn+1(D,B,C).

By the definition of the family Γn+1(D,B,C) in Remark 2.10, if
E ∈ Γn+1(D,B,C), there exists j ∈ {0, 1} such that E = Gj(D,B,C).
Thus, using the notation at the beginning ẽi(E) = ẽi(Gj(D,B,C)) =
êi,j(k,B, l), where D = D−k (B) and C = C+

l (B). Then, using the
definition of the permutation θ, and the computation of its inverse θ−1,
we obtain ẽi′(E) = θ(ẽi(E)) = êi′,j′(k

′, B′, l′), where

B′ = C+
l (B) = C, D′ = D−k′(B

′) = B.
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We have proved that ẽi′(E
′) = ẽi′(Gj′(B,C,C

′)). Finally, from the
definition of the family Ωn+1(B,C) in Remark 2.10 we conclude that
E ′ ∈ Ωn+1(B,C) as asserted in part a).

b) Fix (D,B,C) ∈ A3∗
n and E ⊂ Γn+1(D,B,C). Then, using

the definition of the family Γn+1(D,B,C) in Remark 2.10, we have
unique (j, k, l) ∈ {0, 1} × {1, 2, . . . , 2n}2 such that E = Gj(D,B,C),
D = D−k (B), C = C+

l (B). Consider the finite set Z of 2n+1 dis-
tinct points ẽi(E) = êi,j(k,B, l), with j, k, B, l fixed as above and
i ∈ {1, 2, . . . , 2n+1}. Let i′ =: k+2nj, then the image of each point in Z
by the permutation θ is θ(ẽi(E)) = ẽi′(Gj′(B,C,C

′) (here we use asser-
tion a). Since k, j are fixed, we deduce that there exists a unique i′ such
that all the points of θ(Z) are of the form ẽi′(F ), F = Gj′(B,C,C

′)
with j′ ∈ {0, 1}, C ′ = C+

k′(C), k′ ∈ {1, 2, . . . , 2n+1}. We have proved
that the permutation θ|Z is equivalent to

i ∈ {1, 2, . . . , 2n+1} → (j′, k′) ∈ {0, 1} × {1, 2, . . . , 2n}
such that θ(ẽi(E)) = ẽi′(Gj′(B,C,C

+
k′(C))) with i′ fixed.

Since #{1, 2, . . . , 2n+1} = #({0, 1} × {1, 2, . . . , 2n}), from the in-
jectiveness of θ we deduce that θ(Z) = {0, 1} × {1, 2, . . . , 2n}. In
other words, for every F ∈ Ω(B,C) there exists unique i such that
θ(ẽi(E)) = ẽi′(F ) (where i′ is uniquely defined given E). This ends the
proof of assertion b).

c) For fixed (B,C) ∈ A2∗
n , denote

P :=
{
ẽi(E) : E ∈

⋃
D∈An,D

Φn→B

Γn+1(D,B,C), i ∈ {1, 2, . . . , 2n+1}
}
,

Q := {ẽi′(F ) : F ∈ Ωn+1(B,C), i′ ∈ {1, 2, . . . , 2n+1}} ⊂ L̃n+1.

Applying assertion a) we deduce that θ(P ) ⊂ Q. So, to prove that
θ(P ) = Q it is enough to prove that #P = #Q. In fact, applying
Lemma 2.12 for the family of boxes An+1 for the family of atoms An,
we obtain

#P = 2n+1 · (#Γn+1(D,B,C)) · (#{D ∈ An : D
Φn→ B}) = 2n+1 · 2 · 2n

#Q = 2n+1 · (#Ωn+1)(B,C)) = 2n+1 · 2n+1,

which proves that #P = #Q and thus that θ(P ) = Q.

Finally, let us prove that Q = L̃n+1 ∩ S(B,C). On the one hand,
if F ∈ Ωn+1(B,C), then F = Gj(B,C,C

′) for some (j, C ′). Applying
the construction of the boxes of An+1 in Remark 2.10, we obtain F ⊂
S(B,C), hence ẽi′(F ) ∈ L̃n+1 ∩ int(F ) ⊂ L̃n+1 ∩ S(B,C). This proves

that Q ⊂ L̃n+1 ∩ S(B,C).
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On the other hand, if ẽi′(F ) ∈ L̃n+1 ∪ S(B,C), then F ∈ An+1. We
obtain F = Gj(D

′, B′, C ′) ⊂ S(D′, B′) for some (D′, B′, C ′) ∈ A3∗
n .

Since S(D′, B′) ⊂ Φn(D′) ∩ B′ and S(B,C) ⊂ Φn(B) ∩ C, we obtain
S(D′, B′) ∩ S(B,C) = ∅ if (D′, B′) 6= (B,C). But ẽi′(F ) ∈ int(F ) ∩
S(B,C) ⊂ S(D′, B′) ∩ S(B,C). We conclude that (D′, B′) = (B,C),
thus F = Gj(B,C,C

′) ∈ Ωn+1(B,C), hence ẽi′(F ) ∈ Q. We have

proved that L̃n+1 ∩ S(B,C) ⊂ Q. �

Lemma 2.15. Assume the hypothesis of Lemmas 2.12 and 2.14. Let
Φn+1 ∈ Emb(Dm) be such that, besides the conditions in the hypothesis
of Lemma 2.12, satisfies the following:

Φn+1(ẽ) = θ(ẽ) ∀ ẽ ∈ L̃n+1,

where θ is the permutation of L̃n+1 constructed in Lemma 2.14. Then,

a) A0,A1, . . . ,An+1 are collections of atoms up to generation n+ 1 for
Φn+1.

b) For each (E,F ) ∈ A2
n+1 such that E

Φn+1→ F , there exists exactly

one point ẽi(E) ∈ L̃n+1 ∩ int(E), and exactly one point ẽi′(F ) ∈
L̃n+1 ∩ int(F ), such that

Φn+1(ẽi(E)) = ẽi′(F ).

Proof. a) By Remark 2.13, it is enough to establish the truth of condi-
tion ii) of Definition 2.3 with n+ 1 instead of n.

Take E ∈ An+1. There exists (D,B,C) ∈ A3∗
n such that E ∈

Γn+1(D,B,C). Take F ∈ Ωn+1(B,C). Applying Lemma 2.14-b), there
exists unique (i, i′) such that θ(ẽi(E)) = ẽi′(F ). Therefore

Φn+1(ẽi(E))) = ẽi′(F ).

Since ẽi(E) ∈ int(E) and ẽi′(F ) ∈ int(F ), we conclude that Φn+1(E)∩
int(F ) 6= ∅, namely, E

Φn+1→ F . We have proved that

E
Φn+1→ F ∀E ∈ Γn+1(D,B,C), ∀F ∈ Ωn+1(B,C).

Combining with the assertion g) of Lemma 2.12, we deduce that, for
all (D,B,C) ∈ A3∗

n , for all E ∈ Γn+1(D,B,C), for all F ∈ An+1

(7) E
Φn+1→ F if and only if F ∈ Ωn+1(B,C).

Given E ∈ An, let us count how many F ∈ An satisfy E
Φn+1→

F . Given E, there exists unique (D,B,C) ∈ A3∗
n such that E ∈

Γn+1(D,B,C). Applying (7) and assertion d) of Lemma 2.12, we de-
duce

#{F ∈ An : E
Φn+1→ F} = Ωn+1(B,C) = 2n+1.
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Finally, given F ∈ An, let us count how many E ∈ An satisfy

E
Φn+1→ F . Given F , there exists unique (B,C) ∈ A2∗

n such that F ∈
Ωn+1(B,C). Applying (7), assertion e) of Lemma 2.12, and assertion
ii) of Definition 2.3 for the atoms of generation n (for Φn and for Φn+1),
we obtain:

#{E ∈ An : E
Φn+1→ F} =

#{E ∈ An+1 : ∃D ∈ An such that D
Φn+1→ B,E ∈ Γn+1(D,B,C)} =

(#{D ∈ An : D
Φn+1→ B}) · (#Γn+1(D,B,C)) = 2n · 2 = 2n+1.

We have proved that the boxes ofAn+1 satisfy equalities ii) of Definition
2.3 for Φn+1. The proof of assertion a) is complete

b) Take (D,B,C) ∈ A3∗
n and E ∈ Γn+1(D,B,C). Take F ∈ An+1.

From Remark 2.4 (putting n+1 instead of n), we know that Φn+1(E)∩
F 6= ∅ if and only if F ∈ Ωn+1(B,C). Applying Lemma 2.14-b)
there exists a unique (i, i′) ∈ {1, 2, . . . , 2n+1}2 such that Φn+1(ẽi(E)) =
θ(ẽi(E)) = ẽi′(F ). The proof of part b) is complete. �

Lemma 2.16. Let ψ ∈ Emb(Dm), r ≥ 1, P1, P2, . . . Pr ⊂ Dm be
pairwise disjoint boxes, and Qj := ψ(Pj) for all j ∈ {1, 2, . . . , r}. For
k ≥ 1 and j ∈ {1, 2, . . . , r}, let p1,j, . . . , pk,j ∈ int(Pj) be distinct points
and q1,j, . . . , qk,j ∈ int(Qj) also be distinct points. Then, there exists a
ψ∗ ∈ Emb(Dm) such that

ψ∗(x) = ψ(x) ∀ x 6∈
r⋃
j=1

int(Pj) and

ψ∗(pi,j) = qi,j ∀ (i, j) ∈ {1, . . . , k} × {1, 2, . . . , r}.

Proof. It is straightforward. �

Proof. of Lemma 2.9 We divide the construction of ψ and Φ ∈ H into
several steps:
Step 1. Construction of the atom of generation 0. Since
f(Dm) ⊂ int(Dm), there exists a box A0 ⊂ int(Dm) such that f(Dm) ⊂
int(A0). The box A0 is the atom of generation 0 for the embed-
ding Φ0 := f which satisfies Φ0 = ψ0 ◦ f where ψ0 is the identity
map. Applying the Brower Fixed Point Theorem, there exists a point
e0 ∈ int(Φ0(A0)) such that Φ0(e0) = e0. Define S(A0, A0) to be the
connected component of A0 ∩ Φ0(A0) containing e0.

(The notation above is too complicated, because simplyA0∩Φ0(A0) =
Φ(A0), which is connected. But we introduced that complicated nota-
tion to make obvious that the inductive hypothesis that we will assume
in the following step, is satisfied for n = 0.)
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Step 2. Construction of the atoms of generation n+1. In-
ductively assume that we have constructed families A0,A1, . . . ,An of
atoms up to generation n for Φn = ψn ◦ f , where ψn ∈ Hom(Dm),
satisfying:

I) ψn|∂Dm is the identity map,
II) maxB∈Ai

max{diam(B), diam(f(B))} < 1
2i
∀i ∈ {0, 1, . . . n};

III) Φi(x) = Φi−1(x), ∀ x ∈ Dm \
⋃
B∈Ai−1

B, ∀i ∈ {1, . . . , n};
IV) for all (D,B,C) ∈ A3∗

n (Φn) there exists a point e(D,B,C) such
that

Ln := {e(D,B,C) : (D,B,C) ∈ A3∗
n }

is Φn-invariant, and

(8) e(D,B,C) ∈ int
(
S(D,B) ∩ Φ−1

n (S(B,C))
)
,

where S(D,B) and S(B,C) are (adequately chosen) connected
components of B ∩Φn(D) and of C ∩Φn(B) respectively. (Recall
the notation in Remark 2.10).

Note that the sets S(B,C) and S(B′, C ′) are disjoint if (B,C) 6=
(B′, C ′), because two different atoms of generation n for Φn are
disjoint (recall Definition 2.3) and Φn is one to one.

Let us construct the family An+1 of boxes, candidates to be atoms
of generation n + 1 for a new embedding Φn+1 (to be constructed as
in Remark 2.10), and let us construct the homeomorphism ψn+1 such
that Φn+1 = ψn+1 ◦ f .

First, for each (B,C) ∈ A2∗
n (Φn), we choose a box R(D,B) such that

(9) e(D,B,C) ∈ int(R(B,C)), R(B,C) ⊂ int
(
Φ−1
n (S(B,C))

)
∀ D ∈ An such that D

Φn→B.
Note that such boxes R(·, ·) are pairwise disjoint, because they are
contained in pairwise disjoint sets.

Recall that e(D,B,C) ∈ Ln and the set Ln is Φn-invariant. Consider
assertions (8) and (9). Thus,

e(D,B,C) ∈ int
(
R(B,C) ∩ Φn(R(D,B))

)
6= ∅.

Next, for each (D,B,C) ∈ A3∗
n we choose two pairwise disjoint boxes,

G0(D,B,C) and G1(D,B,C), contained in the interior of R(B,C) ∩
Φn(R(D,B)), satisfying

(10) max{diam(Gi(D,B,C)), diam(f(Gi(D,B,C)))} < 1

2n+1
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for i = 0, 1. Now, we use the notation of Remark 2.10, to construct
the family An+1 of all the boxes Gi(D,B,C). The boxes of the family

An+1 will be the (n+ 1)-atoms of two new embeddings Φ̃n+1 and Φn+1

that we will construct as follows.
First, in the interior of each box E ∈ An+1 we choose 2n+1 distinct

points ẽi(E), i = 1, 2 . . . , 2n+1, and denote

L̃n+1 := {ẽi(E) : E ∈ An+1, 1 ≤ i ≤ 2n+1}.

Second, we build a permutation θ̃ of L̃n+1 satisfying the properties of
Lemma 2.14.

Third, applying Lemma 2.16, we construct ψ̃n+1 ∈ Hom(Dm) satis-
fying the following constraints.
(a) For all (B,C) ∈ A2∗

n (Φn):

ψ̃n+1|f(R(B,C)) : f(R(B,C))→ ψn ◦ f(R(B,C)) = Φn(R(B,C, )),

(b)

ψ̃n+1(x) = ψn(x),

∀x 6∈
⋃

(B,C)∈A2∗
n for Φn

f(R(B,C)),

(c)

ψ̃n+1(f(ẽ)) = θ̃(ẽ), ∀ ẽ ∈ L̃n+1.

To prove the existence of such a homeomorphism ψ̃n+1 we must verify
the hypotheses of Lemma 2.16. On the one hand, the boxes R(B,C)
where (B,C) ∈ A2∗

n are pairwise disjoint. So their images by the em-
bedding f are also pairwise disjoint boxes. On the other hand, for each
(B,C) ∈ A2∗

n (Φn), the finite set

{f(ẽ) : ẽ ∈ L̃n+1 ∩ int(R(B,C))} =

{f(ẽ) : ẽ ∈ L̃n+1 ∩ int(Φ−1
n (S(B,C)))}

is contained in the interior of f(R(B,C)). Besides, it coincides with

{f(ẽi(E)) : E ∈ Γn+1(D,B,C) for some D ∈ An, i = 1, . . . , 2n+1}

(recall Lemma 2.11). So, the image by the permutation θ̃ of such points
ẽ·(·) is

{θ̃(ẽi(E)) : E ∈ Γn+1(D,B,C) for some D ∈ An, i = 1, 2, . . . 2n+1}
Applying Lemma 2.14-c), the latter set is

{ẽk(F ) : F ∈ Ωn+1(B,C), k = 1, 2, . . . 2n+1} = L̃n+1 ∩ S(B,C),

which is contained in the interior of Φn(R(B,C)) = ψ̃n(f(R(B,C)))
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We have proved that the points f(ẽ(·)) are contained in the interior
of the boxes f(R(·, ·)), and that their required images θ(ẽ(·)) by the

homeomorphism ψ̃n+1 (to be constructed), are in the interior of the

images by ψ̃n of those boxes. So, the hypothesis of Lemma 2.16 is
satisfied.

We construct
Φ̃n+1 := ψ̃n+1 ◦ f.

Since
Φ̃n+1(x) = ψ̃n+1 ◦ f = ψ̃n ◦ f = Φn(x) ∀x 6∈⋃

(B,C)∈A2∗
n for Φn

int(R(B,C)) ⊂
⋃

(B,C)∈A2∗
n for Φn

int(Φ−1
n (S(B,C))),

the hypothesis of Lemma 2.12 is satisfied. Therefore the same atoms

up to generation n for Φn are still atoms up to generation n for Φ̃n+1.
But moreover, applying Lemma 2.15-a), the boxes of the new family

An+1 are now (n+ 1)-atoms for Φ̃n+1.
Step 3. Construction of Φn+1 and ψn+1. To argue by induction, we

will not use the embedding Φ̃n+1 and the homeomorphism ψ̃n+1, even

if Φ̃n+1 = ψ̃n+1 ◦ f already has families A0, . . . ,An,An+1 of atoms up
to generation n + 1, as required. Rather, we need to modify them to
obtain a new embedding Φn+1 and a new homeomorphism ψn+1 such
that the inductive hypothesis (IV) and Assertion (8) also holds for n+1

instead of n. We will modify ψ̃n+1 only in the interiors of the boxes

f(G) for all the atoms G ∈ An+1 for Φ̃n+1, we will construct a new
homeomorphism ψn+1 such that Φn+1 := ψn+1 ◦ f has the same atoms

up to generation n+1 of Φ̃n+1 (see the proof of part a) of Lemma 2.12),
and besides satisfies the inductive hypothesis (IV) with n + 1 instead
of n.

From the above construction of ψ̃n+1 and Φ̃n+1, and from Lemma

2.15-b), we know that for each (G,E) ∈ A2∗
n+1 for Φ̃n+1, there exists a

unique point ẽi(G) ∈ int(G), and a unique point ẽk(E), such that

Φ̃n+1(ẽi(G)) = ψ̃n+1 ◦ f(ẽi(G)) = θ̃(ẽi(G)) = ẽk(E) ∈ int(E).

Therefore
ẽk(E) ∈ int(E ∩ Φ̃n+1(G)).

Denote by
S(G,E)

the connected component of E ∩ Φ̃n+1(G) that contains the point
ẽk(E). Choose 2n+1 distinct points

ei(G,E) ∈ int(S(G,E)), i = 1, . . . , 2n+1
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and a permutation θ of the finite set

(11) Ln+1 := {ei(G,E) : (G,E) ∈ A2∗
n+1 for Φ̃n+1, i = 1, . . . , 2n+1}

such that for each fixed (G,E, F ) ∈ A3∗
n+1 for Φ̃n+1, there exists a

unique point ei(G,E), and a unique point ek(E,F ), satisfying

(12) θ(ei(G,E)) = ek(E,F ).

The proof of the existence of such permutation is similar (but simpler)
than the the proof of Lemma 2.14.

Applying Lemma 2.16, construct a homeomorphism

ψn+1 ∈ Hom(Dm)

such that

ψn+1|f(G) : f(G)→ ψ̃n+1(f(G)) = Φ̃n+1(G) ∀ G ∈ An+1 for Φ̃n+1,

ψn+1(x) = ψ̃n+1(x) ∀ x 6∈
⋃

G∈An+1

f(G),

(13) ψn+1(f(ei(G,E)) = θ(ei(G,E))

∀ (E,G) ∈ A2
n+1 such that G

Φ̃n+1→ E, ∀ i = 1, . . . , 2n+1,

and extend ψn+1 to the whole box Dm by defining ψn+1(x) = ψ̃n+1(x),
∀ x ∈ Dm \

⋃
G∈An+1

f(G). In particular

ψn+1|∂Dm = ψ̃n+1|∂Dm = id|∂Dm .

Define

(14) Φn+1 := ψn+1 ◦ f.

As said above, the property that Φn+1 coincides with Φ̃n+1 outside

all the atoms of An+1 for Φ̃n+1 implies that the boxes of the families
A0, . . . ,An+1, which are the family of atoms up to generation n for

Φ̃n+1, are also atoms up to generation n+ 1 for Φn+1. But now, due to
equalities (12), (13) and (14), they have the following additional prop-
erty: there exists a one-to-one correspondence between the 3-tuples

(G,E, F ) ∈ A3∗
n+1 (for Φ̃n+1 and also for Φn+1 ) and the points of the

set Ln+1 of Equality (11), such that

(15) e(G,E, F ) := ei(G,E) ∈ int
(
S(G,E) ∩ Φ−1

n+1(S(E,F ))
)
.,

Recall that S(G,E) and S(E,F ) are the connected components of

E ∩Φn(G) and of F ∩Φn(E) respectively, that were chosen after Φ̃n+1

was constructed.
Besides, by construction, the finite set Ln+1 is Φn+1-invariant. In

fact, Φn+1(Ln+1) = ψn+1(f(Ln+1)) = θ(Ln+1) = Ln+1. Therefore, the
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inductive hypothesis I), II), III) and IV) holds for n+ 1 and the induc-
tive construction is complete.
Step 4. The limit homeomorphisms. From the above construc-
tion we have:

ψn+1(x) = ψ̃n+1(x) = ψn(x) if x 6∈
⋃
B,C

ψ−1
n (R(B,C)) ⊂

⋃
B

f(B)

ψn+1 ◦ ψ−1
n (R(B,C)) = ψ̃n+1 ◦ ψ−1

n (R(B,C)) =

ψn ◦ ψ−1
n (R(B,C)) = R(B,C) ⊂ C.

Therefore,

dist(ψ−1
n+1(x), ψ−1

n (x)) ≤ max
B∈An

diam(f(B)) <
1

2n
, ∀ x ∈ Dm;

dist(ψn+1(x), ψn(x)) ≤ max
C∈An

diam(C) <
1

2n
, ∀ x ∈ Dm,

(16) ‖ψn+1 − ψn‖Hom <
1

2n
.

From Inequality (16) we deduce that the sequence ψn is Cauchy in
Hom(Dm). Therefore, it converges to a homeomorphism ψ. Moreover,
by construction ψn|∂Dm = id|∂Dm for all n ≥ 1. Then ψ|∂Dm = id|∂Dm .

The convergence of ψn to ψ in Hom(Dm) implies that Φn = ψn ◦ f ∈
Emb(Dm) converges to Φ = ψ ◦ f ∈ Emb(Dm) as n → +∞. Since
f(Dm) ⊂ int(Dm) and ψ ∈ Hom(Dm), we deduce that Φ(Dm) ⊂
int(Dm).Moreover, by constructionA0,A1, . . . ,An are families of atoms
up to generation n for Φn, and Φj(x) = Φn(x) for all x ∈ Dm\

⋃
B∈An

B
and for all j ≥ n. Since limj Φj = Φ, the boxes of the family An are
n-atoms for Φ for all n ≥ 0. Finally, from Inequality (II, the diameters
of the n-atoms converge uniformly to zero as n → +∞. Thus Φ is a
model according to Definition 2.5. �

3. Infinite metric entropy and mixing property of the
models.

The purpose of this section is to prove the following Lemma.

Lemma 3.1. Let H ⊂ C0(Dm) be a family of models with m ≥ 2. For
each Φ ∈ H there exists a Φ-invariant mixing (hence ergodic) measure ν
supported on a Φ-invariant Cantor set Λ ⊂ Dm such that hν(Φ) = +∞.

Throughout this section we assume m ≥ 2 and we suppose there is
a given Φ ∈ H, with a given sequence of families An (n ≥ 0) of atoms
of generations n ≥ 0 respectively for Φ. When we refer to the atoms of
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generation n, we omit writing Φ and the families of atoms of previous
generation, which are the previously given map and families.

Remark 3.2. Lemma 3.1 holds, in particular, for H ∩ Emb(Dm).

To prove Lemma 3.1 we need to define the paths of atoms and to
discuss their properties. We also need to define the invariant Cantor
set Λ that will support the measure ν and prove some of its topological
dynamical properties.

Definition 3.3. (Paths of atoms)
Let Φ ∈ H ⊂ C0(Dm), l ≥ 2 and let (A1, A2, . . . , Al) be a l-tuple of

atoms for Φ of the same generation n, such that

Ai
Φ→ Ai+1, ∀ i ∈ {1, 2, . . . , l − 1}.

We call (A1, A2, . . . , Al) an l-path of n-atoms from A1 to Al. Let Al∗n
denote the family of all the l-paths of atoms of generation l.

Lemma 3.4. For all n ≥ 1, for all l ≥ 2n, and for all A1, A2 ∈ An
there exists an l-path of n-atoms from A1 to A2.

Proof. For n = 1, the result is trivial. Let us assume by induction that
the result holds for some n− 1 ≥ 1 and let us prove it for n.

Let E,F ∈ An. From equality (2) of Remark 2.4, there exists unique

atoms B−1, B0, B1 ∈ An−1 such that E ∈ Γn(B−1, B0, B1). Then B−1
Φ→

B0, E ⊂ B0 and, by Remark 2.4:

(17) E
Φ→ E1, ∀ E1 ∈ Ωn(B0, B1).

Analogously, there exists unique atoms B∗, B∗+1 ∈ An−1 such that

F ∈ Ωn(B∗, B∗+1). Then B∗
Φ→ B∗+1, F ⊂ B∗+1 and

(18) E∗
Φ→ F, ∀ E∗ ∈

⋃
B∗−1∈An−1:

B∗−1
Φ→B∗

Γn(B∗−1, B∗, B∗+1)

Since B1, B∗ ∈ An−1 the induction hypothesis ensures that that for
all l ≥ 2n−2 there exists an l-path (B1, B2, . . . , Bl) from B1 to Bl = B∗.
We write B∗−1 = Bl−1, B∗ = Bl, B∗+1 = Bl+1. So (18) becomes

(19) El
Φ→ F, ∀ El ∈ Γn(Bl−1, Bl, Bl+1)

Taking into account that Bi−1
Φ→ Bi for 1 < i ≤ l, and applying

Remark 2.4, we deduce that, if Ei−1 ∈ Γn(Bi−2, Bi−1, Bi) ⊂ An, then

(20) Ei−1
Φ→ Ei, ∀ Ei ∈ Ωn(Bi−1, Bi), ∀ 1 < i ≤ l.

Combining (17), (19) and (20) yields an (l+ 2)-path (E,E1, . . . , El, F )
of atoms of generation n from E to F , as required. �
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Lemma 3.5. Let n, l ≥ 2. For each l-path (B1, . . . , Bl) of (n − 1)-
atoms there exists an l- path (E1, E2, . . . , El) of n-atoms such that Ei ⊂
int(Bi) for all i = 1, 2, . . . , l.

Proof. In the proof of Lemma 3.4 for each l-path (B1, B2, . . . , Bl) of
(n − 1)-atoms we have constructed the l-path (E1, E2, . . . , El) of n-
atoms as required. �

Definition 3.6. (The Λ-set) Let Φ ∈ H ⊂ C0(Dm) be a model map.
Let A0,A1, . . . ,An, . . . be its sequence of families of atoms. The subset

Λ :=
⋂
n≥0

⋃
A∈An

A

of int(Dm) is called the Λ-set of the map Φ.

From Definition 2.3, we know that, for each fixed n ≥ 0, the set
Λn :=

⋃
A∈An

A, is nonempty, compact, and int(Λn) ⊃ Λn+1. Therefore,
Λ is also nonempty and compact. Moreover, Λn is composed of a finite
number of connected components A ∈ An, which by Definition 2.5,
satisfy limn→+∞maxA∈An diamA = 0. Since Λ :=

⋂
n≥0 Λn, we deduce

that the Λ-set is a Cantor set contained in int(Dm).

Lemma 3.7. Let n, l ≥ 1 and A1, A2 ∈ An. If there exists an l+1-path
from A1 to A2, then Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅.

Proof. Assume that there exists an (l + 1)-path from A1 to A2. So,
from Lemma 3.5, for all j ≥ n there exists atoms Bj,1, Bj,2 ∈ Aj and
an (l+ 1)-path from Bj,1 to Bj,2 (with constant length l+ 1) such that

Bn,i = Ai, Bj+1,i ⊂ Bj,i, ∀ j ≥ n, i = 1, 2.

Construct the following two points x1 and x2:

{xi} =
⋂
j≥n0

Bj,i, i = 1, 2.

By Definition 3.6, xi ∈ Ai ∩ Λ. So, to finish the proof of Lemma 3.7 it
is enough to prove that Φl(x1) = x2.

Recall that l is fixed. Since Φ is uniformly continuous, for any
ε > 0 there exists δ > 0 such that if (y0, y1, . . . , yl) ∈ (Dm)l satisfies
d(Φ(yi), yi+1) < δ for 0 ≤ i ≤ l − 1, then the points y0 and yl sat-
isfy d(Φl(y0), yl) < ε. We choose δ small enough such that additional
d(Φl(x),Φl(y)) < ε if d(x, y) < δ.

From (3), there exists j ≥ n such that diam(Bj,i) < δ. Since there
exists an (l + 1)-path from Bj,1 to Bj,2, there exists a (y0, . . . , yl) as in
the previous paragraph with y0 ∈ Bj,1 and yl ∈ Bj,2. Thus

d(Φl(x1), x2) ≤ d(Φl(x1),Φl(y0)) + d(Φl(y0), yl) + d(yl, x1)
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< diam(Φl(Bj,1)) + ε+ diam(Bj,2) < 3ε.

Since ε > 0 is arbitrary, we obtain Φl(x1) = x2, as required. �

Lemma 3.8. (Topological dynamical properties of Λ)

a) The Λ-set of a model map Φ ∈ H is Φ-invariant, i.e., Φ(Λ) = Λ.
b) The map Φ restricted to the Λ-set is topologically mixing.
c) In particular, Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅, for all n ≥ 1, for any two

atoms A1, A2 ∈ An and for all l ≥ 2n− 1.

Proof. a) Let x ∈ Λ and let {An(x)}n≥0 the unique sequence of atoms
such that x ∈ An(x) and An(x) ∈ An for all n ≥ 0. Then, Φ(x) ∈
Φ(An(x)) for all n ≥ 0. From Definition 2.3, for all n ≥ 0 there exists

an atom Bn ∈ An such that An(x)
Φ→ Bn. Therefore Φ(An(x))∩Bn 6= ∅.

Let d denote the Hausdorff distance between subsets of Dm, we deduce

d(Φ(x), Bn) ≤ diam
(
Φ(An(x))

)
+ diam

(
Bn

)
.

Moreover, Equality (3) and the continuity of Φ imply

lim
n→+∞

max
{

diam
(
Φ(An(x))

)
, diam

(
Bn

)}
= 0.

Then, for all ε > 0 there exists n0 ≥ 0 such that d(Φ(x), Bn) < ε for
some atom Bn ∈ An for all n ≥ n0. Since any atom of any generation
intersects Λ, we deduce that d(Φ(x),Λ) < ε for each ε > 0. Since Λ is
compact, this implies Φ(x) ∈ Λ. We have proved that Φ(Λ) ⊂ Λ.

Now, let us prove the other inclusion. Let y ∈ Λ and let {Bn(y)}n≥0

the unique sequence of atoms such that y ∈ Bn(y) and Bn(y) ∈ An
for all n ≥ 0. From Definition 2.3, for all n ≥ 0 there exists an atom

An ∈ An such that An
Φ→ Bn(y). Therefore Φ(An) ∩ Bn(y) 6= ∅. We

deduce that, for all n ≥ 0, there exists a point xn ∈ An ∈ An such that
Φ(xn) ∈ Bn(y). Since any atom An contains points of Λ, we obtain

d(xn,Λ) ≤ diam(An) and d(Φ(xn), y) ≤ diam(Bn(y)), ∀ n ≥ 0.

Let x be the limit of a convergent subsequence of {xn}n≥0. Applying
Equality (3) and the continuity of Φ, we deduce that d(x,Λ) = 0 and
d(Φ(x), y) = 0. This means that y = Φ(x) and x ∈ Λ. We have proved
that y ∈ Φ(Λ) for all y ∈ Λ; namely Λ = Φ(Λ), as required.

c) We will prove a stronger assertion: for any two atoms, even of
different generation, there exists l0 ≥ 1 such that

(21) Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅ ∀ l ≥ l0.

It is not restrictive to assume that A1 and A2 are atoms of the same
generation n0 (if not, take n0 equal to the largest of both generation and
substitute Ai by an atom of generation n0 contained in Ai). Applying
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Lemma 3.4, for all l ≥ 2n0 − 1 there exists an (l + 1)-path from A1 to
A2. So, from Lemma 3.7 Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅, as required.

b) The intersection of Λ with the atoms of all the generations gen-
erates its topology, thus Equation (21) implies that Λ is topologically
mixing. �

For fixed (A0, Al) ∈ A2
n we set

Al+1 ∗
n (A0, Al) := {(A0, A1, . . . , Al−1, Al) ∈ Al+1 ∗

n }.

Lemma 3.9. Let l, n ≥ 1. Then

a) #Al+1 ∗
n = 2nl · (#An).

b) #Al+1 ∗
n (A0, Al) = 2nl

#An
∀ (A0, Al) ∈ A2

n, for all l ≥ 2n− 1.

Proof. a) Each (l + 1)-path (A0, A1, . . . , Al) of n-atoms is determined
by a free choice of the atom A0 ∈ An, followed by the choice of the

atoms Aj ∈ An such that Aj
Φ→ Aj−1 for all j = 1, . . . , l. From equality

ii) of Definition 2.3, we know that for any fixed A ∈ An the number of

atoms B ∈ An such that B
Φ→ A is 2n. This implies a, as required.

b) We argue by induction on n. Fix n = 1 and l ≥ 1. Since any two

atoms Aj, Aj+1 ∈ A1 satisfies Aj
Φ→ Aj+1, the number of (l + 1)-paths

(A0, A1, . . . , Aj, Aj+1, . . . Al−1, Al)

of 1-atoms with (A0, Al) fixed, equals #(A1)l−1 = 2l−1 = 2l/2 =
2nl/(#An) with n = 1.

Now, let us assume that assertion b) holds for some n ≥ 1 and let us
prove it for n+ 1. Let l ≥ 2(n+ 1)− 1 = 2n+ 1 ≥ 3 and let (B0, Bl) ∈
A2
n+1. From equality (2) and conditions a) and b) of Definition 2.3,

there exists unique (A−1, A0, A1) ∈ A3∗
n and unique (Al−1, Al) ∈ A2∗

n

such that

B0 ∈ Γn+1(A−1, A0, A1), Bl ∈ Ωn+1(Al−1, Al).

As (A1, Al−1) ∈ A2
n and l−2 ≥ 2n−1, the induction hypothesis ensures

that the number of (l − 1)-paths (A1, A2, . . . , Al−1) from A1 to Al−1 is

(22) #Al−1 ∗
n (A1, Al−1) =

2n(l−2)

#An
=

2n(l−2)

2n2 = 2nl−2n−n2

.

Let C(B0, Bl) be the set⋃
(A1,...,Al−1)∈Al−1 ∗

n (A1,Al−1)

{
(B0, B1, . . . , Bl) ∈ Al+1

n+1 : Bj ∈ Γn+1(Aj−1, Aj, Aj+1) ∀j
}
,
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where the families in the above union are pairwise disjoint. It is
standard to check that the families in the union C(B0, Bl) are pair-

wise disjoint, because for A 6= Ã in An, the families Γn+1(·, A, ·) and

Γn+1(·, Ã, ·) are disjoint.
A straightforward verification shows that

(23) Al+1 ∗
n+1 (B0, Bl) = C(B0, Bl).

Now, applying (22) and (23), we obtain

#Al+1 ∗
n+1 (B0, Bl) =

=
∑

(A1,...,Al−1)∈Al−1 ∗
n (A1,Al−1)

#
{

(B0, B1, . . . , Bl) ∈ Al+1
n+1 : Bj ∈ Γn+1(Aj−1, Aj, Aj+1) ∀j

}
=

∑
(A1,...,Al−1)∈Al−1 ∗

n (A1,Al−1)

l−1∏
j=1

#Γn+1(Aj−1, Aj, Aj+1)

= (#Al−1 ∗
n (A1, Al−1)) · 2l−1 = 2nl−2n−n2+l−1 = 2(n+1)l−(n+1)2

=
2(n+1)l

#An+1

as required. �

Let ~Aln := (A0, A1, . . . , Al) be an (l+1)-path of n-atoms, and Fn,l( ~Aln) :={
G ∈ An+l : G ∩ Λ ⊂

⋂l
j=0 Φ−j(Aj)

}
.

Lemma 3.10. (Intersection of Λ with l-paths) Fix l, n ≥ 1. Then

a) For any G ∈ An+l, there exists a unique (l+1)-path (A0, A1, . . . , Al)

of n-atoms such that G ∩ Λ ⊂
⋂l
j=0 Φ−j(Aj).

b) For any atoms G ∈ An+l, A ∈ An and j ∈ {0, 1, . . . , l}:
(G ∩ Λ) ∩ Φ−j(A) 6= ∅ ⇔ G ∩ Λ ⊂ Φ−j(A).

c) For any (l + 1)-path ~Aln = (A0, A1, . . . , Al) of n-atoms,

(24) Λ ∩
l⋂

j=0

Φ−j(Aj) =
⋃

G∈Fn,l( ~Al
n)

G ∩ Λ,

d) For any atom G ∈ An+l and any path ~Aln ∈ Al+1 ∗
n :

G ∈ Fn,l( ~Aln) if and only if there exists (G0, G1, . . . , Gl) ∈ Al+1 ∗
n+l

such that G0 = G and Gj ⊂ Aj for all j = 0, 1, . . . , l.
e) For any (l + 1)-path (A0, A1, . . . , Al) of n-atoms,

#Fn,l( ~Aln) =
1

2nl
· #An+l

#An
.
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Proof. a) From equalities (1) and (2), for any atom G of generation
n + l there exist two unique atoms B,C of generation n + l − 1 such

that B
Φ→ C, G ⊂ B and G

Φ→ E for all E ∈ Ωn+l(B,C). Moreover,
from Remark 2.10, we have

(25) Φ(G) ∩ F 6= ∅ if and only if F ∈ Ωn+l(B,C).

We claim that

(26) Φ(G ∩ Λ) ⊂ int(C).

Since Λ is Φ-invariant, for any x ∈ G ∩ Λ, we have Φ(x) ∈ Φ(G) ∩ Λ.
Therefore Φ(x) is in the interior of some atom E(x) of generation n+ l
(see Definition 3.6). From (25), E(x) ∈ Ωn+l(B,C). Thus E(x) ⊂
int(C) and Φ(x) ∈ int(C) for all x ∈ G ∩ Λ proving (26).

So, there exists C1 ∈ An+l−1 such that Φ(G ∩ Λ) ⊂ int(C1) ∩ Λ.
Applying the same assertion to C1 instead of G, we deduce that there
exists C2 ∈ An+l−2 such that Φ(C1∩Λ) ⊂ int(C2)∩Λ. So, by induction,
we construct atoms

C1, C2, . . . , Cl such that Cj ∈ An+l−j and

Φj(G ∩ Λ) ⊂ int(Cj) ∩ Λ, ∀ j = 1, . . . , l.

Since any atom of generation larger than n is contained in a unique
atom of generation n, there exists A0, A1, . . . , Al ∈ An such that A0 ⊃
G and Ai ⊃ Ci, ∀ i = 1, . . . , l. We obtain

Φj(G ∩ Λ) ⊂ int(Aj), ∀ j = 0, 1, . . . , l.

Besides, (A0, A1, . . . , Al) is an (l + 1)-path since ∅ 6= Φj(G ∩ Λ) ⊂
Φ(Aj−1)∩ int(Aj); hence Aj−1

Φ→ Aj for all j = 1, . . . , l. Then, G∩Λ ⊂
Φ−j(Aj) for all j = 0, 1, . . . , l; proving the existence statement in a).

To prove uniqueness assume that (A0, A1, . . . , Al) and (A′0, A
′
1, . . . , A

′
l)

are paths of n-atoms such that

G ∩ Λ ⊂ Φ−j(Aj) ∩ Φ−j(A′j) ∀ j ∈ {0, 1, . . . , l}.
Then Aj ∩A′j 6= ∅ for all j ∈ {0, 1, . . . , l}. Since two different atoms of
the same generation are pairwise disjoint, we deduce that Aj = A′j for
all j ∈ {0, 1, . . . , l} as required.

b) Trivially, if G∩Λ ⊂ Φ−j(A), then (G∩Λ)∩Φ−j(A) 6= ∅. Now, let
us prove the converse assertion. Fix G ∈ An+l and A ∈ An satisfying

(G ∩ Λ) ∩ Φ−j(A) 6= ∅. Applying part a) there exists Ã ∈ An such

that G ∩ Λ ⊂ Φ−j(Ã). Therefore G ∩ Λ ∩ Φ−j(A) ⊂ Φ−j(Ã ∩ A) 6= ∅.
Since A and Ã are atoms of generation n, and two different atoms

of the same generation are disjoint, we conclude that Ã = A, hence
G ∩ Λ ⊂ Φ−j(A), as required.
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c) For the (l + 1)-path ~Aln = (A0, A1, . . . , Al) of n-atoms, construct

(27) F̃n,l( ~Aln) :=
{
G ∈ An+l : G∩Λ∩Φ−j(Aj) 6= ∅ ∀j ∈ {0, 1, . . . , l}

}
.

From the definitions of the families Fn,l and F̃n,l, and taking into ac-
count that Λ is contained in the union of (n+ l)-atoms, we obtain:

⋃
G∈Fn,l( ~Al

n)

G ∩ Λ ⊂ Λ ∩
( l⋂
j=0

Φ−j(Aj)
)
⊂

⋃
G∈F̃n,l( ~Al

n)

G ∩ Λ.

Therefore, to prove Equality (24) it is enough to show that

(28) F̃n,l( ~Aln) = Fn,l( ~Aln),

but this equality immediately follows from the construction of the fam-

ilies Fn,l( ~Aln) and F̃n,l( ~Aln) by assertion b).

d) For each (l + 1)-path ~Aln = (A0, A1 . . . , Al) of n-atoms construct

the family Gn,l( ~Aln) :={
G0 ∈ An+l : ∃(G0, G1, . . . , Gl) ∈ Al+1 ∗

n+l such that Gj ⊂ Aj ∀j
}

We will first prove that Gn,l( ~Aln) ⊃ Fn,l( ~Aln). In fact, take G ∈
Fn,l( ~Aln), and take any point x ∈ G ∩ Λ. We have Φj(x) ∈ Aj ∩ Λ for
all j ∈ {0, 1, . . . , l} (recall that Λ is Φ-invariant). Since any point in
Λ is contained in the interior of some atom of any generation, there
exists an atom Gj of generation n+ l such that Φj(x) ∈ int(Gj). Recall
that each atom of generation n + l is contained in a unique atom of
generation n. As Φj(x) ∈ Gj ∩Aj 6= ∅, and different atoms of the same
generation are disjoint, we conclude that Gj ⊂ Aj. Besides G0 = G
because x ∈ G ∩G0. Finally (G0, G1, . . . , Gl) is a (l + 1)-path because
Φj+1(x) = Φ(Φj(x)) ∈ Φ(Gj) ∩ int(Gj+1) for all j ∈ {0, 1, . . . , l − 1};
namely Gj

Φ→ Gj+1. We have proved that G ∈ Gn,l( ~Aln), as required.

Now, let us prove that Gn,l( ~Aln) ⊂ Fn,l( ~Aln). Assume that G0 ∈ An+l

and (G0, G1, . . . , Gl) ∈ Al+1 ∗
n+l satisfies Gj ⊂ Aj for all j ∈ {0, 1, . . . , l}.

Therefore (G0, G1, . . . , Gj) is a (j + 1)-path of (n + l)-atoms for all
j ∈ {1, 2, . . . , l}. Applying Lemma 3.7, we obtain G0∩Λ∩Φ−j(Gj) 6= ∅.
Therefore, taking into account that Gj ⊂ Aj, we deduce that

G0 ∩ Λ ∩ Φ−j(Aj) 6= ∅ ∀ j ∈ {0, 1, . . . , l}.

Therefore G0 ∈ F̃n,l( ~Aln) = Fn,l( ~Aln) (recall (27) and (28)). This holds

for any G0 ∈ Gn,l( ~Aln), thus Gn,l( ~Aln) ⊂ Fn,l( ~Aln), as required.
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e) From Assertion a) we obtain:

(29) An+l =
⋃

~Al
n∈A

l+1 ∗
n

Fn,l( ~Aln),

where the families in the above union are pairwise disjoint, due to the
uniqueness property of assertion a).

Recall the characterization of the family Fn,1( ~Aln) given by Assertion
d). From Definition 2.3- condition a) and equality ii), the number
of atoms of each generation larger than n that are contained in each

Aj ∈ An, and also the number of atoms Gj ∈ An+1 such that Gj
Φ→

Gj+1, are constants that depend only on the generations but not on
the chosen atom. Therefore, there exists a constant kn,l such that

#Fn,l( ~Aln) = #Gn,l( ~Aln) = kn,l for all the (l + 1)-paths of n-atoms. So,
from Equality (29) we obtain:

#An+l = (#Al+1 ∗
n ) · (#Fn,l({Aj})),

and applying Lemma 3.9, we conclude

#An+l = 2nl · (#An) · (#Fn,l({Aj})),
as required. �

We turn to the proof of Lemma 3.1. We will first construct the
measure ν and then prove that it has the required properties.

We start by defining an additive pre-measure on the Λ-set of Φ by

ν∗(A ∩ Λ) :=
1

#An
, ∀ A ∈ An, ∀ n ≥ 0.

Since ν∗ is a pre-measure defined in a family of sets that generates the
Borel σ-algebra of Λ, there exists a unique Borel probability measure
ν supported on Λ such that

(30) ν(A ∩ Λ) :=
1

#An
, ∀ A ∈ An, ∀ n ≥ 0.

In the following lemmas we will prove that ν is Φ-invariant, mixing,
and that the metric entropy hν(Φ) is infinite.

Lemma 3.11. ν is invariant by Φ.

Proof. Since the atoms of all generation intersected with Λ generates
the Borel σ-algebra of Λ, it is enough to prove that

(31) ν(C ∩ Λ) = ν(Φ−1(C ∩ Λ)), ∀ C ∈ An, ∀ n ≥ 0.

From (2), taking into account that Λ is invariant and that any point
in Λ belongs to an atom of generation n+ 1, we obtain:
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Φ−1(C ∩ Λ) =
⋃
B∈An

B
Φ→C

⋃
D∈An

D
Φ→B

⋃
G∈Γn+1(D,B,C)

(G ∩ Λ),

where both unions are of pairwise disjoint sets. Using equalities ii) of
Definition 2.3, we obtain

ν(Φ−1(C ∩ Λ)) =
∑
B∈An

B
Φ→C

∑
D∈An

D
Φ→B

∑
G∈Γn+1(B,C,D)

ν(G ∩ Λ)

= NC ·NB · (#Γn+1(B,C,D)) · 1

#An+1

,(32)

where NX := #{Y ∈ An : Y
Φ→ X}) = 2n for all X ∈ An. Since

#Γn+1(B,C,D)) = 2 (see Remark 2.4) and #An+1 = 2(n+1)2
, we con-

clude

ν(Φ−1(C ∩ Λ)) = 2n · 2n · 2 · 1

2(n+1)2 =
1

2n2 =
1

#An
= ν(C ∩ Λ),

proving Equality (31) as required. �

Lemma 3.12. ν is mixing.

Proof. The family of atoms of all generations intersected with Λ gen-
erates the Borel σ-algebra of Λ, thus it is enough to prove that for any
pair (C0, D0) of atoms (of equal or different generations) there exists
l0 ≥ 1 such that

(33) ν(Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ)) = ν(C0 ∩ Λ) · ν(D0 ∩ Λ) ∀ l ≥ l0.

Let us first prove this in the case that C0 and D0 are atoms of the
same generation n. Take l ≥ 2n− 1. Applying Lemma 3.8-c), we have
Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) 6= ∅ ∀ l ≥ 2n− 1.

Fix l ≥ 2n− 1. We will use the notation

~Aln := (C0, A1, . . . , Al−1, D0) ∈ Al+1 ∗
n (C0, D0)

to denote any one of the 2nl/(#An) different l + 1-paths of n-atoms
from C0 to D0 (see Lemma 3.9-b)).

We assert that

(34) Φ−l(D0∩Λ)∩ (C0∩Λ) = T :=
⋃

~Al
n∈A

l+1 ∗
n (C0,D0)

⋃
B∈Fn,l( ~Al

n)

(B∩Λ),

where the family Fn,l( ~Aln) of (n+ l)-atoms is defined in Lemma 3.10-c).
First, let us prove that Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) ⊂ T . Fix x ∈

(D0∩Λ)∩ (C0∩Λ). Then C0, D0 are the unique atoms of generation n
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that contain x and Φl(x) ∈ Φl(Λ) = Λ respectively. Since x ∈ Λ, there
exists a unique atom B of generation n + l that contains x. Applying
Lemma 3.10-a) there exists a unique (A0, A1, . . . , Al) ∈ Al+1 ∗

n such
that B ∩ Λ ⊂ Φ−j(Aj) for all j ∈ {0, 1, . . . , l}. Since the n-atom that
contains x is C0, and two different n-atoms are disjoint, we deduce that
A0 = C0. Analogously, since the n-atom that contains Φl(x) is D0 and
the preimages of two different n-atoms are disjoint, we deduce that
Al = D0. Therefore we have found ~Aln = (C0, A1, . . . , Al−1, D0) and

B ∈ Fn,l( ~Aln) such that x ∈ B ∩Λ. In other words, x ∈ T , as required.

Next, let us prove that Φ−l(D0∩Λ)∩(C0∩Λ) ⊃ T . Take B ∈ Fn,l( ~Aln)

for some ~Aln = (C0, A1, . . . , Al−1, D0). From the definition of the family

Fn,l( ~Aln) in Lemma 3.10-c), we have B ∩ Λ ⊂ (C0 ∩ Λ) ∩ Φ−l(D0).
Besides B ∩Λ ∈ Φl(Λ) because Φl(Λ) = Λ. We conclude that B ∩Λ ⊂
(C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ), proving that T ⊂ Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ), as
required. This ends the proof of equality (34).

By definition n-atoms are pairwise disjoint, thus the sets in the union
constructing T are pairwise disjoint. Therefore, from (34), and apply-
ing Lemma 3.9-b) and Lemma 3.10-e), we deduce

ν((C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ)) =
∑

~Al
n∈A

l+1 ∗
n (C0,D0)

∑
B∈Fn,l( ~Al

n)

ν(B ∩ Λ)

= (#Al+1 ∗
n (C0, D0)) · (#Fn,l( ~Aln)) · 1

#An+l

=
2nl

#An
· 1

2nl
· #An+l

#An
· 1

#An+l

=
1

#An
· 1

#An
= ν(C0 ∩ Λ) · ν(D0 ∩ Λ).

This ends the proof of equality (33) in the case that C0 and D0 are
atoms of the same generation n, taking l0 = 2n− 1.

Now, let us prove equality (33) when C0 and D0 are atoms of different
generations. Let n equal the maximum of both generations. Take
l ≥ 2n − 1. Since Λ is contained in the union of the atoms of any
generation, we have

C0 ∩ Λ =
⋃

C∈An,C⊂C0

C ∩ Λ,

where the sets in the union are pairwise disjoint. Analogously

Φ−l(D0 ∩ Λ) =
⋃

D∈An,D⊂D0

Φ−l(D ∩ Λ),
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where also the sets in this union are pairwise disjoint. So,

(C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ) =
⋃

C∈An,C⊂C0

⋃
D∈An,C⊂D0

(C ∩ Λ) ∩ Φ−l(D ∩ Λ).

Since the sets in the union are pairwise disjoint, we deduce

ν((C0∩Λ)∩Φ−l(D0∩Λ)) =
∑

C∈An,C⊂C0

∑
D∈An,C⊂D0

ν((C∩Λ)∩Φ−l(D∩Λ)).

As C,D are atoms of the same generation n, and l ≥ 2n− 1, we can
apply the first case proved above, to deduce that

ν((C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ)) =

(35) #{C ∈ An, C ⊂ C0} ·#{D ∈ An, C ⊂ D0} ·
1

(#An)2
.

The number of atoms of generation n contained in an atom C0 of
generation n1 larger or equal than n, does not depend of the chosen
atom C0. Therefore,

#{C ∈ An, C ⊂ C0} =
#An
#An1

= (#An) · ν(C0 ∩ Λ).

Analogously

#{D ∈ An, D ⊂ D0} = (#An) · ν(D0 ∩ Λ).

Finally, substituting in equality (35) we conclude that
ν(Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ)) = ν(C0 ∩ Λ) · ν(D0 ∩ Λ) ∀ l ≥ 2n− 1. �

Lemma 3.13. hν(Φ) = +∞.

Proof. For n ≥ 1 we consider the partition An of Λ consisting of all the
n-atoms intersected with Λ. By the definition of metric entropy

(36) hν(Φ) := sup
P
h(P , ν) ≥ h(An, ν), where

(37) h(An, ν) := lim
l→+∞

1

l
H
( l∨
j=0

(Φ−jAn), ν
)
,

Ql :=
l∨

j=0

Φ−jAn :=
{ l⋂
j=0

Φ−jAj ∩ Λ 6= ∅ : Aj ∈ An
}
,

(38) H(Ql, ν) := −
∑
X∈Ql

ν(X) log ν(X).
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For any nonempty X := Λ∩
(⋂l

j=0 Φ−jAj

)
∈ Ql, Lemma 3.10-c) yields

ν(X) = ν
( l⋂
j=0

Φ−jAj ∩ Λ
)

=
∑

G∈Fn,l( ~A
l
j)

ν(G ∩ Λ).

Since G is an atom of generation n+ l, we have ν(G∩Λ) = 1/(#An+l),
thus applying Lemma 3.10-e), yields

ν(X) =
#Fn,l({Aj})

#An+l

=
1

2nl ·#An
.

Combining this with (38) yields H(Ql) = log(#An)+nl · log 2. Finally,
substituting in Equality (37), we conclude

h(An, ν) := lim
l→+∞

1

l
H
(
Ql, ν

)
= n log 2.

Combining with (36) yields hν(Φ) ≥ n log 2, for all n ≥ 1; hence
hν(Φ) = +∞. �

Proof of Lemma 3.1. As proved in Lemmas 3.11, 3.12 and 3.13, the
probability measure ν constructed by equality (30) is Φ-invariant, mix-
ing and has infinite metric entropy, as required. �

4. Periodic Shrinking Boxes

In this section we will prove Theorems 1 and 3 for m ≥ 2. The
proofs are based on the properties of the models proved in the previous
sections, and on the existence of the periodic shrinking boxes which we
construct here.

Throughout this section we consider m ≥ 1, unless the condition
m ≥ 2 is explicitly stated.

Definition 4.1. (Periodic shrinking box) Let f ∈ C0(M) and K ⊂
M be a box. We call K periodic shrinking with period p ≥ 1 for f , if
K, f(K), f 2(K), . . . , f p−1(K) are pairwise disjoint, and fp(K) ⊂
int(K). If so, we call fp|K : K → int(K) the return map.

Recall that the manifold M is compact. This assumption is impor-
tant to obtain the following Lemmas 4.2 and 4.3. We will construct
periodic shrinking boxes whose return maps are homeomorphisms onto
their images. Although this latter condition is unnecessary for the con-
struction of the periodic shrinking boxes, it will be used later in the
proofs of Lemmas 4.7 and 4.8 where the return maps must be topolog-
ically conjugated to model maps.
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Lemma 4.2. For any δ > 0, there exists an open and dense set of maps
f ∈ C0(M) that have a periodic shrinking box Kf with diam(Kf ) < δ.
For a dense set of f ∈ C0(M) the return map to Kf is one to one.

The proof of this lemma uses the following technical result.

Lemma 4.3. Let f ∈ C0(M) and x0 ∈ M . For all ε > 0, there exists
g ∈ C0(M) and a neighborhood H of x0 such that ‖g − f‖C0 < ε,
g|H is a homeomorphism onto its image, and coincides with f off a
neighborhood of x0.

Proof. Since the assertion is of local character we may assume that
M = Rn. Composing with a translation we may also assume that
x0 = f(x0) = 0. Let 0 < δ < ε be so small that the ball ‖x‖ < δ is
mapped under f to a set of diameter smaller than ε. Let λ : Rn → [0, 1]
be a continuous function such that λ(x) = 0 if ‖x‖ ≤ δ/2 and λ(x) = 1
if ‖x‖ ≥ δ. We define g by the formula g(x) := λ(x)f(x) + (1− λ(x))x
if ‖x‖ ≤ δ and g(x) = f(x) if ‖x‖ ≥ δ. �

Proof of Lemma 4.2. According to Definition 4.1, the same periodic
shrinking box Kf for f is also a periodic shrinking box with the same
period for all g ∈ C0(M) near enough f , proving the openness assertion.

We turn to the denseness assertion. Let f ∈ C0(M) and ε > 0. We
will construct g ∈ C0(M) and a periodic shrinking box Kg for g with
diam(K) < δ, such that ‖g−f‖C0 < ε. We suppose δ > 0 to be smaller
than the ε-modulus of continuity of f .

By the Krylov-Bogolyubov theorem invariant measures exist (recall
that the manifold M is compact), and thus by the Poincaré Lemma,
there exists a recurrent point x0 ∈M for f . First assume that x0 6∈ ∂M .
So, there exists a box B ⊂M with diam(B) < δ such that x0 ∈ int(B).
Since x0 is a recurrent point, there exists a smallest p ∈ N such that
fp(x0) ∈ int(B). Taking B slightly smaller if necessary, we can assume
that f j(x0) 6∈ B for all j = 1, 2, . . . , p − 1. So, there exists a small
compact box U ⊂ int(B) as in Figure 3, such that x0 ∈ int(U), the sets
U, f(U), . . . , f p−1(U) are pairwise disjoint, and fp(U) ⊂ int(B).

Since U, f p(U) ⊂ int(B), there exists a box K such that U, f p(U) ⊂
int(K) ⊂ K ⊂ int(B), and there exists a homeomorphism ψ : B → B
such that ψ(x) = x for all x ∈ ∂B, and ψ(K) = U .

Finally, we construct g ∈ C0(M) as follows:

g(x) := f(x), ∀ x 6∈ B, g(x) = f ◦ ψ(x), ∀ x ∈ B.

By construction, K is a periodic shrinking box of g, say K = Kg; by
the choice of δ we have ‖g − f‖ < ε.
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Figure 3. Construction of g near f with a periodic
shrinking box K for g.

Now, let us study the case for which M is a compact manifold with
boundary and all the recurrent points of f belong to ∂M . Choose
one such recurrent point x0 ∈ ∂M . For any δ > 0, there exists a
compact box B ⊂ M , with diam(B) ≤ δ such that x0 ∈ ∂M ∩ B.
Since x0 is recurrent, there exists a smallest natural number p ≥ 1
such that fp(x0) ∈ B. But fp(x0) is also recurrent. So, fp(x0) ∈
∂M ∩ B. The previous proof does not work as is. To overcome the
problem, we choose a new point x̃0 6= x0, near enough x0, such that
x̃0 ∈ int(B)\∂M and fp(x̃0) ∈ B. By applying Lemma 4.3 and slightly
perturbing f , if necessary, we can assume that the restriction of f to
a small neighborhood of x̃0 is a local homeomorphism onto its image.
Hence, fp(x̃0) ∈ int(B) \ ∂M. To conclude, we repeat the construction
of g and Kg above replacing the recurrent point x0 by x̃0.

Now, let us show that we can construct densely for g ∈ C0(M) a
periodic shrinking box Kg such that the return map gp|Kg is a home-
omorphism onto its image. We repeat the beginning of the proof,
up to the construction of the points x0, f(x0), . . . , f p(x0) such that
x0, f

p(x0) ∈ int(B) and f j(x0) 6∈ B. Apply Lemma 4.3, slightly perturb
f , if necessary, inside small open neighborhoods W0,W1, . . . ,Wp−1 of
the points x0, f(x0), . . . , f p−1(x0) respectively, so that f |W i

is a home-
omorphism onto its image for all i = 0, 1, . . . , p − 1. Finally, con-
struct the box U (Figure 3), but small enough so f j(U) ⊂ Wj for all
j = 0, 1, . . . , p − 1, and repeat the construction of K = Kg and g as
above. �
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Remark 4.4. Note that to obtain the dense property in the proof of
the first sentence of Lemma 4.2, we only need to perturb the map f in
the interior of the initial box B with diameter smaller than δ.

The following lemma is the homeomorphism version of Lemma 4.2.

Lemma 4.5. For any δ > 0, there exists an open and dense set of maps
f ∈ Hom(M) that have a periodic shrinking box K with diam(K) < δ.

Proof. The proof of Lemma 4.2 also works in the case that f ∈ Hom(M):
in fact, the ε-perturbed map g constructed there is a homeomorphism,
and to obtain ‖g − f‖Hom(M) < ε it is enough to reduce δ > 0 to be
smaller than the ε-continuity modulus of f and f−1. �

Remark 4.6. In the proof of Lemmas 4.2 and 4.5, if the starting
recurrent point x0 were a periodic point of period p, then the periodic
shrinking box K so constructed would contain x0 in its interior and
have the same period p.

Lemma 4.7. Assume m ≥ 2. Fix δ > 0 and Φ ∈ H∩Emb(Dm) (recall
Definition 2.5). Each generic map f ∈ C0(M) has a periodic shrinking
box K with diam(K) < δ such that the return map fp|K is topologically
conjugated to a model map in HΦ (recall Definition 2.6).

Proof. Let K ⊂ M be a periodic shrinking box for f . Fix a homeo-
morphism φ : K → Dm.

To prove the Gδ property, assume that f ∈ C0(M) has a periodic
shrinking box K with diam(K) < δ, such that φ ◦ fp|K ◦ φ−1 ∈ HΦ

(recall Definition 2.6 and Lemma 2.8). From Definition 4.1, the same
box K is also periodic shrinking with period p for all g ∈ N , where
N ⊂ C0(M) is an open neighborhood of f . From Lemma 2.8, HΦ

is a nonempty Gδ-set in C0(Dm), i.e., it is the nonempty countable
intersection of open families Hn ⊂ C0(Dm). We define

Vn := {g ∈ N : φ ◦ gp|K ◦ φ−1 ∈ Hn}.
Since the restriction to K of a continuous map g, and the composition
of continuous maps, are continuous operations in C0(M), we deduce
that Vn is an open family in C0(M). Besides

(39) φ ◦ gp|K ◦ φ−1 ∈ H =
⋂
n≥1

Hn if g ∈
⋂
n≥1

Vn ⊂ C0(M).

In other words, the set of maps g ∈ C0(M) that have periodic shrinking
box K with diam(K) < δ, such that the return map gp|K coincides, up
to a conjugation, with a model map in HΦ, is a Gδ-set in C0(M).

To show the denseness fix f ∈ C0(M) and ε > 0. Applying Lemma
4.2, it is not restrictive to assume that f has a periodic shrinking box K
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Figure 4. Perturbation g of f such that gp|K = Φ.

with diam(K) < min{δ, ε}, such that fp|K is a homeomorphism onto
its image. We will construct g ∈ C0(M) to be ε-near f and such that
φ ◦ gp|K ◦ φ−1 ∈ H.

Choose a box W such that fp−1(K) ⊂ int(W ). If p ≥ 2, take W
disjoint with f j(K) for all j ∈ {0, 1, . . . , p − 2} (Figure 4). Let us
see that we can assume that W has an arbitrarily small diameter. It
is enough to prove that f can be chosen such that fp−1(K) has an
arbitrarily small diameter. In fact, in the construction of f in the
proof of Lemma 4.2, we can choose the box U (see Figure 3), after
choosing K, as small as needed. So, we choose U small enough such
that the (p − 1)-th. image of U by the map before the perturbation,
has a small diameter. (Note that we do not change p). After that, we
construct the perturbed map, which we are calling f here, as in the
proof of Lemma 4.2: the image fp−1(K) of the new map f coincides
with the (p − 1)-th. image of U by the map before the perturbation
(Figure 3). So, it has an arbitrarily small diameter, as required.

To construct g ∈ C0(M) (see Figure 4) we consider the chosen Φ ∈ H
in the hypothesis, and let g(x) := f(x) if x 6∈ W and

g(x) := φ−1 ◦ Φ ◦ φ ◦ (fp|K)−1 ◦ f(x), ∀ x ∈ fp−1(K).

This defines a continuous map g : fp−1(K) ∪ (M \W )→M such that
|g(x)−f(x)| < diam(K) < ε for all x ∈ fp−1(K) ⊂ W and g(x) = f(x)
for all x ∈M \W. Applying the Tietze Extension Theorem, there exists
a continuous extension of g to the whole compact box W , hence to M ,
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such that ‖g − f‖C0 < ε. Finally, by construction we obtain

gp|K = g|fp−1(K)◦fp−1|K = φ-1 ◦Φ ◦φ ◦ (fp|K)-1◦f◦fp−1|K = φ-1 ◦Φ ◦φ.
�

Lemma 4.8. Let δ > 0. Choose and fix Φ ∈ H∩Emb(Dm). A generic
homeomorphism f ∈ Hom(M) has a periodic shrinking box K with
diam(K) < δ, such that the return map fp|K is topologically conjugated
to a model embedding in HΦ.

Proof. We repeat the proof of the Gδ-set property of Lemma 4.7, using
H ∩ Emb(Dm) instead of H, and Hom(M) instead of C0(M).

To show the denseness fix f ∈ Hom(M) and ε > 0. Applying Lemma
4.2, it is not restrictive to assume that f has periodic shrinking boxes
of arbitrarily small diameters. Let δ ∈ (0, ε) be smaller the the ε-
modulus of continuity of f and f−1. Consider a periodic shrinking box
K with diam(K) < δ (Lemma 4.5). Fix a homeomorphism φ : K →
Dm. We will construct g ∈ Hom(M) to be ε-near f in Hom(M), with
φ ◦ gp|K ◦ φ−1 = Φ ∈ H ∩ Emb(Dm).

From Definition 4.1 we know that the boxes K, f(K), . . . , f p−1(K)
are pairwise disjoint and that fp(K) ⊂ int(K). Denote W := f−1(K).
Since f is a homeomorphism, we deduce that W is a box as in Figure
4, such that W ∩ f j(K) = ∅ for all j = 0, 1, . . . , p − 2 if p ≥ 2, and
fp−1(K) ⊂ int(W ). Since diam(K) < δ we have diam(W ) < ε.

Consider φ ◦ fp|K ◦ φ−1 ∈ Emb(Dm). Applying Lemma 2.9, there
exists a homeomorphism ψ : Dm → Dm such that

ψ|∂Dm = id|∂Dm , ψ ◦ φ ◦ fp|K ◦ φ−1 = Φ ∈ H ∩ Emb(Dm).

So, we can construct g ∈ Hom(M) such that g(x) := f(x) for all
x 6∈ W , and g(x) := φ−1 ◦ ψ ◦ φ ◦ f(x) for all x ∈ W. Since ψ|∂Dm is
the identity map, we obtain g|∂W = f |∂W . Thus, the above equalities
define a continuous map g : M →M . Moreover g is invertible because
g|W : W → K is a composition of homeomorphisms, and g|M\W =
f |M\W : M \W →M \K is also a homeomorphism. So, g ∈ Hom(M).
Moreover, by construction we have |g(x)−f(x)| < diam(K) < ε for all
x ∈ W, and g(x) = f(x) for all x 6∈ W. Also the inverse maps satisfy
|g−1(x)− f−1(x)| < diam(f−1(K)) = diam(W ) < ε for all x ∈ K, and
g−1(x) = f−1(x) for all x 6∈ K. Therefore ‖g − f‖Hom < ε.

Finally, let us check that gp|K is topologically conjugated to Φ:

gp|K = g|fp−1(K) ◦ fp−1|K = g|W ◦ fp−1|K =

φ−1 ◦ ψ ◦ φ ◦ f ◦ fp−1|K =

φ−1 ◦ (ψ ◦ φ ◦ fp|K ◦ φ−1) ◦ φ = φ−1 ◦ Φ ◦ φ. �



ERGODIC MEASURES WITH INFINITE ENTROPY 41

Remark 4.9. In the proof of the dense property in Lemmas 4.7 and
4.8, once a periodic shrinking box K is constructed with period p ≥ 1,
we only need to perturb the map f inside W ∪

⋃p−1
j=0 f

j(K), where W =

f−1(K) if f is a homeomorphism, and int(W ) ⊃ fp−1(K) otherwise. In
both cases, by reducing the set U of Figure 3 from the very beginning,
we can construct W such that diam(W ) < ε for a previously specified
small ε > 0.

Proof of Theorems 1 and 3. From Lemmas 4.7 and 4.8, a generic map
f ∈ C0(M) and also a generic f ∈ Hom(M), has a periodic shrinking
box K such that the return map fp|K : K → int(K) is conjugated to
a model map Φ ∈ H. We consider the homeomorphism φ−1 : K → Dm

such that φ−1 ◦ fp ◦ φ = Φ ∈ H. Lemma 3.1 states that every map
Φ ∈ H has a Φ-invariant mixing measure ν with infinite metric entropy
for Φ. Consider the push-forward measure φ∗ν, defined by (φ∗ν)(B) :=
ν(φ−1(B ∩K)) for all the Borel sets B ⊂ M . By construction, φ∗ν is
supported on K ⊂ M . Since φ is a conjugation between Φ and fp|K ,
the push-forward measure φ∗ν is fp-invariant and mixing for fp and
moreover hφ∗ν(f

p) = +∞.
From φ∗ν, we will construct an f -invariant and f -ergodic measure µ

supported on
⋃p−1
j=0 f

j(K), with infinite metric entropy for f . Precisely,
for each Borel set B ⊂M , define

(40) µ(B) :=
1

p

p−1∑
j=0

(f j)∗(φ∗ν)(B ∩ f j(K)).

Applying Equality (40), and the fact that φ∗ν is fp-invariant and fp-
mixing, it is standard to check that µ is f -invariant and f -ergodic.
From the convexity of the metric entropy function, we deduce that

hµ(fp) =
1

p

p−1∑
j=0

h(fj)∗(φ∗ν)(f
p) = +∞.

Finally, recalling that hµ(fp) ≤ p hµ(f) for any f -invariant measure µ
and any natural number p ≥ 1, we conclude that hµ(f) = +∞. �

5. Good sequences of periodic shrinking boxes

In this section we prove Theorems 2 and 4. Throughout this section we
assume that dim(M) ≥ 2. In the case that M is a 1-dimensional mani-
fold, Theorem 2 can be proven repeating the proof of the 2-dimensional
case, after replacing Definition 2.5 by Definition 2.1.
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Definition 5.1. Let f ∈ C0(M) and let K1, K2, . . . , Kn, . . . be a se-
quence of periodic shrinking boxes for f . We call {Kn}n≥1 good if it
has the following properties (see Figure 5):
• {Kn}n≥1 is composed of pairwise disjoint boxes.
• There exists a natural number p ≥ 1, independent of n, such that Kn

is a periodic shrinking box for f whose period pn is a multiple of p.
• There exists a sequence {Hn}n≥0 of periodic shrinking boxes, all with
period p, such that Kn ∪Hn ⊂ Hn−1, Kn ∩Hn = ∅ for all n ≥ 1, and
diam(Hn)→ 0 as n→ +∞.

Remark. Definition 5.1 implies that
⋂
n≥1Hn = {x0}, where x0 is

periodic with period p. Furthermore, for any j ≥ 0 we have

d(f j(Kn), f j(x0)) ≤ diam(f j(Hn−1)) ≤ max
0≤k≤p−1

diam(fk(Hn−1))
n→∞→ 0,

and thus

(41) lim
n→+∞

sup
j≥0

d(f j(Kn), f j(x0)) = 0.

We will construct a good sequence of periodic shrinking boxes for
maps that are arbitrarily near a given f . We start by constructing the
zeroth level boxes as follows:

Lemma 5.2. Let f ∈ C0(M) (resp. f ∈ Hom(M)) and ε, δ > 0. Then,
there exists g1 ∈ C0(M) (resp. g1 ∈ Hom(M) ), periodic shrinking boxes
H0 and K1 for g1 with periods p and p1 respectively, where p1 is multiple
of p, and a periodic point x0 ∈ int(H0) for g1 such that K1 ⊂ H0\{x0},

gp1

1 |K1 is topologically conjugated to Φ1 ∈ H and

diam(H0) < δ, ‖g1 − f‖ <
ε

2
.

Proof. A generic map f̃ ∈ C0(M) (resp. f̃ ∈ Hom(M)) has a periodic
shrinking box H0 with period p ≥ 1, such that diam(H0) < δ and

f̃p|H0 is conjugate to a model map Φ ∈ H (Lemmas 4.7, resp. 4.8). Fix

such an f̃ in the (ε/6)-neighborhood of f . The same box H0 will be a
shrinking periodic box for the map g1 to be constructed.

Since f̃p : H0 → int(H0) ⊂ H0 is continuous, by the Brouwer Fixed
Point Theorem there exists a periodic point x0 ∈ int(H0) of period p.
Lemma 3.1 and the argument at the end of the proofs of Theorems 1

and 3, show that the map f̃ has an ergodic measure µ supported on⋃p−1
j=0 f̃

j(H0) such that hµ(f̃) = +∞. Therefore, by Poincaré Recur-

rence Lemma, there exists some recurrent point y1 ∈ int(H0) for f̃ . We
can choose such recurrent point y1 6= x0 (see Figure 5) because µ is
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Figure 5. Construction of a good sequence of periodic
shrinking boxes.

not supported on the orbit of the periodic point x0 (recall that µ has
infinite entropy and by construction its support is a perfect set).

Choose δ1 > 0 small enough and construct a box B1 such that y1 ∈
int(B1), diam(B1) < δ1, the f̃ -orbit of x0 (which is finite) does not

intersect the finite piece of the f̃ -orbit of B1 (until the first iterate
of y1 is in H0) and B1 ⊂ int(H0). We repeat the proofs of the dense
property of Lemmas 4.2 and 4.5, using the recurrent point y1 instead
of x0, and the box B1 instead of B (see Figure 3). We deduce that

there exists an (ε/6)-perturbation f̂ of f̃ , and a periodic shrinking box

K1 ⊂ B1 for f̂ , with some period p1 ≥ p (see Figure 5). Moreover,

f̂ coincides with f̃ in M \ int(B1) (recall Remark 4.4). Therefore, the

same periodic point x0 of f̃ survives for f̂ . Besides, by the openness of
the existence of the periodic shrinking box H0, the same initial box H0

is still periodic shrinking with period p for f̂ , provided that f̂ is near

enough f̃ . So, the compact sets of the family {f̂ j(H0)}j=0,1,...,p−1 are

pairwise disjoint, and f̂p(H0) ⊂ int(H0). This implies that the period

p1 of the new periodic shrinking box K1 for f̂ is a multiple of p.
Now, we apply the proofs of the dense property of Lemmas 4.7 and

4.8, using the shrinking box K1 instead of K (see Figure 4). We deduce

that there exists an (ε/6)-perturbation g1 of f̂ , such that K1 is still a
periodic shrinking box for g1 with the same period p1, but moreover,
the return map gp1

1 |K1 is now topologically conjugated to Φ1 ∈ H.
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Consider a box W1 satisfying f̂p1−1(K1) ⊂ W1 ⊂ K1, small enough so

its f̂ -orbit is disjoint from the f̂ -orbit of the periodic point x0. Taking
into account Remark 4.9, we can construct g1 to coincide with f̂ in the

complement of W1

⋃(⋃p1−1
j=0 f̂ j(K1)

)
. Then, if g1 is sufficiently near

f̂ , the point x0 is still periodic of period p for g1, and besides H0 is still
a periodic shrinking box of period p for g1 (recall that such property is
open). Finally,

‖g1 − f‖ < ‖g1 − f̂‖+ ‖f̂ − f̃‖+ ‖f̃ − f‖ < ε

6
+
ε

6
+
ε

6
=
ε

2
. �

Assume that we have constructed the j-th level of periodic shrinking
boxes for all 0 ≤ j ≤ n− 1 of a good sequence. We will construct the
periodic shrinking boxes of the n-th level by perturbing the given map
once more. Let us first define the following family of maps.

Definition 5.3. Fix δ > 0, and let p, n be natural numbers such that
p, n ≥ 1. We denote by Gp,n,δ ⊂ C0(M) the family of all the maps
g ∈ C0(M) such that there exists n boxes K1, . . . , Kn satisfying the
following properties:
• {Kj}1≤j≤n is composed of pairwise disjoint boxes.
• For all 1 ≤ j ≤ n the box Kj is a periodic shrinking for g with period
pj that is a multiple of p, and

gpj |Kj
is topologically conjugated to Φj ∈ H.

• There exists a sequence {Hj}0≤j≤n−1 of periodic shrinking boxes for
g, all of period p, and a periodic point xn−1 ∈ int(Hn−1) of period
p, such that Kj ∪ Hj ⊂ Hj−1, Kj ∩ Hj = ∅ for all 1 ≤ j ≤ n − 1,
Kn ⊂ Hn−1 \ xn−1 and diam(Hj) < δ/2j for all 0 ≤ j ≤ n − 1 (see
Figure 5).

Lemma 5.4. Fix ε > 0, δ > 0 and the natural numbers n, p ≥ 1.
Assume that gn ∈ Gp,n,δ or gn ∈ Gp,n,δ ∩ Hom(M) .

Then, there exists an ε/2n+1-perturbation gn+1 of gn, such that gn+1 ∈
Gp,n+1,δ or gn+1 ∈ Gp,n+1,δ ∩ Hom(M), respectively.

Moreover, for all j = 1, . . . , n the same boxes K1, K2, . . . , Kn and
H0, H1, . . . , Hn−1 are shrinking periodic for the new map gn+1 and for
the given map gn, with the same periods, and

gin|Kj
= gin+1|Kj

∀ i = 1, . . . , pj.

Proof. All the perturbations of gn that we will construct are sufficiently
close to gn so that the same boxes H0, H1, . . . , Hn−1 and K1, K2, . . . , Kn

that are periodic shrinking for gn are still periodic shrinking with the
same periods for the perturbed maps. This is possible because the
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periodic shrinking property of a box and its period, are open conditions.
Besides, we will only consider perturbations of gn that coincide with
gn except in the interior of a finite number of boxes B,W, etc, whose
gn-iterates, up to the (max1≤j≤n pj)-th iterate, are disjoint with all the
boxes of the family {gin(Kj) : 1 ≤ j ≤ n, 0 ≤ i ≤ pj − 1}. Therefore,
if such a perturbation g̃ of gn is near enough gn, then the iterates by g̃
of the boxes B,W, etc (where g̃ differs from gn) are still disjoint with
the gn-iterates of Kj. This implies that for all 1 ≤ j ≤ n,

gin|Kj
= g̃i|Kj

∀ i = 1, . . . , pj and then

g̃pj |Kj
= gpjn |Kj

is topologically conjugated to Φj ∈ H.
Now let us perturb gn as above, in several steps, to construct the

boxes Hn and Kn+1.
By hypothesis, gn has a periodic shrinking box Hn−1 of period p, a

periodic point xn−1 ∈ int(Hn−1) of period p, and a periodic shrinking
box Kn ⊂ Hn−1 \ {xn−1} of period pn, multiple of p. It also has
periodic shrinking boxes K1, . . . , Kn−1, Kn whose gn-orbits are disjoint

with the periodic orbit of xn+1. So, we can construct a box B̃n ⊂ Hn−1

containing the periodic point xn−1 in its interior, whose gn-orbit up to
the (max1≤j≤n pj)-th iterate is disjoint from all the sets of the family
{f i(Kj) : 1 ≤ j ≤ n, 0 ≤ i ≤ pj − 1}. Besides, we construct the box

B̃n such that diam(B̃n) < δ̃/2n. Repeating the proof of the density
properties in Lemmas 4.2 and 4.5 (putting xn−1 instead of x0), we
construct an ε/(3 · 2n+1)-perturbation g̃n of gn, near enough gn and a

periodic shrinking box Hn ⊂ int(B̃n) for g̃n. Moreover, since xn−1 is
a periodic point with period p for gn, the period of Hn for g̃n can be

made equal to p (see Remark 4.6). By construction Hn ⊂ B̃n ⊂ Hn−1

is disjoint from Kn. To construct g̃n we only needed to modify gn inside

B̃n (recall Remark 4.4). Therefore, if g̃n is near enough gn, as observed
at the beginning, the same periodic shrinking boxes H0, H1, . . . , Hn−1

and K1, K2, . . . , Kn of gn, are preserved for g̃n with the same periods,
and g̃n coincides with gn on the gn-orbit of the boxes K1, . . . , Kn.

Now, as in the proof of Lemmas 4.7 and 4.8, we construct a new
ε/(3·2n+1)-perturbation ĝn of g̃n, such that ĝpn|Hn is conjugated to a map

in H. To construct ĝn we only need to modify g̃n in W̃n∪
⋃p−1
j=0 g̃

j
n(Hn),

where W̃n is a small neighborhood of g̃p−1
n (Hn) (see Remark 4.9). Since

the g̃n-orbit of Hn is disjoint from the g̃n orbits of Kj for all 1 ≤ j ≤ n
(because Hn and Kj are disjoint periodic shrinking boxes for g̃j, we can
choose Wn near enough g̃p−1

n (Hn) and ĝn near enough g̃n so ĝn coincides
with g̃n on the orbit of the boxes Kj, as observed at the beginning.
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We conclude that the same shrinking boxesK1, . . . , Kn;H0, . . . , Hn−1

for g̃n and gn, are still periodic shrinking for ĝn, with the same periods
and that ĝ

pj
n |Kj

= g̃
pj
n |Kj

which is conjugated to Φj ∈ H for all j =
1, . . . , n.

When modifying gn to obtain g̃n and ĝn, the periodic point xn−1 ∈
int(Hn−1) of period p for gn, may not be preserved as periodic for ĝn.
But since Hn ⊂ Hn−1 \Kn is a periodic shrinking box with period p for
ĝn, by the Brouwer Fixed Point Theorem, there exists a periodic point
xn ∈ int(Hn) \Kn for ĝn, with the same period p.

Since the return map ĝpn|Hn is conjugated to a model map, there exists
an ergodic measure µ with infinite entropy for ĝn (see Lemma 3.1),
supported on the ĝn-orbit of Hn. Therefore, there exists a recurrent
point yn ∈ int(Hn). We can choose such recurrent point yn 6= xn,
because µ is not supported on the periodic orbit of xn (in fact, µ has
infinite entropy).

We now argue as in the proof of Lemma 5.2, (using ĝn, Hn and xn
in the role of f̃ , H0 and x0) to construct an ε/(3 · 2n)- perturbation
gn+1 of ĝn, and a box Kn+1 ⊂ Hn \ {xn} that is periodic shrinking for
gn+1 of period pn+1 which is a multiple of p, and such that g

pn+1

n+1 |Kn+1

is topologically conjugated to a model map.
As observed at the beginning, if choosing gn+1 near enough ĝn, the

boxes H0, . . . , Hn and K1, . . . , Kn are still periodic shrinking for gn+1

with the same periods, and

g
pj
n+1|Kj

= ĝpjn |Kj
= gpjn |Kj

is topologically conjugated to a model map, for all 1 ≤ j ≤ n.
By construction we have gn+1 ∈ Gp,n,δ and

‖gn+1−gn‖ ≤ ‖gn+1− ĝn‖+‖ĝn− g̃n‖+‖g̃n−gn‖ < 3 · ε

3 · 2n+1
=

ε

2n+1
,

as required. �

Definition 5.5. Fix δ > 0. We denote by Gδ ⊂ C0(M) the family of
all the maps g ∈

⋃
p≥1

⋂
n≥1 Gp,n,δ such that for all n ≥ 1, the boxes

H0, . . . , Hn−1 and K1, . . . , Kn of Definition 5.3 for g as belonging to
Gp,n,δ coincide with the boxes for g as belonging to Gp,n+1,δ.

Lemma 5.6. Fix δ > 0. The family Gδ is dense in C0(M) and its
intersection with Hom(M) is dense in Hom(M).

Proof. Let f ∈ C0(M) or f ∈ Hom(M), and ε > 0. We will construct
g ∈ Gδ such that dist(g, f) ≤ ε.

Applying Lemma 5.2, there exists p ≥ 1 and g1 ∈ Gp,1,δ such that
dist(g1, f) ≤ ε/2. Denote by H0, K1 ⊂ H0 the periodic shrinking boxes
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for g1 as a map of Gp,1,δ (recall Definition 5.3 for n = 1). By continuity,
there exists 0 < ε1 < ε such that for all g in the ε1-neighborhood of g1,
H0 is still a periodic shrinking box of period p for g.

By induction on n ≥ 1, (Lemma 5.4 provides the inductive step),
there exists a sequence of maps g1, g2, . . . , gn, . . . and a strictly decreas-
ing sequence of positive real numbers ε > ε1 > ε2 > . . . > εn > . . .
such that, for all n ≥ 1, gn ∈ Gp,n,δ, dist(gn+1, gn) ≤ εn/2

n, the boxes
H0, H1, . . . , Hn−1 and K1, K2, . . . , Kn are still periodic shrinking for
gn+1 with the same periods p, p1, p2, . . . , pn as for gn, and gn+1 = gn
when restricted to the gn-orbits of the boxes Kj for j = 1, . . . , n. Be-
sides, for all g in the εn-neighborhood of gn, Hn−1 is still a periodic
shrinking box of period p for g.

Since ‖gn+1 − gn‖ ≤ ε/2n+1 for all n ≥ 1 the sequence {gn}n≥1 is
Cauchy in C0(M) or Hom(M), let g be the limit map. Since gn is an
ε-perturbation of f for all n ≥ 1, the limit map g satisfies dist(g, f) ≤ ε.

Besides, by construction gk(x) = gn(x) for all x ∈
⋃pn
j=0 g

j
n(Kn),

for all k ≥ n ≥ 1. So gpnk |Kn = gpnn |Kn is topologically conjugated
to Φn ∈ H for all n ≥ 1 and for all k ≥ n (recall that gn ∈ Gp,n,δ
and Definition 5.3). Thus Kn is still a periodic shrinking box for g of
period pn, and gpn|Kn = gpnn |Kn is topologically conjugated to a model
map for all n ≥ 1. Finally, for all k > n ≥ 1 we have, by construction,
dist(gk, gn) < εn(1/2n+1 + 1/2n+2 + · · · + 1/2k) ≤ εn. So, taking limit
as k → +∞, we obtain dist(g, gn) ≤ εn. This implies that Hn−1 is still
a periodic shrinking box of period p for g as it was for gn. We have
proved that g ∈ Gδ, as required. �

Lemma 5.7. For m ≥ 1 a generic map f ∈ C0(M), and for m ≥ 2 a
generic homeomorphism f has a good sequence {Kn} of boxes, such that
the return map fpn|Kn is topologically conjugated to a model Φn ∈ H.

Proof. To see the Gδ property assume that f has a good sequence
{Kn}n of periodic shrinking boxes. For each fixed n, the boxes Kn and
Hn are also periodic shrinking with periods pn and p respectively, for all
g in an open set in C0(M) or in Hom(M) (see Definition 4.1). Taking
the intersection of such open sets for all n ≥ 1, we deduce that the same
sequence {Kn} is also a good sequence of periodic shrinking boxes for
all g in a Gδ-set. Now, assume that besides fpn|Kn is topologically
conjugated to a model map for all n ≥ 1. From Lemmas 4.7 and 4.8,
for each fixed n ≥ 1, the family of continuous maps g such that the
return map gpn|Kn is topologically conjugated to a model, is a Gδ-set in
C0(M) or in Hom(M). The (countable) intersection of these Gδ-sets,
produces a Gδ-set, as required.
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To prove denseness, recall Definitions 5.3 and 5.5. Observe that
the family of continuous maps or homeomorphisms that have a good
sequence {Kn}n≥1 of periodic shrinking boxes such that the return map
to each Kn is topologically conjugated to a model map, contains the
family Gδ (or the intersection of this family with Hom(M)), for any
value of δ > 0. Applying Lemma 5.6, this latter family is dense. �

Remark 5.8. As a consequence of Lemmas 5.7 and 3.1 (after applying
the same arguments at the end of the proof of Theorems 1 and 3),
generic continuous maps and homeomorphisms f have a sequence of
ergodic measures µn, each one supported on the f -orbit of a box Kn of
a good sequence {Kn}n≥1 of periodic shrinking boxes for f , satisfying
hµn(f) = +∞ for all n ≥ 1.

LetM denote the metrizable space of Borel probability measures on
a compact metric space M , endowed with the weak∗ topology. Fix a
metric dist∗ in M.

Lemma 5.9. For all ε > 0 there exists δ > 0 that satisfies the following
property: if µ, ν ∈M and {B1, B2, . . . , Br} is a finite family of pairwise
disjoint compact balls Bi ⊂M , and if supp(µ)∪supp(ν) ⊂

⋃r
i=1Bi, and

µ(Bi) = ν(Bi), diam(Bi) < δ for all i = 1, 2, . . . , r, then dist∗(µ, ν) < ε.

Proof. If M = [0, 1] the proof is in [CT, Lemma 4]. If M is any other
compact manifold of finite dimension m ≥ 1, with or without boundary,
just copy the proof of [CT, Lemma 4] by substituting the pairwise
disjoint compact intervals I1, I2, . . . , Ir ⊂ [0, 1] in that proof, by the
family of pairwise disjoint compact boxes B1, B2, . . . , Br ⊂M . �

Proofs of Theorems 2 and 4. Fix ε > 0, let δ > 0 satisfy Lemma 5.9.
Applying Lemma 5.7, generic continuous maps or homeomorphisms
f have a good sequence of periodic shrinking boxes {Kn}n≥1, and a
sequence {µn} of ergodic f -invariant measures such that hµn(f) = +∞
(see Remark 5.8) and such that supp(µn) ⊂

⋃pn−1
j=0 f j(Kn), where pn =

ln · p, multiple of p, is the period of the shrinking box Kn. Taking into
account that {f j(Kn)}0≤j≤pn−1 is a family of pairwise disjoint compact
sets, and fpn(Kn) ⊂ int(Kn), we obtain for each j ∈ {0, 1, . . . , pn}

µn(f j(Kn)) = µn(f 9j(f j(Kn))) = µn(f 9j(f j(Kn))∩supp(µn)) = µn(Kn).

Since 1 =
∑pn−1

j=0 µn(f j(Kn)) = pn · µn(Kn); we obtain

µn(f j(Kn)) = µn(Kn) =
1

pn
=

1

ln p
, ∀ j = 0, 1, . . . , pn.
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From Definition 5.1, there exists a periodic point x0 of period p
such that limn→+∞ supj≥0 Hdist(f j(Kn), f j(x0)) = 0, where Hdist de-
notes the Hausdorff distance. Therefore, there exists n0 ≥ 1 such that
d(f j(Kn), f j(x0)) < δ′ for all j ≥ 0 and for all n ≥ n0, where δ′ < δ/2
is chosen such that the family of compact balls B0, B1, . . . , Bp−1, cen-
tered at the points f j(x0) and with radius δ′, are pairwise disjoint. We
obtain f j(Kn) ⊂ Bj (mod p) for all j ≥ 0 and for all n ≥ 0. Therefore,

µn(Bj) =
1

p
, ∀ j = 0, 1, . . . , p− 1, ∀ n ≥ n0.

Finally, applying Lemma 5.9, we conclude dist∗(µn, µ0) < ε for all n ≥
n0, where µ0 := (1/p)

∑p−1
j=0 δfj(p) is the f -invariant probability measure

supported on the periodic orbit of x0, which has zero entropy. �

6. Open questions

Lipschitz maps have finite topological entropy and thus can not have
infinite entropy invariant measures. The following question arises: do
Theorems 1 and 3 hold also for maps with more regularity than conti-
nuity but lower regularity than Lipschitz? For instance, do they hold
for Hölder-continuous maps?

A priori there is a chance to answer this question positively in situa-
tions where the topological entropy is generically infinite, for example
for one-dimensional Hölder continuous endomorphisms and also for bi-
Hölder homeomorphisms on manifolds of dimension 2 or larger. In both
case generic infinite entropy is known [FHT], [FHT1]. This is a good
question for further reasearch.

Theorems 1 and 3 are proved for compact manifolds, we wonder if
some of the results also hold in other compact metric spaces that are
not manifolds? Do they hold if the space is a Cantor set K?

If the aim were just to construct f ∈ Hom(K) with ergodic measures
with infinite metric entropy, the answer is positive. Theorem 3 holds
for the 2-dimensional square D2 := [0, 1]2. One of the steps of the proof
consists in constructing a Cantor set Λ ⊂ D2, and a homeomorphism
Φ on M that leaves Λ invariant, and possesses an Φ-invariant ergodic
measure supported on Λ with infinite metric entropy (see Lemma 3.1
and Remark 3.2). Since any pair of Cantor sets K and Λ are homeo-
morphic, we deduce that any Cantor set K supports a homeomorphism
f and an f -ergodic measure with infinite metric entropy.

If the purpose were to prove that such homeomorphisms are generic
in Hom(K), the answer is negative. On the one hand, there also exists
homeomorphisms on K with finite, and even zero, topological entropy,
for example f ∈ Hom(K) conjugated to the homeomorphism on the
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attractor of a Smale horseshoe, or to the attractor of the C1- Denjoy
example on the circle. On the other hand, it is known that each home-
omorphism on a Cantor set K is topologically locally unique; i.e., it
is conjugated to any of its small perturbations [AGW]. Therefore, the
topological entropy is locally constant in Hom(K). We conclude that
the homeomorphisms on the Cantor set K with infinite metric entropy,
that do exist, are not dense in Hom(K); hence they are not generic.
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