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ERGODIC MEASURES WITH INFINITE ENTROPY

ELEONORA CATSIGERAS AND SERGE TROUBETZKOY

Abstract. We construct ergodic, probability measures with in-
finite metric entropy for generic continuous maps and homeomor-
phisms on compact manifolds. We also construct sequences of such
measures that converge to a zero-entropy measure.

1. Introduction

LetM be a C1 compact manifold of finite dimensionm ≥ 1, equipped
with a Riemannian metric dist. The manifold M may have or have not
boundary. Let C0(M) be the space of continuous maps f : M → M
with the uniform norm:

‖f − g‖C0 := max
x∈M

dist(f(x), g(x)), ∀ f, g ∈ C0(M).

We denote by Hom(M) the space of homeomorphisms f : M → M
with the uniform norm:

‖f − g‖Hom := max
{
‖f − g‖C0 , ‖f−1 − g−1‖C0

}
∀ f, g ∈ Hom(M).

Since the metric spaces C0(M) and Hom(M) are complete they are
Baire spaces. A subset S ⊂ C0(M) (or S ⊂ Hom(M)) is called a Gδ-
set if it is the countable intersection of open subsets of C0(M) (resp.
Hom(M)). We say that a property P of the maps f ∈ C0(M) (or
f ∈ Hom(M)) is generic, or that generic maps satisfy P , if the set of
maps that satisfy P contains a dense Gδ-set in C0(M) (resp. Hom(M)).

The main result of this article is the following theorem.

Theorem 1. The generic map f ∈ C0(M) has an ergodic Borel proba-
bility measure µ such that hµ(f) = +∞, furthermore there exists p ≥ 1
such that µ is mixing for the map fp.
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(ANR-11-LABX-0033), French “Investissements d’Avenir” programmes.
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Remark. In the case that M is a compact interval, Theorem 1 was
proved in [CT, Theorem 3.9 and p.33, para 2]. So, in this paper we
will prove it only for m-dimensional manifolds where m ≥ 2.

Yano proved that generic continuous maps of compact manifolds with
or without boundary have infinite topological entropy [Ya]. Therefore,
from the variational principle, there exists invariant measures with met-
ric entropies as large as required. Nevertheless, this property alone
does not imply the existence of invariant measures with infinite met-
ric entropy. In fact, it is well known that the metric entropy function
µ→ hµ(f) is not upper semi-continuous for C0-generic systems. More-
over, we prove that it is strongly non upper semi-continuous in the
following sense:

Theorem 2. For a generic map f ∈ C0(M) there exists a sequence of
ergodic measures µn such that for all n ≥ 1 we have hµn = +∞ and

lim
n→+∞

∗ µn = µ with hµ = 0,

where lim∗ denotes the limit in the space of probability measures en-
dowed with the weak∗ topology.

Even if we had a priori some f -invariant measure µ with infinite
metric entropy, we do not know if this property alone implies the ex-
istence of ergodic measures with infinite metric entropy as Theorems
1 and 2 state. Actually, if µ had infinitely many ergodic components,
the proof that the metric entropy of at least one of those ergodic com-
ponents must be larger or equal than the entropy of µ, uses the upper
semi-continuity of the metric entropy function (see for instance [Ke,
Theorem 4.3.7, p. 75]).

Yano also proved that generic homeomorphisms on manifolds of di-
mension 2 or larger, have infinite topological entropy [Ya]. Thus one
wonders if Theorems 1 and 2 hold also for homeomorphisms. We give
a positive answer to this question.

Theorem 3. If dim(M) ≥ 2, then the generic homeomorphism f ∈
Hom(M) has an ergodic Borel probability measure µ satisfying hµ(f) =
+∞, furthermore there exists p ≥ 1 such that µ is mixing for the map
fp.

Theorem 4. If dim(M) ≥ 2, then for a generic homeomorphism f ∈
Hom(M) there exists a sequence of ergodic measures µn such that for
all n ≥ 1 we have hµn = +∞ and

lim
n→+∞

∗ µn = µ with hµ = 0.
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To prove the above theorems in dimension two or larger we construct
a family H, called models, of continuous maps in the cube [0, 1]m,
including some homeomorphisms of the cube onto itself, which have
a complicated behavior on a Cantor set (Definition 2.4). A periodic
shrinking box is a compact set K ⊂ M that is homeomorphic to the
cube [0, 1]m and such that for some p ≥ 1: K, f(K), . . . , f p−1(K) are
pairwise disjoint and fp(K) ⊂ int(K) (Definition 4.1). The main steps
of the proofs of Theorems 1 and 3 are the following results.

(1) Lemma 3.1 Any model Φ ∈ H in the cube [0, 1]m has an Φ-
invariant mixing measure ν such that hν(Φ) = +∞.

(2) Lemmas 4.2 and 4.6 Generic maps in C0(M), and generic
homeormorphisms, have a periodic shrinking box.

(3) Lemmas 4.8 and 4.9 Generic maps f ∈ C0(M), and generic
homeomorphisms for m ≥ 2, have a periodic shrinking box K
such that the return map fp|K is topologically conjugated to a
model Φ ∈ H.

A good sequence of periodic shrinking boxes is a sequence
{Kn}n≥1 of periodic shrinking boxes such that accumulate (with
the Hausdorff distance) on a periodic point x0, and moreover
their iterates f j(Kn) also accumulate on the periodic orbit of
x0, uniformly for j ≥ 0 (see Definition 5.1). The main step in
the proof of Theorems 2 and 4 is Lemma 3.1 together with

(4) Lemma 5.2 Generic maps f ∈ C0(M), and if m ≥ 2 also
generic homeomorphisms, have a good sequence {Kn} of boxes,
such that the return maps fpn|Kn are topologically conjugated to
models Φn ∈ H.

2. Construction of the family of models.

We call a compact set K ⊂ Dm := [0, 1]m or more generally K ⊂M ,
where M is an m-dimensional manifold with m ≥ 2, a box if it is
homeomorphic to Dm. Models are certain continuous maps of Dm :=
[0, 1]m that we will define in this section.

We denote by RHom(Dm) the space of relative homeomorphisms
Φ : Dm → Dm (i.e., Φ is a homeomorphism onto its image included in
Dm), with the topology induced by:

‖Φ−Ψ‖RHom := max
{
‖Φ−Ψ‖C0(Dm), ‖Φ−1−Ψ−1‖C0(Φ(Dm)∩Ψ(Dm))

}
if Φ(Dm) ∩ Ψ(Dm)) 6= ∅. Throughout the article we will consider the
distance between two relative homeomorphisms Φ,Ψ only if Φ(Dm) ∩
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Figure 1. An atom A of generation 0 and two atoms
B,C of generation 1 for a map Φ of D2.

Ψ(Dm)) 6= ∅, and we mostly use the above distance in the case Φ(Dm) =
Ψ(Dm).

Definition 2.1. (Φ-relation from a box to another).
Let Φ ∈ C0(Dm). Let B,C ⊂ int(Dm) be two boxes. We write

B
Φ→ C if Φ(B) ∩ int(C) 6= ∅.

Observe that this condition is open in C0(Dm) and also in RHom(Dm).

Definition 2.2. (Atoms of generation 0 and 1) (See Figure 1)

We call a box A ⊂ int(Dm) an atom of generation 0 for Φ, if A
Φ→ A.

We call two disjoint boxes B1, B2 ⊂ int(A), atoms of generation 1, if

Bi
Φ→ Bj, ∀ i, j ∈ {1, 2}.

If A is an atom of generation 0 and B1, B2 are the two atoms of
generation 1, we denote A0 := {A}, A1 := {B1, B2}.

Definition 2.3. Atoms of generation n ≥ 2 (See Figure 2)
Assume by induction that the finite families A0,A1 . . . ,An−1 of atoms
for Φ ∈ C0(Dm) of generations up to n − 1 are already defined, such
that the atoms of the same generation j = 1, . . . , n − 1 are pairwise
disjoint, contained in the interior of the (j − 1)-atoms in such a way
that all the (j − 1)-atoms contain the same number of j-atoms and

#Aj = 2j
2

, ∀ j = 0, 1, . . . , n− 1.

Assume also that for all j ∈ {1, . . . , n− 1} and for all B ∈ Aj:

#{C ∈ Aj : B
Φ→ C} = 2j, #{D ∈ Aj : D

Φ→ B} = 2j.
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Figure 2. An atom A of generation 0, two atoms B,C
of generation 1, and 16 atoms of generation 2. In
particular the two atoms G,H of generation 2 satisfy
Γ2(C,B,C) = {G,H}.

Denote

A2∗
j := {(B,C) ∈ A2

j : B
Φ→ C},

A3∗
j := {(D,B,C) ∈ A3

j : D
Φ→ B, B

Φ→ C}.
For fixed (D,B,C) ∈ A3∗

j−1 denote

Ωj(B) := {G ∈ Aj : G ⊂ int(B)},

Ωj(D,B) := {G ∈ Ωj(B) : D
Φ→ B},

Γj(D,B,C) := {G ∈ Ωj(D,B) : B
Φ→ C}.

We call the sets of a finite collection An of pairwise disjoint boxes,
atoms of generation n, or n-atoms if they satisfy the following condi-
tions (see Figure 2):
a) Each atom of generation n is contained in the interior of an atom
of generation n − 1, and the interior of each atom B ∈ An−1 contains
exactly 2n · 2n−1 = 22n−1 pairwise disjoint n-atoms, which we call the
children of B. In other words:

#Ωn(B) = 22n−1 ∀ B ∈ An−1.

Therefore
An =

⋃
B∈An−1

Ωn(B),
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where the families of atoms in the union are pairwise disjoint. Therefore

(1) #An = (#An−1)(#Ωn(B)) = 2(n−1)2 · 22n−1 = 2n
2

.

b) For each B ∈ An−1, the collection of children of B is partitioned
in the 2n−1 sub-collections Ωn(D,B), where the atoms D ∈ An−1 are

such that D
Φ→ B. Besides,

#Ωn(D,B) = 2n, ∀(D,B) ∈ A2∗
n−1.

In other words

Ωn(B) =
⋃

D : (D,B)∈A2∗
n−1

Ωn(D,B), ∀ B ∈ An−1,

where the families of atoms in the above union are pairwise disjoint.
Thus for any B ∈ An−1 we have

#Ωn(B) =
(
#{D ∈ An−1 : D

Φ→ B}
)
·
(
#Ωn(D,B)

)
= 2n−1·2n = 22n−1.

c) For each 2-tuple (D,B) ∈ A2∗
n−1 the collection Ωn(D,B) is parti-

tioned in the 2n−1 sub-collections Γn(D,B,C), where the atoms C ∈
An−1 are such that B

Φ→ C. Besides,

#Γn(D,B,C) = 2 ∀ (D,B,C) ∈ A3∗
n−1.

For example, in Figure 2 we have {F,G} = Γ2(C,B,C).
d) For each (D,B,C) ∈ A3∗

n and for each G ∈ Γn(D,B,C)

G
Φ→ E, ∀ E ∈ Ωn(B,C),

and Φ(G) ∩ E ′ = ∅ ∀ E ′ ∈ An \ Ωn(B,C).

From the above conditions a) to d) we deduce:

(2) Ωn(D,B) =
⋃

C : (B,C)∈A2∗
n−1

Γn(D,B,C),

(3) An =
⋃

(D,B,C)∈A3∗
n−1

Γn(D,B,C),

where the families of atoms in the unions are pairwise disjoint. Besides,
for any pair (G,E) ∈ A2

n:

G
Φ→ E if and only if ∃ (D,B,C) ∈ A3∗

n−1 such that

G ∈ Γn(D,B,C), E ∈ Ωn(B,C),

We also deduce the following properties for any atom G ∈ An:

(4) #{E ∈ An : G
Φ→ E} = 2n, #{E ∈ An : E

Φ→ G} = 2n.
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In fact, on the one hand, from condition d) we deduce that for each

atom G ∈ An, the number of atoms E ∈ An such that G
Φ→ E equals

the number #Ωn(B,C) = 2n, where B and C are the unique (n − 1)-
atoms such that G ∈ Γn(D,B,C) for some D ∈ An−1. On the other

hand, the number of atoms E ∈ An such that E
Φ→ G equals

(#Γn(D,B,C)) · (#{D ∈ An−1 : D
Φ→ B) = 2 · 2n−1 = 2n,

where B and C are the unique (n− 1)-atoms such that G ∈ Ωn(B,C).

Since 2n < 2n
2

if n > 1, we conclude that not all the pairs (G,E) of

atoms of generation n ≥ 2 satisfy G
Φ→ E.

Definition 2.4. (Models)
We call Φ ∈ C0(Dm) a model if Φ(Dm) ⊂ int(Dm), and there exists a

sequence {An}n≥0 of finite families of pairwise disjoint boxes contained
in int(Dm) that are atoms of generation 0, 1, . . . , n, . . . respectively for
Φ (according to Definitions 2.2, and 2.3) such that

(5) lim
n→+∞

max
A∈An

diamA = 0.

Denote by H the family of all the models in C0(Dm).

Remark 2.5. For each fixed n ≥ 1 the four conditions a) to d)
of Definition 2.3, are open conditions. So, the family Hn of maps
that have atoms up to generation n ≥ 1, is open in C0(Dm) and
also in RHom(Dm). Moreover, the conditions Φ(Dm) ⊂ int(Dm) and
maxA∈An diam(A) < εn are also open. Therefore, the intersection of
the families satisfying the conditions for all n ≥ 1, which is the family
H of model maps, is a Gδ-set in C0(Dm) and H ∩ RHom(Dm) is a
Gδ-set in RHom(Dm).

Construction of models.
The rest of this section is dedicated to the proof of the following lemma.

Lemma 2.6. The family H of models is a nonempty Gδ-set in C0(Dm)
and H ∩ RHom(Dm) is a nonempty Gδ-set in RHom(Dm).

In Remark 2.5 we have noted that H is a Gδ-set. The fact that it is
nonempty is a consequence of the following result.

Lemma 2.7. For all f ∈ RHom(Dm) such that f(Dm) ⊂ int(Dm),
there exists ψ ∈ Hom(Dm) and Φ ∈ H ∩ RHom(Dm) such that

ψ|∂Dm = id|∂Dm and ψ ◦ f = Φ.

We begin by outline the strategy of the proof of Lemma 2.7. The
homeomorphisms ψ and Φ are constructed as uniform limits of respec-
tive convergent sequences ψn and Φn of homeomorphisms, such that
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ψn ◦ f = Φn for all n ≥ 0. The homeomorphism Φn has atoms up to
generation n, and Φn+1 coincides with Φn outside the interiors of its
atoms of generation n. Therefore the collections of atoms of genera-
tion up to n for Φn is also a collection of atoms for Φn+1. To change
Φn inside each atom A of generation n we change ψn only inside some
adequately defined boxes R ⊂ int(f(A)), constructing ψn+1|R in such
a way that ψn+1|∂R = ψn|∂R, and finally extending ψn+1(x) := ψn(x)
for all x in the complement of the union of all the boxes R. The defi-
nition of several boxes R inside each atom A of generation n, is useful
to construct the atoms of generation n+ 1 for Φn+1 = ψn+1 ◦ f .

To prove Lemma 2.7, we need several technical lemmas and some
more definitions. For each (P,Q) ∈ A2∗

n in the proof of Lemma 2.7 we
will will recursively choose a connected component S(P,Q) of Φn(P )∩
Q. For each (D,B,C) ∈ A3∗

n let G0(D,B,C), G1(D,B,C) be two
disjoint boxes contained in int (S(D,B)) ∩ Φ−1

n S(B,C)). Denote:

An+1 := {Gj(D,B,C) : j ∈ {0, 1}, (D,B,C) ∈ A3∗
n };

Ωn+1(B) := {Gj(D,B,C) : j ∈ {0, 1}, (D,B,C) ∈ A3∗
n }

for each fixed B ∈ An;

Ωn+1(D,B) := {Gj(D,B,C) : j ∈ {0, 1}, B φn→ C}

for each fixed (D,B) ∈ A2∗
n ;

Γn+1(D,B,C) := {Gj(D,B,C) : j ∈ {0, 1}}

for each fixed (D,B,C) ∈ A3∗
n .

Lemma 2.8. Fix n ≥ 0. Let Φn ∈ RHom(Dm). Assume that there
exists families A0,A1, . . . ,An of atoms of generation up to n for Φn

and that

int (S(D,B)) ∩ Φ−1
n S(B,C)) 6= ∅ ∀ (D,B,C) ∈ A3∗

n .

Then

a) #A3∗
n = 2n

2+2n

b) #An+1 = 2(n+1)2
and E ∩ F = ∅ for all E,F ∈ An+1 such that

E 6= F.
c) The family An+1 is partitioned in the 2n

2
different subfamilies

Ωn+1(B) where B ∈ An. Besides #Ωn+1(B) = 22n+1 = 2n+12n

for all B ∈ An
d) For all B ∈ An the family of boxes Ωn+1(B) is partitioned in the

2n subfamilies Ωn+1(D,B) where D ∈ An such that D
Φn→ B.

e) #Ωn+1(D,B) = 2n+1 for all (D,B) ∈ A2∗
n .
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f) For all (D,B) ∈ A2∗
n the family of boxes Ωn+1(D,B) is parti-

tioned in the 2n subfamilies Γn+1(D,B,C) where C ∈ An such

that B
Φn→ C.

g) #Γn+1(D,B,C) = 2 for all (D,B,C) ∈ A3∗
n .

h) For all (B,C) ∈ A2∗
n and for all E ∈ An+1, the intersection

E ∩B ∩ Φ−1
n (C) is nonempty if and only if E ∈ Γn+1(D,B,C)

for some D ∈ An such that D
Φn→ B.

Remark 2.9. Note that properties b) to g) in Lemma 2.8 imply that
the family An+1 of boxes such constructed, satisfy conditions a), b) and
c) of Definition 2.3 of atoms of generation n+ 1 for Φn. Thus, to be a
family of atoms of atoms of generation n + 1 it is only left to modify,
if necessary, Φn in the interior of the boxes of An in such a way that
these boxes also satisfy condition d) of Definition 2.3.

Proof. of Lemma 2.8. a) All the n-tuples (D,B,C) ∈ A3∗
n can be

constructed choosing freely D ∈ An, for each D choosing B ∈ An
such that D

Φn→ B, and for each such B choosing C ∈ An such that

B
Φn→ C. Taking into account that by hypothesis An is a family of

atoms, equalities (1) and (4) of Definition 2.3 imply

#A3∗
n = #{(D,B,C) ∈ A3

n : D
Φn→ B,B

Φn→ C} =

(#An) · (#{B ∈ An : D
Φn→ B}) · (#{C ∈ An : B

Φn→ C}) =

2n
2

2n2n = 2n
2+2n

g) By construction, Γn+1(D,C,B) = {G0(B,C,D), G1(B,C,D)},
where the two boxes inside the family are disjoint, hence different.
Thus the cardinality of the family is 2.

b) By construction, E = Gj(D,C,B), F = Gj′(D
′, B′, C ′). If they

E 6= F then, either (D,C,B) = (D′, C ′, B′) and i 6= i′, or (D,C,B) 6=
(D′, C ′, B′). In the first case, by constructionG0(D,C,B)∩G1(D,C,B) =
∅, in other words E ∩ F = ∅. In the second case, either D 6= D′ or
B 6= B′ or C 6= C ′. By construction Gj(D,B,C) ⊂ Φn(D)∩B∩Φ−1

n (C)
and Gj′(D

′, B′, C ′) ⊂ Φn(D′)∩B′∩Φ−1
n (C ′). Since two different atoms

of generation n are pairwise disjoint, and Φn ∈ RHom(Dm), we deduce
that Gj(D,B,C) ∩Gj′(D

′, B′, C ′) = ∅, hence E ∩ F = ∅, as required.
By construction An+1 =

⋃
(D,C,B)∈A3∗

n
Γn+1(D,B,C), where the fam-

ilies in the union are pairwise disjoint and have each 2 different boxes
of An+1. Therefore, taking into account part a), we deduce that

#An+1 = 2 · (#A3∗
n ) = 2 · 2n2+2n = 2(n+1)2

.



10 ELEONORA CATSIGERAS AND SERGE TROUBETZKOY

c) By construction of An+1 and Ωn+1(B), we have

An+1 =
⋃
B∈An

Ωn+1(B).

Besides G ⊂ B for all G ∈ Ωn+1(B), because by construction G ⊂
S(D,B) ⊂ Φ(D) ∩ B for some D ∈ An. Since two different atoms
B 6= B′ of generation n are pairwise disjoint, we deduce that Ωn+1(B)∩
Ωn+1(B′) = ∅ if B 6= B′. We conclude that the above union of different
subfamilies Ωn+1(B) is a partition of An+1, as required.

Note that

Ωn+1(B) =
⋃

D∈An,D
Φn→B

⋃
C∈An,B

Φn→C

Γn+1(D,B,C),

where the families in the union are pairwise disjoint and each of them
has two different boxes. Therefore, taking into account that An is a
family of atoms (by hypothesis), equality (4) of Definition 2.3 implies:

#Ωn+1(B) = 2 · (#{D ∈ An, D
Φn→ B}) ·#{C ∈ An, B

Φn→ C} =

2 · 2n · 2n = 22n+1.

d) By construction, Ωn+1(B) =
⋃
D∈An,D

Φn→B
Ωn+1(D,B). Besides,

Ωn+1(D,B) ∩ Ωn+1(D′, B) = ∅ if D 6= D′ in An, since different atoms
of generation n are pairwise disjoint, and G ∈ Ωn+1(D,B) implies
G ⊂ Φn(D) which is disjoint with Φn(D′) since Φn is a homeomorphism.

f) By construction, Ωn+1(D,B) =
⋃
C∈An,B

Φn→C
Γn+1(D,B,C). Be-

sides, Γn+1(D,B,C) ∩ Γn+1(D,B,C ′) = ∅ if C 6= C ′ in An, because
two different atoms of generation n are pairwise disjoint and G ∈
Γn+1(D,B,C) implies G ⊂ Φ−1

n (C).
e) From Assertions f) and g) proved above, and from equality (4) of

the definition of atoms of generation n, we deduce that

#Ωn+1(D,B) = 2 · (#{C ∈ An : B
Φn→ C}) = 2 · 2n = 2n+1.

h) By construction, E = Gj(D,B,C) for some j ∈ {0, 1} and some
(D,B,C) ∈ A3∗

n , i.e., E ∈ Γn+1(D,B,C). Besides E = Gj(D,B,C) ⊂
int(S(D,B) ∩ Φ−1

n (S(B,C))) ⊂ int(Φn(D) ∩ B ∩ Φ−1
n (C)). But for

(B,C) 6= (B,C) in A2∗
n the sets B ∩ Φ−1

n (C) and B′ ∩ Φ−1
n (C ′) are

disjoint, thus the box E belongs to Γn+1(D,B,C) for some D ∈ An, if
and only if it intersects B ∩ Φ−1

n (C). �

Lemma 2.10. Assume the hypotheses of Lemma 2.8. Let L̃n+1 ⊂ Dm

be a finite set with cardinality 2(n+1)2
2n+1s, with a unique point ẽi(E) ∈
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L̃n+1 for each (i, E) ∈ {1, 2, . . . 2n+1} × An+1. Assume that

ẽi(E) ∈ int (E) ∀ (i, E) ∈ {1, 2, . . . 2n+1} × An+1.

Then, there exists a permutation θ : L̃n+1 7→ L̃n+1 such that

a) For all (i, E) ∈ {1, 2, . . . 2n+1} × Γn+1(D,B,C)

θ(ẽi(E)) = ẽi′(E
′)

for a unique i′ ∈ {1, 2, . . . , 2n+1} and a unique E ′ ∈ Ωn+1(B,C).
b) For all (D,B,C) ∈ A3∗

n , for all E ∈ Γn+1(D,B,C) and for
all F ∈ Ωn+1(B,C) there exists unique (i, i′) ∈ {1, 2, . . . 2n+1}2

such that θ(ẽi(E)) = ẽi′(F ).
c) For all (B,C) ∈ A2∗

n

θ
({
ẽi(E) : E ∈

⋃
D∈An, (D,B)∈A2∗

n

Γ(D,B,C), i ∈ {1, 2, . . . 2n+1}
})

=

{
ẽi′(F ), F ∈ Ωn+1(B,C), i′ ∈ {1, 2, , . . . 2n+1}

}
= L̃n+1 ∩ S(B,C).

Proof. From the construction of the family An+1 (see Lemma 2.8), we
deduce that for all E ∈ An+1 there exists unique j ∈ {0, 1} and unique
(D,B,C) ∈ A3∗

n such that E = Gj(D,B,C) ⊂ Γn+1(D,B,C). There-
fore, for all (i, E) ∈ {1, 2, . . . , 2n+1} × An+1, we have

ẽi(E) = ei(Gj(D,B,C))

By hypothesis An is the family of atoms of generation n for Φn, thus
we can apply Equalities (4) of Definition 2.3. So, for each B ∈ An, we

can index the different atoms D ∈ An such that D
Φn→ B as follows:

(6) {D ∈ An : D
Φn→ B} = {D−1 (B), D−2 (B), . . . D−2n(B)},

where D−k1
(B) 6= D−k2

(B) if k1 6= k2 (actually, they are disjoint atoms
of generation n).

Analogously

(7) {C ∈ An : B
Φn→ C} = {C+

1 (B), C+
2 (B), . . . C+

2n(B)},
where C+

l1
(B) 6= C+

l2
(B) if l1 6= l2.

Now, we index the distinct points of L̃n+1 as follows:

êi,j(k,B, l) := ẽi(Gj(D,B,C)) = ei(Gj(D
−
k (B), B, C+

l (B))),

for all (i, j, B, k, l) ∈ {1, 2, . . . , 2n+1} × {0, 1} × An × {1, 2, . . . , 2n}2.

Define the following correspondence θ : L̃n+1 → L̃n+1:

θ(êi,j(k,B, l)) = êi′,j′(k
′, B′, l′), where

• B′ := C+
l (B),
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• k′ is such that B = D−k′(C) (such k′ exists and is unique because

B
Φn→ C, using (6)),

• l′ = i (mod. 2n),
• j′ = 0 if i ≤ 2n and j′ = 1 if i > 2n,
• i′ = k + j · 2n.

Let us prove that θ is surjective; hence it is a permutation of the

finite set L̃n+1.

Let ei′,j′(k
′, B′, l′) ∈ L̃n+1 be given, where

(i′, j′, B′, k′, l′) ∈ {1, 2, . . . , 2n+1} × {0, 1} × An × {1, 2, . . . , 2n}2.

Construct
• i := l′ + j′ · 2n. Then l′ = i (mod. 2n, j′ = 0 if i ≤ 2n and j′ = 1 if
i > 2n.
• B := D−k′(B

′). Then B
Φn→ B′. So, there exists l such that B′ =

C+
l (B).
• k := i′ (mod.2n), j := 0 if i′ ≤ 2n and j := 1 if i′ > 2n. Therefore
i′ = k + 2nj.

By the above equalities we have constructed some θ−1 such that
θ ◦ θ−1 is the identity map. So, θ is surjective, hence also one-to-one in

the finite set L̃n+1, as required.
Now, let us prove that θ satisfies assertions a), b) and c) of Lemma

2.10.
a) Fix ẽi(E) ∈ L̃n+1. By construction θ(ẽi(E)) = ẽi′(E

′) ⊂ int(E ′)
for all (i, E) for some (i, E) ∈ {1, 2, . . . , 2n+1} × An+1. Since two dif-
ferent boxes of An+1 are pairwise disjoint (recall Lemma 2.8-a)), the
box E ′ is unique. Besides, by hypothesis, ẽi′(E

′) 6= ẽj′(E
′) if j 6= j′.

So, the index i′ is also unique. Therefore, to finish the proof of a), it is
enough to check that E ′ ∈ Ωn+1(B,C) if E ∈ Γn+1(D,B,C).

By the definition of the family Γn+1(D,B,C) in Lemma 2.8, if E ∈
Γn+1(D,B,C), there exists j ∈ {0, 1} such that E = Gj(D,B,C).
Thus, using the notation at the beginning ẽi(E) = ẽi(Gj(D,B,C)) =
êi,j(k,B, l), where D = D−k (B) and C = C+

l (B). Then, using the
definition of the permutation θ, and the computation of its inverse θ−1,
we obtain ẽi′(E) = θ(ẽi(E)) = êi′,j′(k

′, B′, l′), where

B′ = C+
l (B) = C, D′ = D−k′(B

′) = B.

We have proved that ẽi′(E
′) = ẽi′(Gj′(B,C,C

′)). Finally, from the
definition of the family Ωn+1(B,C) in Lemma 2.8 we conclude that
E ′ ∈ Ωn+1(B,C) as asserted in part a).

b) Fix (D,B,C) ∈ A3∗
n and E ⊂ Γn+1(D,B,C). Then, using

the definition of the family Γn+1(D,B,C) in Lemma 2.7, we have
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unique (j, k, l) ∈ {0, 1} × {1, 2, . . . , 2n} such that E = Gj(D,B,C),
D = D−k (B), C = C+

l (B). Consider the finite set Z of 2n+1 dis-
tinct points ẽi(E) = êi,j(k,B, l), with j,K,B, l fixed as above and
i ∈ {1, 2, . . . , 2n+1}. The image of each point in Z by the permutation
θ is θ(ẽi(E)) = êi′,j′(B,C,C

′) (here we use assertion a)), satisfying the
equality i′ = k + 2nj. Since k, j are fixed, we deduce that there ex-
ists a unique i′ such that all the points of θ(Z) are of the form ẽi′(F ),
F = Gj′(B,C,C

′) with j′ ∈ {0, 1}, C ′ = C+
k′(C), k′ ∈ {1, 2, . . . , 2n+1}.

We have proved that the permutation θ|Z is equivalent to

i ∈ {1, 2, . . . , 2n+1} → (j′, k′) ∈ {0, 1} × {1, 2, . . . , 2n}
such that θ(êi(E)) = êi′,j′(B,C,C

+
k′(C)) with i′ fixed.

Since #{1, 2, . . . , 2n+1} = #({0, 1} × {1, 2, . . . , 2n}), from the in-
jectiveness of θ we deduce that θ(Z) = {0, 1} × {1, 2, . . . , 2n}. In
other words, for every F ∈ Ω(B,C) there exists unique i such that
θ(ẽi(E)) = ẽi′(F ) (where i′ is uniquely defined given E). This ends the
proof of assertion b).

c) For fixed (B,C) ∈ A2∗
n , denote

P :=
{
ẽi(E) : E ∈

⋃
D∈An,D

Φn→B

Γn+1(D,B,C), i ∈ {1, 2, . . . , 2n+1}
}
,

Q := {ẽi′(F ) : F ∈ Ωn+1(B,C), i′ ∈ {1, 2, . . . , 2n+1}} ⊂ L̃n+1.

Applying assertion a) we deduce that θ(P ) ⊂ Q. So, to prove that
θ(P ) = Q it is enough to prove that #P = #Q. In fact, applying parts
e) and g) of Lemma 2.8 for the family of boxes An+1, and equality (4)
of Definition 2.2 for the family of atoms An, we obtain

#P = 2n+1 · (#Γn+1(D,B,C)) · (#{D ∈ An : D
Φn→ B}) = 2n+1 · 2 · 2n

#Q = 2n+1 · (#Ωn+1)(B,C)) = 2n+1 · 2n+1,

which proves that #P = #Q and thus that θ(P ) = Q.

Finally, let us prove that Q = L̃n+1 ∩ S(B,C).
On the one hand, if F ∈ Ωn+1(B,C), then F = Gj(B,C,C

′) for
some (j, C ′). Applying the construction of the boxes of An+1 in the
hypothesis of Lemma 2.8, we obtain F ⊂ S(B,C), hence ẽi′(F ) ∈
L̃n+1∩ int(F ) ⊂ L̃n+1∩S(B,C). This proves that Q ⊂ L̃n+1∩S(B,C).

On the other hand, if ẽi′(F ) ∈ L̃n+1 ∪ S(B,C), then F ∈ An+1.
Applying Lemma 2.8, we obtain F = Gj(D

′, B′, C ′) ⊂ S(D′, B′) for
some (D′, B′, C ′) ∈ A3∗

n . Since S(D′, B′) ⊂ Φn(D′)∩B′ and S(B,C) ⊂
Φn(B) ∩ C, we obtain S(D′, B′) ∩ S(B,C) = ∅ if (D′, B′) 6= (B,C).
But ẽi′(F ) ∈ int(F ) ∩ S(B,C) ⊂ S(D′, B′) ∩ S(B,C). We conclude
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that (D′, B′) = (B,C), thus F = Gj(B,C,C
′) ∈ Ωn+1(B,C), hence

ẽi′(F ) ∈ Q. We have proved that L̃n+1 ∩ S(B,C) ⊂ Q. Therefore the
proof of assertion c) is complete. �

Lemma 2.11. Assume the hypothesis of Lemmas 2.8 and 2.10. Let
Φn+1 ∈ RHom(Dm) be such that

Φn+1(x) = Φn(x) ∀ x 6∈
⋃
A∈An

A, Φn+1(ẽ) = θ(ẽ) ∀ ẽ ∈ L̃n+1,

where θ is the permutation of L̃n+1 constructed in Lemma 2.10. Then,

a) A0,A1, . . . ,An+1 are collections of atoms up to generation n+1
for Φn+1.

b) For each (E,F ) ∈ A2
n+1 such that E

Φn+1→ F , there exists exactly

one point ẽi(E) ∈ L̃n+1∩ int(E), and exactly one point ẽi′(F ) ∈
L̃n+1 ∩ int(F ), such that

Φ̃n+1(ẽi(E)) = ẽi′(F ).

Proof. a) Since Φn+1(x) = Φn(x) for all x 6∈
⋃
B∈An

B, the same fami-
lies A0,A1, . . . ,An, of atoms up to generation n for Φn are families of
atoms up to generation n for Φn+1. As observed in Remark 2.9, the
family An+1 of pairwise disjoint boxes satisfy conditions a), b) and c)
of Definition 2.3 with n + 1 instead of n, for Φn+1. So, to prove that
An+1 is a family of atoms of generation n+ 1 for Φn+1 it is enough to
prove that its boxes satisfy also condition d) of Definition 2.3.

Take (D,B,C) ∈ A3∗
n , E ∈ Γn+1(D,B,C) and F ∈ Ωn+1(B,C). Ap-

plying Lemma 2.10-b), there exists (i, i′) such that θ(ẽi(E))) = ẽi′(F ).
Therefore

Φn+1(ẽi(E))) = ẽi′(F ).

Since ẽi(E) ∈ int(E) and ẽi′(F ) ∈ int(F ), we conclude that Φn+1(E)∩
int(F ) 6= ∅, namely, E

Φn→ F . We have proved that

E
Φn→ F ∀E ∈ Γn+1(D,B,C), ∀F ∈ Ωn+1(B,C).

This proves the first half of condition d) of Definition 2.3.
Let us prove the second half. Let E ∈ Γn+1(D,B,C) and F ∈ An+1\

Ωn+1(B,C). Then F ∈ Ωn+1(B′, C ′) with (B′, C ′) 6= (B,C) (recall that
by Lemma 2.8, the union of all the families Ωn+1(·, ·) is An+1). We
have F ∈ Ωn+1(B′, C ′); therefore F ⊂ Φn(B′) ∩ C ′. Besides Φn(B′) =
Φn+1(B′) (recall that Φn and Φn+1 are relative homeomorphisms that
coincide outside the atoms of generation n; so, by continuity, they
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coincide in the borders of all those atoms, therefore the images by Φn

and Φn+1 of each atom of generation n coincide). We deduce that

(8) F ⊂ Φn+1(B′) ∩ C ′ with (B′C ′) 6= (B,C).

Since E ∈ Γn+1(D,B,C), we know that E ⊂ B ∩ Φ−1
n (C) = B ∩

Φ−1
n+1(C) (recall the construction of the atoms of the family An+1 in

the hypothesis of Lemma 2.8). Therefore

(9) Φn+1(E) ⊂ Φn+1(B) ∩ C

Since two different atoms of genration n are disjoint, and Φn+1 is a
relative homeomorphism, we have (Φn+1(B)∩C)∩ (Φn+1(B′)∩C ′) = ∅
if (B,C) 6= (B′, C ′). We conclude that

Φn+1(E) ∩ F = ∅ ∀ F ∈ An+1 \ Ωn+1,

ending the proof of condition d) of Definition 2.3 for the family An+1.
The proof of assertion a) is complete.

b) Take (E,F ) ∈ A2
n+1 such that E

Φn+1→ F . Then

(10) Φn+1(E) ∩ F 6= ∅.

We have E ∈ An+1. Therefore, by the construction of this family in
Lemma 2.8, there exists (D,B,C) ∈ A3∗

n such that

E ∈ Γn(D,B,C).

Combining inequality (10) with property d) of Definition 2.3 (putting
n+ 1 instead of n), we obtain

F ∈ Ωn+1(B,C).

Applying Lemma 2.10-b) there exists a unique (i, i′) ∈ {1, 2, . . . , 2n+1}2

such that Φn+1(ẽi(E)) = θ(ẽi(E)) = ẽi′(F ). Since L̃n+1 ∩ (int(E)) =

{ẽi(E) : i ∈ {1, 2, . . . , 2n+1}} and analogously for L̃n+1 ∩ (int(F )), we

conclude that there exists a unique point ẽi(E) ∈ L̃n+1 ∩ (int(E) and a

unique point ẽi′(F ) ∈ L̃n+1 ∩ (int(F ) such that Φn+1(ẽi(E)) = ẽi′(F ),
as required. The proof of part b) is complete. �

Lemma 2.12. Let ψ ∈ Hom(Dm), P,Q ⊂ Dm be boxes such that
ψ(P ) = Q, p1, . . . , pk ∈ int(P ) be distinct points and q1, . . . , qk ∈ int(Q)
be also distinct points. Then, there exists ψ∗ ∈ Hom(Dm) such that

ψ∗(x) = ψ(x) ∀ x 6∈ int(P ) and ψ∗(pi) = qi ∀ i ∈ {1, . . . , k}.

Proof. We argue by induction on k ≥ 1.
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For k = 1, it suffices to construct a homeomorphism χ : Q 7→ Q
such that χ|∂Q is the identity map, and χ(ψ(p1)) = q1. Once χ is con-
structed, the homeomorphism defined by ψ∗(x) := ψ(x) if x 6∈ int(P )
and ψ∗(x) = χ ◦ ψ(x) if x ∈ int(P ), satisfies the required properties.

Since Q is a box we can consider a homeomorphism ξ : Q 7→ Dm.
Then, it is enough to construct χ′ ∈ Hom(Dm) such that

(11) χ′(x) = x ∀x ∈ ∂Dm and

(12) χ′(ξ ◦ ψ(p1) = ξ(q1).

since χ := ξ−1 ◦ χ′ ◦ ξ satisfies the required properties.
Let p′1 := ξ(ψ(p1)) ∈ int(Dm), q′1 = ξ(q1) ∈ int(Dm). For each

point r ∈ ∂Dm denote by Sp(r) the segment in Dm joining the point
p′1 to r, and by Sq(r) the segment joining q′1 with r. Let χ′|Sp(r) :
Sp(r) 7→ Sq(r) be the affinity from one segment to the other, for each
r ∈ ∂Dm, leaving r fixed. Define χ′(p′1) := q′1 and, for all x ∈ Dm \{p′i}
define χ′(x) := χ′|Sp(rx)(x), where rx is the unique point in ∂Dm such
that x ∈ Sp(r(x)). It is not hard to check that χ′ : Dm 7→ Dm is a
homeomorphism. By construction χ′ leaves fixed the points of ∂Dm

and χ′(p′1) = q′1 as required.
We turn to the inductive step, assume that the assertion of the lemma

is true for k − 1, we add the subscript j to all the objects associated
to step j (we will use j = 1, j = k − 1 and of course j = k in the
proof). Let us prove it for k. First, the induction hypothesis, yields
homeomorphisms ψ∗k−1 : Dm 7→ Dm such that ψ∗k−1(x) = ψ(x) for all
x 6∈ int(Pj) and ψ∗k−1(pi) = qi for all 1 ≤ i ≤ k − 1.

Since the points p1, . . . , pk are distinct we can choose a box P1 ⊂
int(Pk) such that pk ∈ int(P1) and p1, . . . , pk−1 6∈ P1. Consider the ball
Q1 := ψ1(P1) ⊂ ψ1(Pk) = ψ(Pk) = Qk and choose a point q′k ∈ int(Q1).
Using that the lemma is true for j = 1 (as proved above), construct a
homeomorphism ψ∗1 : Dm 7→ Dm such that ψ∗1(pk) = q′k and ψ∗1(x) =
ψ∗k−1(x) for all x 6∈ P1 (hence ψ∗1(x) = ψ(x) for all x 6∈ P ).

We claim that q′k, qk 6∈ {q1, . . . , qk−1}. By hypothesis q1, q2, . . . , qk
are all distinct points, on the other hand qi = ψ∗k−1(pi) = ψ∗1(pi) for all
i = 1, 2, . . . , k − 1 and q′k = ψ1(pk). We have q′k 6∈ {q1, . . . , qk−1} since
ψ1 is a homeomorphism, and p1, p2, . . . , pk−1, pk are all distinct points.

Now, consider a box Q′1 ⊂ int(Qk) such that q′k, qk ∈ int(Q′1) and
q1, . . . , qk−1 6∈ Q′1. Since the lemma was already proved in the case
k = 1, we can construct a homeomorphism ξ : Dm 7→ Dm such that
ξ(x) = x for all x 6∈ int(Q′1) and ξ(q′k) = qk. Define

ψ∗k := ξ ◦ ψ1.
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Then, since ψ(x) 6∈ int(ψ(P )) = int(Q) ⊃ Q′1, we have

ψ∗k(x) = ξ ◦ ψ1(x) = ξ ◦ ψ(x) = ψ(x), for all x 6∈ int(P ).

Besides, since qi 6∈ Q′1 if i ≤ q − 1, we have

ψ(pi) = ξ ◦ ψ1(pi) = ξ(qi) = qi, ∀ i ∈ {1, . . . , k − 1}.
Finally

ψ(pk) = ξ ◦ ψ1(pk) = ξ(q′k) = qk,

ending the proof of Lemma 2.12 �

Lemma 2.13. Let ψ ∈ Hom(Dm), r ≥ 1, P1, P2, . . . Pr ⊂ Dm be
pairwise disjoint boxes, and Qj := ψ(Pj) for all j ∈ {1, 2, . . . , r}. For
k ≥ 1 and j ∈ {1, 2, . . . , r}, let p1,j, . . . , pk,j ∈ int(Pj) be distinct points
and q1,j, . . . , qk,j ∈ int(Qj) also be distinct points. Then, there exists a
ψ∗ ∈ Hom(Dm) such that

ψ∗(x) = ψ(x) ∀ x 6∈
r⋃
j=1

int(Pj) and

ψ∗(pi,j) = qi,j ∀ (i, j) ∈ {1, . . . , k} × {1, 2, . . . , r}.

Proof. Applying Lemma 2.12, for each j ∈ {1, 2, . . . , r}, yields homeo-
morphisms ψj : Dm 7→ Dm such that

ψj(x) = ψ(x) ∀ x ∈ Dm \ int(Pj) and ψj|int(Pj)(pi,j) = qi,j.

Construct the homeomorphism

ψ∗(x) := ψ(x) if x 6∈
r⋃
j=1

int(Pj),

and for each j ∈ {1, 2, . . . , r}:
ψ∗(x) := ψj(x) if x ∈ int(Pj).

It is immediate to check that ψ∗ : Dm 7→ Dm is a homeomorphism
that satisfies the required properties. �

Proof. of Lemma 2.7 We divide the construction of ψ and Φ ∈ H into
several steps:
Step 1. Construction of the atom of generation 0. Since
f(Dm) ⊂ int(Dm), there exists a box A0 ⊂ int(Dm) such that f(Dm) ⊂
int(A0). The box A0 is the atom of generation 0 for the relative
homeomorphism Φ0 := f which satisfies Φ0 = ψ0 ◦ f where ψ0 is the
identity map. Applying the Brower Fixed Point Theorem, there exists
a point e0 ∈ int(Φ0(A0)) such that Φ0(e0) = e0. Define S(A0, A0) to be
the connected component of A0 ∩ Φ0(A0) containing e0.
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Step 2. Construction of the atoms of generation n+1. In-
ductively assume that we have constructed families A0,A1, . . . ,An of
atoms up to generation n for Φn = ψn ◦ f , where ψn ∈ Hom(Dm) is a
homeomorphism satisfying ψn|∂Dm is the identity map, satisfying:

I) maxB∈Ai
max{diam(B), diam(f(B))} < 1

2i
∀i ∈ {0, 1, . . . n};

II) Φi(x) = Φi−1(x), ∀ x ∈ Dm \
⋃
B∈Ai−1

B, ∀i ∈ {1, . . . , n};
III) for all (D,B,C) ∈ A3∗

n there exists a point e(D,B,C) such that

Ln := {e(D,B,C) : (D,B,C) ∈ A3∗
n }

is Φn-invariant, and

(13) e(D,B,C) ∈ int
(
S(D,B) ∩ Φ−1

n (S(B,C))
)
,

where S(D,B) and S(B,C) are previously defined connected
components of B ∩ Φn(D) and of C ∩ Φn(B) respectively;

IV) the sets S(D,B) and S(D′, B′) are disjoint if (D,B) 6= (D′B′).

Let us construct the family An+1 of atoms of generation n + 1 and
the homeomorphisms Φn+1 and ψn+1. First, for each (D,B) ∈ (An)2∗

we choose a box R(D,B) such that

(14) e(D,B,C) ∈ int(R(D,B)) ⊂ int
(
S(D,B)

)
∀ C ∈ An such that B

Φn→C.
By (IV)) such boxes R(·, ·) are pairwise disjoint.

Recall that e(D,B,C) ∈ Ln, the set Ln is Φn-invariant and moreover
e(D,B,C) ∈ int(Φ−1

n (S(B,C))). Thus

e(D,B,C) ∈ int
(
R(D,B) ∩ Φ−1

n (R(B,C))
)
6= ∅

because
Φn(e(D,B,C)) = e(B,C, ·) ∈ int(R(B,C)).

Next, for each (D,B,C) ∈ A3∗
n we choose two pairwise disjoint boxes,

G0(D,B,C) and G1(D,B,C), contained in the interior of R(D,B) ∩
Φ−1
n (R(B,C)), satisfying

(15) max{diam(Gi(D,B,C)), diam(f(Gi(D,B,C)))} < 1

2n+1

for i = 0, 1 Now, we use Lemma 2.8 to define the family An+1 of all
the boxes Gi(D,B,C) and use its properties. The boxes of the family

An+1 will be the (n+ 1)-atoms of two new homeomorphisms Φ̃n+1 and
Φn+1 that we will construct as follows.

First, in the interior of each box E ∈ An+1 we choose 2n+1 distinct
points ẽi(E), i = 1, 2 . . . , 2n+1, and denote

L̃n+1 := {ẽi(E) : E ∈ An+1, 1 ≤ i ≤ 2n+1}.
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Second, we build a permutation θ̃ of L̃n+1 satisfying the properties of
Lemma 2.10.

Third, applying Lemma 2.13, we construct ψ̃n+1 ∈ Hom(Dm) defined
satisfying the following constraints.
(a)

ψ̃n+1|ψ−1
n R(B,C) : ψ−1

n (R(B,C))→ R(B,C) ∀(B,C) ∈ A2∗

n ,

(b)

ψ̃n+1(x) = ψn(x),

∀x 6∈
⋃

(B,C)∈A2∗
n

ψ−1
n (R(B,C)) =

⋃
(B,C)∈A2∗

n

f ◦ Φ−1
n (R(B,C)),

(c)

ψ̃n+1(f(ẽ)) = θ̃(ẽ), ∀ ẽ ∈ L̃n+1.

To prove the existence of such a homeomorphism ψ̃n+1 we must verify
the hypotheses of Lemma 2.13. On the one hand, the boxes R(B,C)
where B,C ∈ A2∗

n are pairwise disjoint. So the their preimages by the
homeomorphism ψn also are pairwise disjoint. On the other hand, the
finite set

{f(ẽ) : ẽ ∈ L̃n+1 ∩ int(Φ−1
n (R(B,C)))}

is contained in the interior of f ◦ Φ−1
n (R(B,C)) = ψ−1

n (R(B,C))). Be-
sides, it coincides with

{f(ẽi(E)) : E ∈ Γn+1(D,B,C) for some D ∈ An, i = 1, . . . , 2n+1}
(recall that ẽ ∈ E ∩ B ∩ Φ−1

n (C) and apply Lemma 2.8-h)). So, its

image by the permutation θ̃ is the finite set

{θ̃(ẽi(G)) : G ∈ Γn+1(D,B,C) for some D ∈ An, i = 1, 2, . . . 2n+1}
Applying Lemma 2.10-c), the latter set is

{ek(F ) : F ∈ Ωn+1(B,C), k = 1, 2, . . . 2n+1} = L̃n+1 ∩R(B,C),

which is contained in the interior ofR(B,C)). The hypothesis of Lemma
2.13 is satisfied.

We construct
Φ̃n+1 := ψ̃n+1 ◦ f.

Since Φ̃n+1(x) = Φn(x), ∀x 6∈ ∪A∈AnA, the same atoms up to gen-

eration n for Φn are still atoms up to generation n for Φ̃n+1. But
moreover, applying Lemma 2.11-a), the boxes of the new family An+1

are now (n+ 1)-atoms for Φ̃n+1.
Step 3. Construction of Φn+1 and Ψn+1. To argue by induction,

we will not use the homeomorphisms Φ̃n+1 and ψ̃n+1, rather we need to
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modify them to obtain new homeomorphisms Φn+1 and ψn+1 such that
Assertion (13) also holds for n + 1 instead of n. Precisely, modifying

ψ̃n+1 only in the interiors of the boxes f(G) for all the atoms G ∈ An+1,
we construct a new homeomorphism ψn+1 such that Φn+1 := ψn+1 ◦ f
has the same atoms up to generation n+ 1 as Φ̃n+1.

From the above construction of ψ̃n+1 and Φ̃n+1, and from Lemma
2.11-b), we know that for each (G,E) ∈ A2∗

n+1 there exists a unique
point ẽi(G) ∈ int(G), and a unique point ẽk(E), such that

Φ̃n+1(ẽi(G)) = ψ̃n+1 ◦ f(ẽi(G)) = ẽk(E) ∈ int(E).

Therefore
ẽk(E) ∈ int(E ∩ Φ̃n+1(G)).

Denote by
S(G,E)

the connected component of E ∩ Φ̃n+1(G) that contains the point
ẽk(E). Choose 2n+1 distinct points

ei(G,E) ∈ int(S(G,E)), i = 1, . . . , 2n+1

and a permutation θ of the finite set

(16) Ln+1 := {ei(G,E) : (G,E) ∈ A2∗
n+1, i = 1, . . . , 2n+1}

such that for each fixed (G,E, F ) ∈ (An+1)3∗ there exists a unique
point ei(G,E), and a unique point ek(E,F ), satisfying

θ(ei(G,E)) = ek(E,F ).

The proof of the existence of such permutation is similar to the proof
of Lemma 2.10.)

Applying Lemma 2.13, construct a homeomorphism

ψn+1 ∈ Hom(Dm)

such that

ψn+1|f(G) : f(G)→ ψ̃n+1(f(G)) = Φ̃n+1(G) ∀ G ∈ An+1,

ψn+1(x) = ψ̃n+1(x) ∀ x 6∈
⋃

G∈An+1

f(G)

ψn+1(f(ei(G,E)) = θ(ei(G,E))

∀ (E,G) ∈ A2
n+1 such that G

Φ→ E, ∀ i = 1, . . . , 2n+1

and extend ψn+1 to the whole box Dm by defining ψn+1(x) = ψ̃n+1(x),
∀ x ∈ Dm \

⋃
G∈An+1

f(G). In particular

ψn+1|∂Dm = ψ̃n+1|∂Dm = id|∂Dm .
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Define

Φn+1 := ψn+1 ◦ f.
As said above, the property that Φn+1 coincides with Φ̃n+1 outside all
the atoms of An+1 implies that the boxes of the families A0, . . . ,An+1

are also atoms up to generation n+1 for Φn+1. But now, they have the
following additional property: there exists a one-to-one correspondence
between the 3-tuples (G,E, F ) ∈ (An+1)3∗ and the points of the set
Ln+1 of Equality (16), such that

(17) e(G,E, F ) := ei(G,E) ∈ int
(
S(G,E) ∩ Φ−1

n+1(S(E,F ))
)
,

where S(G,E) and S(E,F ) are the previously chosen connected com-
ponents of E ∩ Φn(G) and of F ∩ Φn(E) respectively. Besides, by
construction the finite set Ln+1 in Φn+1-invariant. In fact Φn+1(Ln) =
ψn+1(f(Ln+1)) = Ln+1. Therefore, Assertion (13) holds for n + 1 and
the inductive construction is complete.
Step 4. The limit homeomorphisms. From the above construc-
tion we have:

ψn+1(x) = ψ̃n+1(x) = ψn(x) if x 6∈
⋃
B,C

ψ−1
n (R(B,C)) ⊂

⋃
B

f(B)

ψn+1 ◦ ψ−1
n (R(B,C)) = ψ̃n+1 ◦ ψ−1

n (R(B,C)) =

ψn ◦ ψ−1
n (R(B,C)) = R(B,C) ⊂ C.

Therefore,

dist(ψ−1
n+1(x), ψ−1

n (x)) ≤ max
B∈An

diam(f(B)) <
1

2n
, ∀ x ∈ Dm;

dist(ψn+1(x), ψn(x)) ≤ max
C∈An

diam(C) <
1

2n
, ∀ x ∈ Dm,

(18) ‖ψn+1 − ψn‖Hom <
1

2n
.

From Inequality (18) we deduce that the sequence ψn is Cauchy in
Hom(Dm). Therefore, it converges to a homeomorphism ψ. Moreover,
by construction ψn|∂Dm = id|∂Dm for all n ≥ 1. Then ψ|∂Dm = id|∂Dm .

The convergence of ψn to ψ in Hom(Dm) implies that hn = ψn ◦
f ∈ RHom(Dm) converges to Φ = ψ ◦ f ∈ RHom(Dm) as n →
+∞. Since f(Dm) ⊂ int(Dm) and ψ ∈ Hom(Dm), we deduce that
Φ(Dm) ⊂ int(Dm). Moreover, by construction A0,A1, . . . ,An are fam-
ilies of atoms up to generation n for Φn, and Φm(x) = Φn(x) for all
x ∈ Dm \

⋃
B∈An

B and for all m ≥ n. Since limm Φm = Φ, the boxes
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of the family An are n-atoms for Φ for all n ≥ 0. Finally, from In-
equality (I)), the diameters of the n-atoms converge uniformly to zero
as n→ +∞. Thus Φ is a model according to Definition 2.4. �

3. Infinite metric entropy and mixing property of the
models.

The purpose of this section is to prove the following Lemma.

Lemma 3.1. (Main Lemma) Let H ⊂ C0(Dm) be the family of
models with m ≥ 2 (Definition 2.4). Then, for each Φ ∈ H there
exists a Φ-invariant mixing (hence ergodic) measure ν supported on an
Φ-invariant Cantor set Λ ⊂ Dm such that hν(Φ) = +∞.

Remark 3.2. Lemma 3.1 holds, in particular, for H ∩ RHom(Dm).

To prove Lemma 3.1 we need to define the paths of atoms and to
discuss their properties. We also need to define the invariant Cantor
set Λ that will support the measure ν and prove some of its topological
dynamical properties.

Definition 3.3. (Paths of atoms)
Let Φ ∈ H ⊂ C0(Dm), l ≥ 2 and let (A1, A2, . . . , Al) be a l-tuple of

atoms for Φ of the same generation n, such that

Ai
Φ→ Ai+1, ∀ i ∈ {1, 2, . . . , l − 1}.

We call (A1, A2, . . . , Al) an l-path of n-atoms from A1 to Al. Let Al∗n
denote the family of all the l-paths of atoms of generation l.

Lemma 3.4. For all n ≥ 1, for all l ≥ 2n, and for all A1, A2 ∈ An
there exists an l-path of n-atoms from A1 to A2.

Proof. For n = 1, the result is trivial for all l ≥ 2 (see Definition 2.2).
Let us assume by induction that the result holds for some n − 1 ≥ 1
and let us prove it for n.

Let E,F ∈ An. From equality (3) of Definition 2.3, there exists
unique atoms B−1, B0, B1 ∈ An−1 such that E ∈ Γn(B−1, B0, B1). Then

B−1
Φ→ B0, E ⊂ B0 and, by condition d) of Definition 2.3:

(19) E
Φ→ E1, ∀ E1 ∈ Ωn(B0, B1).

Analogously, there exists unique atoms B∗, B∗+1 ∈ An−1 such that

F ∈ Ωn(B∗, B∗+1). Then B∗
Φ→ B∗+1, F ⊂ B∗+1 and

(20) E∗
Φ→ F, ∀ E∗ ∈

⋃
B∗−1∈An−1:

B∗−1
Φ→B∗

Γn(B∗−1, B∗, B∗+1)
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Since B1, B∗ ∈ An−1 the induction hypothesis ensures that that for
all l ≥ 2n−2 there exists an l-path (B1, B2, . . . , Bl) from B1 to Bl = B∗.
We write B∗−1 = Bl−1, B∗ = Bl, B∗+1 = Bl+1. So Assertion (20)
becomes

(21) El
Φ→ F, ∀ El ∈ Γn(Bl−1, Bl, Bl+1)

Taking into account that Bi−1
Φ→ Bi for 1 < i ≤ l, and applying con-

dition d) of Definition 2.3, we deduce that, if Ei−1 ∈ Γn(Bi−2, Bi−1, Bi) ⊂
An, then

(22) Ei−1
Φ→ Ei, ∀ Ei ∈ Ωn(Bi−1, Bi), ∀ 1 < i ≤ l.

Combining (19), (21) and (22) yields an (l+ 2)-path (E,E1, . . . , El, F )
of atoms of generation n from E to F , as required. �

Lemma 3.5. Let n, l ≥ 2. For each l-path (B1, . . . , Bl) of (n − 1)-
atoms there exists an l- path (E1, E2, . . . , El) of n-atoms such that Ei ⊂
int(Bi) for all i = 1, 2, . . . , l.

Proof. In the proof of Lemma 3.4 for each l-path (B1, B2, . . . , Bl) of
(n − 1)-atoms we have constructed the l-path (E1, E2, . . . , El) of n-
atoms as required. �

Definition 3.6. (The Λ-set) Let Φ ∈ H ⊂ C0(Dm) be a model map.
Let A0,A1, . . . ,An, . . . be its sequence of families of atoms. The subset

Λ :=
⋂
n≥0

⋃
A∈An

A

of int(Dm) is called the Λ-set of the map Φ.

From Definitions 2.2 and 2.3, we know that, for each fixed n ≥ 0,
the set Λn :=

⋃
A∈An

A, is nonempty, compact, and int(Λn) ⊃ Λn+1.
Therefore, Λ is also nonempty and compact. Moreover, Λn is composed
of a finite number of connected components A ∈ An, which by Defini-
tion 2.4, satisfy limn→+∞maxA∈An diamA = 0. Since Λ :=

⋂
n≥0 Λn, we

deduce that the Λ-set is a Cantor set contained in int(Dm).

Lemma 3.7. Let n, l ≥ 1 and A1, A2 ∈ An. If there exists an l+1-path
from A1 to A2, then Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅.

Proof. Assume that there exists an (l + 1)-path from A1 to A2. So,
from Lemma 3.5, for all j ≥ n0 there exists atoms Bj,1, Bj,2 ∈ Aj and
an (l+ 1)-path from Bj,1 to Bj,2 (with constant length l+ 1) such that

Bn,i = Ai, Bj+1,i ⊂ Bj,i, ∀ j ≥ n0, i = 1, 2.
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Construct the following two points x1 and x2: ]

{xi} =
⋂
j≥n0

Bj,i, i = 1, 2.

By Definition 3.6, xi ∈ Ai ∩ Λ. So, to finish the proof of Lemma 3.7 it
is enough to prove that Φl(x1) = x2.

Recall that l is fixed. Since Φ is uniformly continuous, for any
ε > 0 there exists δ > 0 such that if (y0, y1, . . . , yl) ∈ (Dm)l satisfies
d(Φ(yi), yi+1) < δ for 0 ≤ i ≤ l − 1, then the points y0 and yl sat-
isfy d(Φl(y0), yl) < ε. We choose δ small enough such that additional
d(Φl(x),Φl(y)) < ε if d(x, y) < δ.

From (5), there exists j ≥ n0 such that diam(Bj,i) < δ. Since there
exists an (l + 1)-path from Bj,1 to Bj,2, there exists a (y0, . . . , yl) as in
the previous paragraph with y0 ∈ Bj,1 and yl ∈ Bj,2. Thus

d(Φl(x1), x2) ≤ d(Φl(x1),Φl(y0)) + d(Φl(y0), yl) + d(yl, x1)

< diam(Φl(Bj,1)) + ε+ diam(Bj,2) < 3ε.

Since ε > 0 is arbitrary, we obtain Φl(x1) = x2, as required. �

Lemma 3.8. (Topological dynamical properties of Λ)

a) The Λ-set of a model map Φ ∈ H is Φ-invariant, i.e., Φ(Λ) = Λ.
b) The map Φ restricted to the Λ-set is topologically mixing.
c) In particular, Φl(A1 ∩Λ)∩ (A2 ∩Λ) 6= ∅, for all n ≥ 1, for any

two atoms A1, A2 ∈ An and for all l ≥ 2n− 1.

Proof. a) Let x ∈ Λ and let {An(x)}n≥0 the unique sequence of atoms
such that x ∈ An(x) and An(x) ∈ An for all n ≥ 0. Then, Φ(x) ∈
Φ(An(x)) for all n ≥ 0. From Definition 2.3, for all n ≥ 0 there exists

an atom Bn ∈ An such that An(x)
Φ→ Bn. Therefore Φ(An(x))∩Bn 6= ∅.

Let d denote the Hausdorff distance between subsets of Dm, we deduce

d(Φ(x), Bn) ≤ diam
(
Φ(An(x))

)
+ diam

(
Bn

)
.

Moreover, Equality (5) and the continuity of Φ imply

lim
n→+∞

max
{

diam
(
Φ(An(x))

)
, diam

(
Bn

)}
= 0.

Then, for all ε > 0 there exists n0 ≥ 0 such that d(Φ(x), Bn) < ε for
some atom Bn ∈ An for all n ≥ n0. Since any atom of any generation
intersects Λ, we deduce that d(Φ(x),Λ) < ε for each ε > 0. Since Λ is
compact, this implies Φ(x) ∈ Λ. We have proved that Φ(Λ) ⊂ Λ.

Now, let us prove the other inclusion. Let y ∈ Λ and let {Bn(y)}n≥0

the unique sequence of atoms such that y = Φ(x) ∈ Bn(y) and Bn(y) ∈
An for all n ≥ 0. From Definition 2.3, for all n ≥ 0 there exists an atom
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An ∈ An such that An
Φ→ Bn(y). Therefore Φ(An) ∩ Bn(y) 6= ∅. We

deduce that, for all n ≥ 0, there exists a point xn ∈ An ∈ An such that
Φ(xn) ∈ Bn(y). Since any atom An contains points of Λ, we obtain

d(xn,Λ) ≤ diam(An) and d(Φ(xn), y) ≤ diam(Bn(y)), ∀ n ≥ 0.

Let x be the limit of a convergent subsequence of {xn}n≥0, applying
Equality (5) and the continuity of Φ, we deduce that d(x,Λ) = 0 and
d(Φ(x), y) = 0. This means that y = Φ(x) and x ∈ Λ. We have proved
that y ∈ Φ(Λ) for all y ∈ Λ; namely Λ = Φ(Λ), as required.

c) We will prove a stronger assertion: for any two atoms, even of
different generation, there exists l0 ≥ 1 such that

(23) Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅ ∀ l ≥ l0.

It is not restrictive to assume that A1 and A2 are atoms of the same
generation n0 (if not, take n0 equal to the largest of both generation and
substitute Ai by an atom of generation n0 contained in Ai). Applying
Lemma 3.4, for all l ≥ 2n0 − 1 there exists an (l + 1)-path from A1 to
A2. So, from Lemma 3.7 Φl(A1 ∩ Λ) ∩ (A2 ∩ Λ) 6= ∅, as required.

b) The intersection of Λ with the atoms of all the generations gen-
erates its topology, thus Equation (23) implies that Λ is topologically
mixing. �

For fixed (A0, Al) ∈ A2
n we set

Al+1 ∗
n (A0, Al) := {(A0, A1, . . . , Al−1, Al) ∈ Al+1 ∗

n }.

Lemma 3.9. Let l, n ≥ 1. Then

a) Al+1 ∗
n = 2nl · (#An).

b) Al+1 ∗
n (A0, Al) = 2nl

#An
∀ (A0, Al) ∈ A2

n, for all l ≥ 2n− 1.

Proof. a) Each (l + 1)-path (A0, A1, . . . , Al) of n-atoms is determined
by a free choice of the atom A0 ∈ An, followed by the choice of the

atoms Aj ∈ An such that Aj
Φ→ Aj−1 for all j = 1, . . . , l. From equality

(4) of Definition 2.3, we know that for any fixed A ∈ An the number

of atoms B ∈ An such that B
Φ→ A is 2n. This implies a), as required.

b) We argue by induction on n. Fix n = 1 and l ≥ 1. Since any two

atoms Aj, Aj+1 ∈ A1 satisfies Aj
Φ→ Aj+1, the number of (l + 1)-paths

(A0, A1, . . . , Aj, Aj+1, . . . Al−1, Al)

of 1-atoms with (A0, Al) fixed, equals #(A1)l−1 = 2l−1 = 2l/2 =
2nl/(#An) with n = 1.

Now, let us assume that assertion b) holds for some n ≥ 1 and let us
prove it for n+ 1. Let l ≥ 2(n+ 1)− 1 = 2n+ 1 ≥ 3 and let (B0, Bl) ∈
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A2
n+1. From equality (3) and conditions a) and b) of Definition 2.3,

there exists unique (A−1, A0, A1) ∈ A3∗
n and unique (Al−1, Al) ∈ A2∗

n

such that

B0 ∈ Γn+1(A−1, A0, A1), Bl ∈ Ωn+1(Al−1, Al).

As (A1, Al−1) ∈ A2
n and l−2 ≥ 2n−1, the induction hypothesis ensures

that the number of (l − 1)-paths (A1, A2, . . . , Al−1) from A1 to Al−1 is

(24) #Al−1 ∗
n (A1, Al−1) =

2n(l−2)

#An
=

2n(l−2)

2n2 = 2nl−2n−n2

.

Let C(B0, Bl) be the set⋃
(A1,...,Al−1)∈Al−1 ∗

n (A1,Al−1)

{
(B0, B1, . . . , Bl) ∈ Al+1

n+1 : Bj ∈ Γn+1(Aj−1, Aj, Aj+1) ∀j
}
,

where the families in the above union are pairwise disjoint. It is
standard to check that the families in the union C(B0, Bl) are pair-

wise disjoint, because for A 6= Ã in An, the families Γn+1(·, A, ·) and

Γn+1(·, Ã, ·) are disjoint. We assert that

(25) Al+1 ∗
n+1 (B0, Bl) = C(B0, Bi)

First, let us prove that Al+1 ∗
n+1 (B0, Bl) ⊂ C(B0, Bl).

In fact, if (B0, B1, . . . , Bl−1, Bl) ∈ Al+1 ∗
n+1 (B0, Bl), there exists unique

Aj ∈ An such that Bj ⊂ Aj for all j ∈ {0, 1, . . . , l}. Since Bj−1
Φ→

Bj
Φ→ Bj+1 for all j ∈ {1, . . . , l − 1}, we deduce that Aj

Φ→ Bj+1
Φ→

Aj+1; hence, by definition of the families Γn+1 we have

Bj ∈ Γn+1(Aj−1, Aj, Aj+1) ∀ j ∈ {1, . . . , l − 1}.
Thus, (B0, B1, . . . , Bl−1, Bl) ∈ C(B0, Bl), as required.

Now, let us prove that Al+1 ∗
n+1 (B0, Bl) ⊃ C(B0, Bl).

If (B0, B1, . . . , Bl−1, Bl) ∈ C(B0, Bl), then there exists a (l− 1) chain
A1, . . . , Al−1 of n-atoms from A1 to Al−1 such that

Bj ∈ Γn+1(Aj−1, Aj, Aj+1) ⊂ Ωn+1(Aj−1, Aj)

for all j = 1, 2, . . . , l − 1. By construction we have

B0 ∈ Γn+1(A−1, A0, A1) and Bl ∈ Ωn+1(Al−1, Al).

Therefore, applying condition d) of Definition 2.3, we deduce that

Bj
Φ→ Bj+1 ∀ j = 0, 1, . . . , l − 1.

In other words, (B0, B1, . . . , Bl−1, Bl) ∈ Al+1 ∗
n+1 (B0, Bl), ending the proof

of Equality (25).
Now, applying (24) and (25), we obtain #Al+1 ∗

n+1 (B0, Bl) =
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∑
(A1,...,Al−1)∈Al−1 ∗

n (A1,Al−1)

#
{

(B0, B1, . . . , Bl) ∈ Al+1
n+1 : Bj ∈ Γn+1(Aj−1, Aj, Aj+1) ∀j

}
=

∑
(A1,...,Al−1)∈Al−1 ∗

n (A1,Al−1)

l−1∏
j=1

#Γn+1(Aj−1, Aj, Aj+1)

= (#Al−1 ∗
n (A1, Al−1)) · 2l−1 = 2nl−2n−n2+l−1 = 2(n+1)l−(n+1)2

=
2(n+1)l

#An+1

as required. �

Lemma 3.10. (Intersection of Λ with l-paths) Fix l, n ≥ 1. Then

a) For any G ∈ An+l, there exists a unique (l+1)-path (A0, A1, . . . , Al)

of n-atoms such that G ∩ Λ ⊂
⋂l
j=0 Φ−j(Aj).

b) For any atoms G ∈ An+l, A ∈ An and j ∈ {0, 1, . . . , l}:
(G ∩ Λ) ∩ Φ−j(A) 6= ∅ ⇔ G ∩ Λ ⊂ Φ−j(A).

c) For any (l + 1)-path ~Aln := (A0, A1, . . . , Al) of n-atoms,

(26) Λ ∩
l⋂

j=0

Φ−j(Aj) =
⋃

G∈Fn,l( ~Al
n)

G ∩ Λ,

where Fn,l( ~Aln) :=
{
G ∈ An+l : G ∩ Λ ⊂

⋂l
j=0 Φ−j(Aj)

}
.

d) For any atom G ∈ An+l and any path ~Aln ∈ Al+1 ∗
n :

G ∈ Fn,l( ~Aln) if and only if there exists (G0, G1, . . . , Gl) ∈ Al+1 ∗
n+1

such that G0 = G and Gj ⊂ Aj for all j = 0, 1, . . . , l.
e) For any (l + 1)-path (A0, A1, . . . , Al) of n-atoms,

#Fn,l( ~Aln) =
1

2nl
· #An+l

#An
.

Proof. a) From equalities (2) and (3) of Definition 2.3, for any atom
G of generation n+ l there exist two unique atoms B,C of generation

n+ l− 1 such that B
Φ→ C, G ⊂ B and G

Φ→ E for all E ∈ Ωn+l(B,C).
Moreover, from condition d) of Definition 2.3, we have

(27) Φ(G) ∩ (F ) 6= ∅ if and only if F ∈ Ωn+l(B,C).

We claim that

(28) Φ(G ∩ Λ) ⊂ int(C).

Since Λ is Φ-invariant, for any x ∈ G ∩ Λ, we have Φ(x) ∈ Φ(G) ∩ Λ.
Therefore Φ(x) is in the interior of some atom E(x) of generation n+ l
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(see Definition 3.6). From (27), E(x) ∈ Ωn+l(B,C). Thus E(x) ⊂
int(C) and Φ(x) ∈ int(C) for all x ∈ G ∩ Λ proving (28).

So, there exists C1 ∈ An+l−1 such that Φ(G ∩ Λ) ⊂ int(C1) ∩ Λ.
Applying the same assertion to C1 instead of G, we deduce that there
exists C2 ∈ An+l−2 such that Φ(C1∩Λ) ⊂ int(C2)∩Λ. So, by induction,
we construct atoms

C1, C2, . . . , Cl such that Cj ∈ An+l−j and

Φj(G ∩ Λ) ⊂ int(Cj) ∩ Λ, ∀ j = 1, . . . , l.

Since any atom of generation larger than n is contained in a unique
atom of generation n, there exists A0, A1, . . . , Al ∈ An such that A0 ⊃
G and Ai ⊃ Ci, ∀ i = 1, . . . , l. We obtain

Φj(G ∩ Λ) ⊂ int(Aj), ∀ j = 0, 1, . . . , l.

Besides, (A0, A1, . . . , Al) is an (l + 1)-path since ∅ 6= Φj(G ∩ Λ) ⊂
Φ(Aj−1)∩ int(Aj); hence Aj−1

Φ→ Aj for all j = 1, . . . , l. Then, G∩Λ ⊂
Φ−j(Aj) for all j = 0, 1, . . . , l; proving the existence statement in a).

To prove uniqueness assume that (A0, A1, . . . , Al) and (A′0, A
′
1, . . . , A

′
l)

are paths of n-atoms such that

G ∩ Λ ⊂ Φ−j(Aj) ∩ Φ−j(A′j) ∀ j ∈ {0, 1, . . . , l}.

Then Aj ∩A′j 6= ∅ for all j ∈ {0, 1, . . . , l}. Since two different atoms of
the same generation are pairwise disjoint, we deduce that Aj = A′j for
all j ∈ {0, 1, . . . , l} as required.

Trivially, if Λ∩G ⊂ Φ−j(A) then Λ∩G ⊂ Φ−j(A) 6= ∅. Let us prove
the converse assertion. Let G ∈ An+1 such that Λ ∩G ⊂ Φ−j0(A) 6= ∅
for some j0 ∈ {0, 1, . . . , l}. Applying part a) there exists an (l + 1)-

path (Ã0, . . . , Ãl) of n-atoms such that G ∩ Λ ⊂ Φ−j(Ãj) for all j ∈
{0, 1, . . . , l}. So, Φ−j0(Aj0) ∩ Φ−j0(Ãj0) 6= ∅. But, if Ãj0 6= Aj0 , then
since they are atoms of the same generation they would be disjoint,

and the above intersection would be empty. We deduce that Aj0 = Ãj0 ,
hence G ∩ Λ ⊂ Φ−j0(Aj0), as required.

b) Trivially, if G∩Λ ⊂ Φ−j(A), then (G∩Λ)∩Φ−j(A) 6= ∅. Now, let
us prove the converse assertion. Fix G ∈ An+l and A ∈ An satisfying

(G ∩ Λ) ∩ Φ−j(A) 6= ∅. Applying part a) there exists Ã ∈ An such

that G ∩ Λ ⊂ Φ−j(Ã). Therefore G ∩ Λ ∩ Φ−j(A) ⊂ Φ−j(Ã ∩ A) 6= ∅.
Since A and Ã are atoms of generation n, and two different atoms

of the same generation are disjoint, we conclude that Ã = A, hence
G ∩ Λ ⊂ Φ−j(A), as required.
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c) For the (l + 1)-path ~Aln = (A0, A1, . . . , Al) of n-atoms, construct

(29) F̃n,l( ~Aln) :=
{
G ∈ An+l : G∩Λ∩Φ−j(Aj) 6= ∅ ∀j ∈ {0, 1, . . . , l}

}
.

From the definitions of the the families Fn,l and F̃n,l, and taking into
account that Λ is contained in the union of (n+ 1)-atoms, we obtain:

⋃
G∈Fn,l( ~Al

n)

G ∩ Λ ⊂ Λ ∩
( l⋂
j=0

Φ−j(Aj)
)
⊂

⋃
G∈F̃n,l( ~Al

n)

G ∩ Λ.

Therefore, to prove Equality (26) it is enough to show that

(30) F̃n,l( ~Aln) = Fn,l( ~Aln),

but this equality immediately follows from the construction of the fam-

ilies Fn,l( ~Aln) and F̃n,l( ~Aln) by assertion b).

d) For each (l + 1)-path ~Aln = (A0, A1 . . . , Al) of n-atoms construct

the family Gln( ~Aln) :={
G0 ∈ An+1 : ∃(G0, G1, . . . , Gl) ∈ Al+1 ∗

n+1 such that Gj ⊂ Aj ∀j
}

We will first prove that Gln( ~Aln) ⊃ F ln( ~Aln). In fact, take G ∈ F ln( ~Aln),
and take any point x ∈ G ∩ Λ. We have Φj(x) ∈ Aj ∩ Λ for all
j ∈ {0, 1, . . . , l} (recall that Λ is Φ-invariant). Since any point in Λ is
contained in the interior of some atom of any generation, there exists an
atom Gj of generation n+l such that Φj(x) ∈ int(Gj). Recall that each
atom of generation n+ l is contained in a unique atom of generation n.
As Φj(x) ∈ Gj ∩ Aj 6= ∅, and different atoms of the same are disjoint,
we conclude that Gj ⊂ Aj. Besides G0 = G because x ∈ G ∩ G0.
Finally (G0, G1, . . . , Gl) is a (l+1)-path because Φj+1(x) = Φ(Φj(x)) ∈
Φ(Gj) ∩ int(Gj+1) for all j ∈ {0, 1, . . . , l − 1}; namely Gj

Φ→ Gj+1. We

have proved that G ∈ Gln( ~Aln), as required.

Now, let us prove that Gln( ~Aln) ⊂ F ln( ~Aln). Assume that G0 ∈ An+1

and (G0, G1, . . . , Gl) ∈ Al+1 ∗
n+l satisfies Gj ⊂ Aj for all j ∈ {0, 1, . . . , l}.

Therefore (G0, G1, . . . , Gj) is a (j + 1)-path of (n + 1)-atoms for all
j ∈ {1, 2, . . . , l}. Applying Lemma 3.7, we obtain G0∩Λ∩Φ−j(Gj) 6= ∅.
Therefore, taking into account that Gj ⊂ Aj, we deduce that

G0 ∩ Λ ∩ Φ−j(Aj) 6= ∅ ∀ j ∈ {0, 1, . . . , l}.

Therefore G0 ∈ F̃ ln( ~Aln) = F ln( ~Aln) (recall (29) and (30)). This holds

for any G0 ∈ Gln( ~Aln), thust Gln( ~Aln) ⊂ F ln( ~Aln), as required.
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e) From Assertion a) we obtain:

(31) An+l =
⋃

~Al
n∈A

l+1 ∗
n

Fn,1( ~Aln),

where the families in the above union are pairwise disjoint, due to the
uniqueness property of assertion a).

Recall the characterization of the family Fn,1( ~Aln) given by Assertion
d). From Definition 2.3 (condition a) and equality (4), the number
of atoms of each generation larger than n that are contained in each

Aj ∈ An, and also the number of atoms Gj ∈ An+1 such that Gj
Φ→

Gj+1, are constants that depend only on the generations but not on
the chosen atom. Therefore, there exists a constant kn,l such that

#Fn,l( ~Aln) = #Gn,l( ~Aln) = kn,l for all the (l + 1)-paths of n-atoms. So,
from Equality (31) we obtain:

#An+l = (#Al+1 ∗
n ) · (#Fn,l({Aj}),

and applying Lemma 3.9, we conclude

#An+l = 2nl · (#An) · (#Fn,l({Aj}),
as required. �

We turn to the proof of Lemma 3.1. We will first construct the
measure ν and then prove that it has the required properties.

We start by defining an additive pre-measure on the Λ-set of Φ by

ν∗(A ∩ Λ) :=
1

#An
, ∀ A ∈ An, ∀ n ≥ 0.

Since ν∗ is a pre-measure defined in a family of sets that generates the
Borel σ-algebra of Λ, there exists a unique Borel probability measure
ν supported on Λ such that

(32) ν(A ∩ Λ) :=
1

#An
, ∀ A ∈ An, ∀ n ≥ 0.

In the following lemmas we will prove that ν is Φ-invariant, mixing,
and that the metric entropy hν(Φ) is infinite.

Lemma 3.11. ν is invariant by Φ.

Proof. Since the atoms of all generation intersected with Λ generates
the Borel σ-algebra of Λ, it is enough to prove that

(33) ν(C ∩ Λ) = ν(Φ−1(C ∩ Λ)), ∀ C ∈ An, ∀ n ≥ 0.

From (3), taking into account that Λ is invariant and that any point
in Λ belongs to an atom of generation n+ 1, we obtain:
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Φ−1(C ∩ Λ) =
⋃

(D,B)∈A2∗
n

B
Φ→C

⋃
G∈Γn+1(D,B,C)

(G ∩ Λ),

where both unions are of pairwise disjoint sets. Using (4) we obtain

ν(Φ−1(C ∩ Λ)) =
∑
B∈An

B
Φ→C

∑
D∈An

D
Φ→B

∑
G∈Γn+1(B,C,D)

ν(G ∩ Λ)

= NC ·NB · (#Γn+1(B,C,D)) · 1

#An+1

,(34)

where NX := #{Y ∈ An : Y
Φ→ X}) = 2n for all X ∈ An. Since

#Γn+1(B,C,D)) = 2 (this is part c) of Definition 2.3) and #An+1 =

2(n+1)2
, we conclude

ν(Φ−1(C ∩ Λ)) = 2n · 2n · 2 · 1

2(n+1)2 =
1

2n2 =
1

#An
= ν(C ∩ Λ),

proving Equality (33) as required. �

Lemma 3.12. ν is mixing.

Proof. The family of atoms of all generations intersected with Λ gen-
erates the Borel σ-algebra of Λ, thus it is enough to prove that for any
pair (C0, D0) of atoms (of equal or different generations) there exists
l0 ≥ 1 such that

(35) ν(Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ)) = ν(C0 ∩ Λ) · ν(D0 ∩ Λ) ∀ l ≥ l0.

Let us first prove this in the case that C0 and D0 are atoms of the
same generation n. Take l ≥ 2n− 1. Applying Lemma 3.8-c), we have
Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) 6= ∅ ∀ l ≥ 2n− 1.

Fix l ≥ 2n− 1. Let

~Aln := (C0, A1, . . . , Al−1, D0) ∈ Al+1 ∗
n (C0, D0)

denote one of the 2nl/(#An) different l + 1-paths of n-atoms from C0

to D0 (see Lemma 3.9-b)).
We assert that

(36) Φ−l(D0∩Λ)∩ (C0∩Λ) = T :=
⋃

~Al
n∈A

l+1 ∗
n (C0,D0)

⋃
B∈Fn,l( ~Al

n)

(B∩Λ),

where the family Fn,l( ~Aln) of (n+ l)-atoms is defined in Lemma 3.10-c).
First, let us prove that Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ) ⊂ T . Fix x ∈

(D0∩Λ)∩ (C0∩Λ). Then C0, D0 are the unique atoms of generation n
that contain x and Φl(x) ∈ Φl(Λ) = Λ respectively. Since x ∈ Λ, there
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exists a unique atom B of generation n + l that contains x. Applying
Lemma 3.10-a) there exists a unique (A0, A1, . . . , Al) ∈ Al+1 ∗

n such
that B ∩ Λ ⊂ Φ−j(Aj) for all j ∈ {0, 1, . . . , l}. Since the n-atom that
contains x is C0, and two different n-atoms are disjoint, we deduce that
A0 = C0. Analogously, since the n-atom that contains Φl(x) is D0 and
the preimages of two different n-atoms are disjoint, we deduce that
Al = D0. Therefore we have found ~Aln = (C0, A1, . . . , Al−1, D0) and

B ∈ Fn,l( ~Aln) such that x ∈ B ∩Λ. In other words, x ∈ T , as required.

Next, let us prove that Φ−l(D0∩Λ)∩(C0∩Λ) ⊃ T . Take B ∈ Fn,l( ~Aln)

for some ~Aln = (C0, A1, . . . , Al−1, D0). From the definition of the family

Fn,l( ~Aln) in Lemma 3.10-c), we have B ∩ Λ ⊂ (C0 ∩ Λ) ∩ Φ−l(D0).
Besides B ∩Λ ∈ Φl(Λ) because Φl(Λ) = Λ. We conclude that B ∩Λ ⊂
(C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ), proving that T ⊂ Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ), as
required. This ends the proof of equality (36).
n-atoms are pairwise disjoint, thus the sets in the union constructing

T are pairwise disjoint. Therefore, from (36), and applying Lemma 3.9-
b) and Lemma 3.10-e), we deduce

ν((C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ)) =
∑

~Al
n∈A

l+1 ∗
n (C0,D0)

∑
B∈Fn,l( ~Al

n)

ν(B ∩ Λ)

= (#Al+1 ∗
n (C0, D0)) · (#Fn,l( ~Aln)) · 1

#An+l

=
2nl

#An
· 1

2nl
· #An+l

#An
· 1

#An+l

=
1

#An
· 1

#An
= ν(C0 ∩ Λ) · ν(D0 ∩ Λ).

This ends the proof of equality (35) in the case that C0 and D0 are
atoms of the same generation n, taking l0 = 2n− 1.

Now, let us prove equality (35) when C0 and D0 are atoms of different
generations. Let n equal the maximum of both generations. Take
l ≥ 2n − 1. Since Λ is contained in the union of the atoms of any
generation, we have

C0 ∩ Λ =
⋃

C∈An,C⊂C0

C ∩ Λ,

where the sets in the union are pairwise disjoint. Analogously

Φ−l(D0 ∩ Λ) =
⋃

D∈An,D⊂D0

Φ−l(D ∩ Λ),
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where also the sets in this union are pairwise disjoint. So,

(C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ) =
⋃

C∈An,C⊂C0

⋃
D∈An,C⊂D0

(C ∩ Λ) ∩ Φ−l(D ∩ Λ).

Since the sets in the union are pairwise disjoint, we deduce

ν((C0∩Λ)∩Φ−l(D0∩Λ)) =
∑

C∈An,C⊂C0

∑
D∈An,C⊂D0

ν((C∩Λ)∩Φ−l(D∩Λ)).

As C,D are atoms of the same generation n, and l ≥ 2n− 1, we can
apply the first case proved above, to deduce that

ν((C0 ∩ Λ) ∩ Φ−l(D0 ∩ Λ)) =

(37) #{C ∈ An, C ⊂ C0} ·#{D ∈ An, C ⊂ D0} ·
1

(#An)2
.

The number of atoms of generation n contained in an atom C0 of
generation n1 larger or equal than n, does not depend of the chosen
atom C0. Therefore,

#{C ∈ An, C ⊂ C0} =
#An
#An1

= (#An) · ν(C0 ∩ Λ).

Analogously

#{D ∈ An, D ⊂ D0} = (#An) · ν(D0 ∩ Λ).

Finally, substituting in equality (37) we conclude that

ν(Φ−l(D0 ∩ Λ) ∩ (C0 ∩ Λ)) = ν(C0 ∩ Λ) · ν(D0 ∩ Λ) ∀ l ≥ 2n− 1,

ending the proof. �

Lemma 3.13. hν(Φ) = +∞.

Proof. For n ≥ 1 we consider the partition An of Λ consisting of all the
n-atoms intersected with Λ. By the definition of metric entropy

(38) hν(Φ) := sup
P
h(P , ν) ≥ h(An, ν), where

(39) h(An, ν) := lim
l→+∞

1

l
H
( l∨
j=0

(Φ−jAn), ν
)
,

Ql :=
l∨

j=0

Φ−jAn :=
{ l⋂
j=0

Φ−jAj ∩ Λ 6= ∅ : Aj ∈ An
}
,
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(40) H(Ql, ν) := −
∑
X∈Ql

ν(X) log ν(X).

For any nonempty X := Λ∩
(⋂l

j=0 Φ−jAj

)
∈ Ql, Lemma 3.10-c) yields

ν(X) = ν
( l⋂
j=0

Φ−jAj ∩ Λ
)

=
∑

G∈Fn,l({ ~Al
j})

ν(G ∩ Λ).

Since G is an atom of generation n+ l, we have ν(G∩Λ) = 1/(#An+l),
thus applying Lemma 3.10-e), yields

ν(X) =
#Fn,l({Aj})

#An+l

=
1

2nl ·#An
.

Combining this with (40) yields H(Ql) = log(#An)+nl · log 2. Finally,
substituting in Equality (39), we conclude

h(An, ν) := lim
l→+∞

1

l
H
(
Ql, ν

)
= n log 2.

Combining with (38) yields hν(Φ) ≥ n log 2, for all n ≥ 1; hence
hν(Φ) = +∞. �

Proof of Lemma 3.1. As proved in Lemmas 3.11, 3.12 and 3.13, the
probability measure ν constructed by equality (32) is Φ-invariant, mix-
ing and has infinite metric entropy, as required. �

4. Periodic Shrinking Boxes

In this section we will prove Theorems 1 and 3. The proofs are based
on the properties of the models proved in the previous sections, and
on the existence of the periodic shrinking boxes which we construct
here.

Definition 4.1. (Periodic shrinking box) Let f ∈ C0(M) and K ⊂
M be a box. We call K periodic shrinking with period p ≥ 1 for f , if
K, f(K), f 2(K), . . . , f p−1(K) are pairwise disjoint, and fp(K) ⊂
int(K). If so, we call fp|K : K → int(K) the return map.

Lemma 4.2. For any δ > 0, there exists an open and dense set of maps
f ∈ C0(M) that have a periodic shrinking box K with diam(K) < δ.
For a dense set of f ∈ C0(M) the return map to K is a homeomorphism
onto its image.

The proof of this lemma uses the following definition and technical
result.
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Definition 4.3. Let H ⊂ K be two boxes in the manifold M . We say
that H is homothetic to K if there exists a homeomorphism φ : K 7→
[0, 1]m such that φ(H) = [a, b]m ⊂ [0, 1]m

Lemma 4.4. Let f ∈ C0(M) and x0 ∈ M . For all ε > 0, there exists
g ∈ C0(M) and a neighborhood H of x0 such that ‖g − f‖C0 < ε and
a homeomorphism g|H onto its image. Moreover, g can be constructed
to coincide with f except in an arbitrarily small neighborhood of x0.

Proof. Fix 0 < δ < ε/2 small enough such that if dist(x, y) < δ, then
dist(f(x), f(y) < ε/2. Construct boxes H and K such that diam(K) <
δ and H is homothetic to K and x0 ∈ int(H) ⊂ H ⊂ int(K). Let
φ : K 7→ [0, 1]m be the homeomorphism of Definition 4.3. Consider the
compact neighborhood K ′ ⊂ M of radius ε/2 and center f(x0), and
a homeomorphism φ′ : K ′ 7→ [0, 1]m (if necessary reduce ε from the
very beginning so the compact balls of radius ε/2 in the manifold are
homeomorphic to [0, 1]m). Consider a box H ′ ⊂ int(K ′).

Fix a homeomorphism χ : H 7→ H ′, Define g ∈ C0(M) by

g(x) := f(x) if x 6∈ int(K)

g(x) := χ(x) if x ∈ H

g(x) := φ′
−1 ◦ ξ ◦ φ(x)) if x ∈ int(K) \H,

where ξ : [0, 1]m \ [a, b]m → [0, 1]m is constructed as follows. Fix
z0 ∈ int([a, b]m). For each point z ∈ [0, 1]m \ [a, b]m, consider the half-
line starting a z0 containing z with z0. Consider the segment S(y) =
[s1(y), s2(y)] contained in this half-line, where s1(y) is the unique point
of the half-line in ∂[0, 1]m, and s2(y) is the unique point in ∂[a, b]m.
Now define ξ such that ξ|S(y) : S(y)→ [φ′ ◦ f ◦ φ−1(y), φ′ ◦χ ◦ φ−1(y)]
is the affinity mapping s1(y) to φ′◦f ◦φ−1(y) and s2(y) to φ′◦χ◦φ−1(y).

It is standard to check that ξ is continuous and that φ′−1◦ξ◦φ|∂K = f .
Therefore g ∈ C0(M). By construction g|H = χ : H 7→ H ′ is a
homeomorphism. Besides, g(x) may differ from f(x) only in the points
x of K; but both images are inside K ′ which is a ball of radius ε/2 in
M . Therefore ‖g − f‖C0 < ε, as required. The final statement holds
since H can be chosen arbitrarily small.

�

Proof of Lemma 4.2. According to Definition 4.1, the same periodic
shrinking box K for f is also a periodic shrinking box with the same
period for all g ∈ C0(M) near enough f , proving the openness assertion.

We turn to the denseness assertion. Let f ∈ C0(M) and ε > 0. We
will construct g ∈ C0(M) and a periodic shrinking box K for g with
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Figure 3. Construction of g near f with a periodic
shrinking box K for g.

diam(K) < δ, such that ‖g − f‖C0 < ε. We suppose δ > 0 is to be
smaller than the ε-modulus of continuity of f .

By the Krylov-Bogolyubov theorem invariant measures exist, and
thus by the Poincaré Lemma, there exists a recurrent point x0 ∈ M
for f . First assume that x0 6∈ ∂M . So, there exists a box B ⊂ M
with diam(B) < δ such that x0 ∈ int(B). Since x0 is a recurrent point,
there exists a smallest p ∈ N such that fp(x0) ∈ int(B). Taking B
slightly smaller if necessary, we can assume that f j(x0) 6∈ B for all
j = 1, 2, . . . , p− 1. So, there exists a small compact box U ⊂ int(B) as
in Figure 3, such that x0 ∈ int(U), the sets U, f(U), . . . , f p−1(U) are
pairwise disjoint, and fp(U) ⊂ int(B).

We can choose U homothetic to B. Since U, f p(U) ⊂ int(B), there
exists a box K such that U, f p(U) ⊂ int(K) ⊂ K ⊂ int(B). We also
choose K homothetic to B. Therefore, there exists a homeomorphism
ψ : B → B such that ψ(x) = x for all x ∈ ∂B, and ψ(K) = U .

Finally, we construct g ∈ C0(M) as follows:

g(x) := f(x), ∀ x 6∈ B, g(x) = f ◦ ψ(x), ∀ x ∈ B.
By construction, K is a periodic shrinking box of g; by the choice of δ
we have ‖g − f‖ < ε.

Now, let us study the case for which M is a manifold with boundary
and all the recurrent points of f belong to ∂M . Choose one such
recurrent point x0 ∈ ∂M . For any δ > 0, there exists a compact
box B ⊂ M , with diam(B) ≤ δ such that x0 ∈ ∂M ∩ B. Since x0

is recurrent, there exists a smallest natural number p ≥ 1 such that



ERGODIC MEASURES WITH INFINITE ENTROPY 37

fp(x0) ∈ B. But fp(x0) is also recurrent. So, fp(x0) ∈ ∂M ∩ B.
The previous proof does not work as is. To overcome the problem, we
choose a new point x̃0 6= x0, near enough x0, such that x̃0 ∈ int(B) \
∂M and fp(x̃0) ∈ B. By applying Lemma 4.4 and slightly perturbing
f , if necessary, we can assume that the restriction of f to a small
neighborhood of x̃0 is a local homeomorphism onto its image. Hence,
fp(x̃0) ∈ int(B) \ ∂M. To conclude, we repeat the construction of g
and K above replacing the recurrent point x0 by x̃0.

Now, let us show that we can construct densely in C0(M) a pe-
riodic shrinking box K such that the return map fp|K is a home-
omorphism onto its image. We repeat the beginning of the proof,
up to the construction of the points x0, f(x0), . . . , f p(x0) such that
x0, f

p(x0) ∈ int(B) and f j(x0) 6∈ B. Apply Lemma 4.4, slightly perturb
f , if necessary, inside small open neighborhoods W0,W1, . . . ,Wp−1 of
the points x0, f(x0), . . . , f p−1(x0) respectively, so that f |W i

is a home-
omorphism onto its image for all i = 0, 1, . . . , p − 1. Finally, con-
struct the box U (Figure 3), but small enough so f j(U) ⊂ Wj for all
j = 0, 1, . . . , p−1, and repeat the construction of K and g as above. �

Remark 4.5. Note that to obtain the dense property in the proof of
Lemma 4.2, we only need to perturb the map f in the interior of the
initial box B with diameter smaller than δ.

The following lemma is the homeomorphism version of Lemma 4.2.

Lemma 4.6. For any δ > 0, there exists an open and dense set of maps
f ∈ Hom(M) that have a periodic shrinking box K with diam(K) < δ.

Proof. The proof of Lemma 4.2 also works in the case that f ∈ Hom(M):
in fact, the ε-perturbed map g constructed there is a homeomorphism,
and to obtain ‖g − f‖Hom(M)

< ε it is enough to reduce δ > 0 to be

smaller than the ε-continuity modulus of f and f−1. �

Remark 4.7. In the proof of Lemmas 4.2 and 4.6, if the starting
recurrent point x0 were a periodic point of period p, then the periodic
shrinking box K so constructed would contain x0 in its interior and
have the same period p.

Lemma 4.8. Let δ > 0. A generic map f ∈ C0(M) has a periodic
shrinking box K with diam(K) < δ such that the return map fp|K is
topologically conjugated to a model map Φ ∈ H (recall Definition 2.4).

Proof. Let K ⊂ M be a periodic shrinking box for f . Fix a homeo-
morphism φ : K → Dm.

To prove the Gδ property, assume that f ∈ C0(M) has a periodic
shrinking box K with diam(K) < δ, such that φ ◦ fp|K ◦φ−1 = Φ ∈ H.
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Figure 4. Perturbation g of f such that gp|K = Φ.

From Definition 4.1, the same box K is also periodic shrinking with
period p for all g ∈ N , where N ⊂ C0(M) is an open neighborhood of
f . From Lemma 2.6, H is a Gδ-set in C0(Dm), i.e., it is the countable
intersection of open families Hn ⊂ C0(Dm). We define

Vn := {f ∈ N : φ ◦ fp|K ◦ φ−1 ∈ Hn}.

Since the restriction to K of a continuous map f , and the composition
of continuous maps, are continuous operations in C0(M), we deduce
that Vn is an open family in C0(M). Besides

(41) φ ◦ gp|K ◦ φ−1 ∈ H =
⋂
n≥1

Hn if g ∈
⋂
n≥1

Vn ⊂ C0(M).

In other words, the set of maps g ∈ C0(M) that have periodic shrinking
box K with diam(K) < δ, such that the return map gp|K coincides, up
to a conjugation, with a model map Φ, is a Gδ-set in C0(M).

To show the denseness fix f ∈ C0(M) and ε > 0. Applying Lemma
4.2, it is not restrictive to assume that f has a periodic shrinking box K
with diam(K) < min{δ, ε}, such that fp|K is a homeomorphism onto
its image. We will construct g ∈ C0(M) to be ε-near f and such that
φ ◦ gp|K ◦ φ−1 ∈ H.

Choose a box W such that fp−1(K) ⊂ int(W ). If p ≥ 2, take W
disjoint with f j(K) for all j ∈ {0, 1, . . . , p− 2} (Figure 4). Reducing δ
if necessary, we can take W with an arbitrarily small diameter.
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To construct g ∈ C0(M) (see Figure 4) take Φ ∈ H and let g(x) :=
f(x) if x 6∈ W and

g(x) := φ−1 ◦ Φ ◦ φ ◦ (fp|K)−1 ◦ f(x), ∀ x ∈ fp−1(K).

This defines a continuous map g : fp−1(K) ∪ (M \W )→M such that
|g(x)−f(x)| < diam(K) < ε for all x ∈ fp−1(K) ⊂ W and g(x) = f(x)
for all x ∈M \W. Applying the Tietze Extension Theorem, there exists
a continuous extension of g to the whole compact box W , hence to M ,
such that ‖g − f‖C0 < ε. Finally, by construction we obtain

gp|K = g|fp−1(K)◦fp−1|K = φ-1 ◦Φ ◦φ ◦ (fp|K)-1◦f◦fp−1|K = φ-1 ◦Φ ◦φ,

ending the proof of Lemma 4.8. �

Lemma 4.9. Let δ > 0. A generic homeomorphism f ∈ Hom(M) has
a periodic shrinking box K with diam(K) < δ, such that the return
map fp|K is topologically conjugated to a model homeomorphism Φ ∈
H ∩ RHom(Dm).

Proof. We repeat the proof of the Gδ-set property of Lemma 4.8, using
H∩RHom(Dm) instead of H, and Hom(M) instead of C0(M) (notice
that taking the inverse is also a continuous operation in Hom(M)).

To show the denseness fix f ∈ Hom(M) and ε > 0. Let δ ∈ (0, ε)
be smaller the the ε-modulus of continuity of f and f−1, and consider
a periodic shrinking box K with diam(K) < δ (Lemma 4.6). Fix a
homeomorphism φ : K → Dm. We will construct g ∈ Hom(M) to be
ε-near f in Hom(M), with φ ◦ gp|K ◦ φ−1 = Φ ∈ H ∩ RHom(Dm).

From Definition 4.1 we know that the boxes K, f(K), . . . , f p−1(K)
are pairwise disjoint and that fp(K) ⊂ int(K). Denote W := f−1(K).
Since f is a homeomorphism, we deduce that W is a box as in Figure
4, such that W ∩ f j(K) = ∅ for all j = 0, 1, . . . , p − 2 if p ≥ 2, and
fp−1(K) ⊂ int(W ). Since diam(K) < δ we have diam(W ) < ε.

Consider φ ◦ fp|K ◦ φ−1 ∈ RHom(Dm). Applying part b) of Lemma
2.6, there exists a homeomorphism ψ : Dm → Dm such that

ψ|∂Dm = id|∂Dm , ψ ◦ φ ◦ fp|K ◦ φ−1 = Φ ∈ H ∩RHom(Dm).

So, we can construct g ∈ Hom(M) such that g(x) := f(x) for all
x 6∈ W , and g(x) := φ−1 ◦ ψ ◦ φ ◦ f(x) for all x ∈ W. Since ψ|∂Dm is
the identity map, we obtain g|∂W = f |∂W . Thus, the above equalities
define a continuous map g : M →M . Moreover g is invertible because
g|W : W → K is a composition of homeomorphisms, and g|M\W =
f |M\W : M \W →M \K is also a homeomorphism. So, g ∈ Hom(M).
Moreover, by construction we have |g(x)−f(x)| < diam(K) < ε for all
x ∈ W, and g(x) = f(x) for all x 6∈ W. Also the inverse maps satisfy
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|g−1(x)− f−1(x)| < diam(f−1(K)) = diam(W ) < ε for all x ∈ K, and
g−1(x) = f−1(x) for all x 6∈ K. Therefore ‖g − f‖Hom < ε.

Finally, let us check that gp|K is topologically conjugated to Φ:

gp|K = g|fp−1(K) ◦ fp−1|K = g|W ◦ fp−1|K =

φ−1 ◦ ψ ◦ φ ◦ f ◦ fp−1|K =

φ−1 ◦ (ψ ◦ φ ◦ fp|K ◦ φ−1) ◦ φ = φ−1 ◦ Φ ◦ φ,
ending the proof of Lemma 4.9. �

Remark 4.10. In the proof of the dense property in Lemmas 4.8 and
4.9, once a periodic shrinking box K is constructed with period p ≥ 1,
we only need to perturb the map f inside W ∪

⋃p−1
j=0 f

j(K), where W =

f−1(K) if f is a homeomorphism, and int(W ) ⊃ fp−1(W ) otherwise.
In both cases, by reducing δ > 0 from the very beginning, if necessary,
we can construct W such that diam(W ) < ε for a previously specified
small ε > 0.

Proof of Theorems 1 and 3. From Lemmas 4.8 and 4.9, a generic map
f ∈ C0(M) and also a generic f ∈ Hom(M), has a periodic shrinking
box K such that the return map fp|K : K → int(K) is conjugated to
a model map Φ ∈ H. We consider the homeomorphism φ−1 : K → Dm

such that φ−1◦fp◦φ = Φ ∈ H. Lemma 3.1 states that every map Φ ∈ H
has an Φ-invariant mixing measure ν with infinite metric entropy for
Φ. Consider the push-forward measure φ∗ν, defined by (φ∗ν)(B) :=
ν(φ−1(B ∩K)) for all the Borel sets B ⊂ M . By construction, φ∗ν is
supported on K ⊂ M . Since φ is a conjugation between Φ and fp|K ,
the push-forward measure φ∗ν is fp-invariant and mixing for fp and
moreover hφ∗ν(f

p) = +∞.
From φ∗ν, we will construct an f -invariant and f -ergodic measure µ

supported on
⋃p−1
j=0 f

j(K), with infinite metric entropy for f . Precisely,
for each Borel set B ⊂M , define

(42) µ(B) :=
1

p

p−1∑
j=0

(f j)∗(φ∗ν)(B ∩ f j(K)).

Applying Equality (42), and the fact that φ∗ν is fp-invariant and fp-
mixing, it is standard to check that µ is f -invariant and f -ergodic.
From the convexity of the metric entropy function, we deduce that

hµ(fp) =
1

p

p−1∑
j=0

h(fj)∗(φ∗ν)(f
p) = +∞.

Finally, recalling that hµ(fp) ≤ p hµ(f) for any f -invariant measure µ
and any natural number p ≥ 1, we conclude that hµ(f) = +∞. �
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5. Good sequences of periodic shrinking boxes

The purpose of this section is to prove Theorems 2 and 4.

Definition 5.1. Let f ∈ C0(M) and let K1, K2, . . . , Kn, . . . be a se-
quence of periodic shrinking boxes for f . We call {Kn}n≥1 good if it
has the following properties (see Figure 5):
• {Kn}n≥1 is composed of pairwise disjoint boxes.
• There exists a natural number p ≥ 1, independent of n, such that
Kn is a periodic shrinking box for f with a period pn, a multiple of p.
• There exists a sequence {Hn}n≥0 of periodic shrinking boxes, all with
period p, such that Kn ∪Hn ⊂ Hn−1, Kn ∩Hn = ∅ for all n ≥ 1, and
diam(Hn)→ 0 as n→ +∞.

Remark. Definition 5.1 implies that
⋂
n≥1Hn = {x0}, where x0 is

periodic with period p. Furthermore, for any j ≥ 0 we have

d(f j(Kn), f j(x0)) ≤ diam(f j(Hn−1)) ≤ max
0≤k≤p−1

diam(fk(Hn−1))
n→∞→ 0,

and thus

(43) lim
n→+∞

sup
j≥0

d(f j(Kn), f j(x0)) = 0.

Lemma 5.2. Generic maps f ∈ C0(M), and generic f ∈ Hom(M) if
m ≥ 2, have good sequences {Kn}n≥1 of periodic shrinking boxes such
that the return maps fpn|Kn are topologically conjugated to model maps.

Proof. To see the Gδ property assume that f has a good sequence
{Kn}n of periodic shrinking boxes. For each fixed n, the boxes Kn and
Hn are also periodic shrinking with periods pn and p respectively, for all
g in an open set in C0(M) or in Hom(M) (see Definition 4.1). Taking
the intersection of such open sets for all n ≥ 1, we deduce that the same
sequence {Kn} is also a good sequence of periodic shrinking boxes for
all g in a Gδ-set. Now, also assume that fpn|Kn is a model map for
all n ≥ 1. From Lemmas 4.8 and 4.9, for each fixed n ≥ 1, the family
of continuous maps g such that the return map gpn|Kn is topologically
conjugated to a model, is a Gδ-set in C0(M) or in Hom(M). The
(countable) intersection of theseGδ-sets, produces aGδ-set, as required.

To prove denseness fix f ∈ C0(M) or f ∈ Hom(M), and ε > 0. We
will construct g in the ε-neighborhood of f and a good sequence of
periodic shrinking boxes Kn for g such that, gpn|Kn =φ Φn ∈ H for all
n ≥ 1.

Generic maps f̃ ∈ C0(M) and generic f̃ ∈ Hom(M) have a peri-

odic shrinking box H0 with period p ≥ 1, such that f̃p|H0 is conjugate

to a model map Φ ∈ H (Lemmas 4.8 and 4.9). Take such f̃ in the
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(ε/6)-neighborhood of f . Since f̃p : H0 → int(H0) ⊂ H0 is continu-
ous, by the Brouwer Fixed Point Theorem there exists a periodic point
x0 ∈ int(H0) of period p. Lemma 3.1 and the argument at the end of

the proofs of Theorems 1 and 3, show that the map f̃ has an ergodic

measure µ supported on
⋃p−1
j=0 f̃

j(H0) such that hµ(f̃) = +∞. There-
fore, by Poincaré Recurrence Lemma, there exists some recurrent point

y1 ∈ int(H0) for f̃ such that y1 6= x0 (see Figure 5).
Choose δ1 > 0 small enough and construct a box B1 such that y1 ∈

int(B1), diam(B1) < δ1, x0 6∈ B1 and B1 ⊂ int(H0). We repeat the
proofs of the dense property of Lemmas 4.2 and 4.6, using the recurrent
point y1 instead of x0, and the box B1 instead of B (see Figure 3).

So, we deduce that there exists an (ε/6)-perturbation f ∗ of f̃ , and a
periodic shrinking box K1 ⊂ B1 for f ∗, with some period p1 ≥ p (see

Figure 5). Moreover, f ∗ coincides with f̃ in H0\ int(B1) (recall Remark

4.5). Therefore, the same periodic point x0 of f̃ survives for f ∗, and
the same initial box H0 is still periodic shrinking with period p for
f ∗. So, the compact sets of the family {f ∗j(H0)}j=0,1,...,p−1 are pairwise
disjoint, and f ∗p(H0) ⊂ int(H0). This implies that the period p1 of the
new periodic shrinking box K1 for f ∗, is a multiple of p.

Now, we apply the proofs of the dense property of Lemmas 4.8 and
4.9, using the shrinking box K1 instead of K (see Figure 4). We deduce
that there exists an (ε/6)-perturbation g1 of f ∗, such that K1 is still a
periodic shrinking box for g1 with the same period p1, but moreover,
the return map is now gp1

1 |K1 = Φ1 ∈ H. Taking into account Remark
4.10, we can construct g1 to coincide with f ∗ in the complement of

W1

⋃(⋃p1−1
j=0 f ∗j(K1)

)
, where W1 ⊃ fp−1(K1) is a box, small enough

not to contain the periodic point x0, and to be contained in the interior
of the shrinking box H0. Therefore, x0 and H0 are still periodic with
period p for g1.

To summarize, we have built the periodic shrinking boxes H0 and
K1 for a continuous map or homeomorphism g1, with periods p and p1

respectively, where p1 is multiple of p, and a periodic point x0 ∈ int(H0)
(see Figure 5), such that:

K1 ⊂ H0 \ {x0}, gp1

1 |K1 =φ Φ1 ∈ H and

‖g1 − f‖ < ‖g1 − f ∗‖+ ‖f ∗ − f̃‖+ ‖f̃ − f‖ < ε

6
+
ε

6
+
ε

6
=
ε

2
.

We proceed by induction on n ≥ 1, assume that H0, . . . , Hn−1 and
K1, . . . , Kn are periodic shrinking boxes (see Figure 5) of gn ∈ C0(M)
or gn ∈ Hom(M), with periods p and p1, . . . , pn respectively, where pi
is multiple of p, and that xn−1 ∈ int(Hn−1) is a periodic point of period
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Figure 5. Construction of a good sequence of periodic
shrinking boxes.

p for gn. Assume also that Kn ⊂ Hn−1 \ {xn−1}, that for 1 ≤ j ≤ n− 1

Hj, Kj ⊂ Hj−1; Hj ∩Kj = ∅; diam(Hj) <
ε

2j
;

(44) gpjn |Kj
is topologically conjugated to Φj ∈ H,

and that we have a finite number of the previously constructed maps
g1, . . . , gn such that

(45) ‖g1 − f‖ <
ε

2
, ‖gj − gj−1‖ <

ε

2j
, ∀ j = 2, . . . , n.

We will construct gn+1 and the boxes Hn and Kn+1 that satisfy the
above properties for n+1 instead of n, and such that for all j = 1, . . . , n,
the boxes Hj−1 and Kj are still periodic shrinking for gn+1 with the
same periods p, pj.

From the inductive hypothesis, gn has a periodic shrinking box Hn−1

of period p, a periodic point xn−1 ∈ int(Hn−1) of period p, and a
periodic shrinking box Kn ⊂ Hn−1\{xn−1} of period pn, a multiple of p.

We choose 0 < δ̃n < ε/2n small enough, and construct a box B̃n ⊂ Hn−1

containing the periodic point xn−1 in its interior, disjoint from Kn,

and such that diam(B̃n) < δ̃n. Repeating the proof of the density
properties in Lemmas 4.2 and 4.6 (putting xn−1 instead of x0, and

δ̃n > 0 small enough), we construct an ε/(3·2n+1)-perturbation g̃n of gn
and a periodic shrinking box Hn ⊂ int(B̃n) for g̃n. Moreover, since xn−1

is a periodic point with period p, the period of Hn can be made equal
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to p (see Remark 4.7). By construction Hn ⊂ B̃n ⊂ Hn−1 is disjoint
from Kn and from ∂Hn−1. To construct g̃n we only need to modify gn
inside B̃n (recall Remark 4.5). Therefore the same periodic shrinking
boxes H0, H1, . . . , Hn−1 and K1, K2, . . . , Kn of gn, are preserved for g̃n,
with the same periods.

Now, as in the proof of Lemmas 4.8 and 4.9, we construct a new
ε/(3 · 2n+1)-perturbation g∗n of g̃n, such that g∗n

p|Hn is conjugated to

a map in H. To construct g∗n we only need to modify g̃n in W̃n ∪⋃p−1
j=0 g

j
n(Hn), where W̃n is a neighborhood of g̃p−1

n (Hn) that can be
taken arbitrarily small by choosing Hn small enough from the begin-
ning (see Remark 4.10). Therefore we do not need to modify g̃n or gn
outside Hn−1 or inside Kn. We conclude that the same shrinking boxes
K1, . . . , Kn;H0, . . . , Hn−1 for g̃n and gn, are still periodic shrinking for
g∗n, with the same periods and that g∗n

pj |Kj
= g̃

pj
n |Kj

which is conjugated
to Φj ∈ H for all j = 1, . . . , n.

When modifying gn inside Hn−1 \ Kn to obtain g̃n and g∗n, the pe-
riodic point xn−1 of period p for gn, may not be preserved. But since
Hn ⊂ Hn−1 \ Kn is a periodic shrinking box with period p for g∗n,
by the Brouwer Fixed Point Theorem, there exists a periodic point
xn ∈ int(Hn) \Kn for g∗n, with the same period p.

Since the return map g∗n
p|Hn is conjugated to a model, there ex-

ists an ergodic measure with infinite entropy (see Lemma 3.1), sup-
ported on the g∗n-orbit of Hn. Therefore, there exists a recurrent point
yn ∈ int(Hn) such that yn 6= xn. We choose δn > 0 small enough,
and a compact box Bn ⊂ int(Hn) \ {xn} such that yn ∈ int(Bn) and
diam(Bn) < δn. Repeating the above arguments, and if δn is small
enough, we construct a new ε/(3 · 2n+1)-perturbation gn+1 of g∗n and a
box Kn+1 ⊂ int(Bn) that is periodic with some period pn+1 for gn+1,
and such that g

pn+1

n+1 |Kn+1 is conjugate to a map in H.
To construct such a perturbation gn+1 of g∗n, we only need to modify

g∗n in int(Bn), and in a box Wn+1 containing g∗n
pn+1−1(Kn+1) in its in-

terior (recall Remarks 4.5 and 4.10). Recall that Wn+1 is a small set,
provided that δn > 0 is small enough. Therefore, gn+1 can be con-
structed so the point xn is still periodic with period p for gn+1, and the
same boxes H0, H1, . . . , Hn, K1, . . . , Kn are still shrinking periodic for
gn+1, with the same periods. Moreover, g

pj
n+1|Kj

= g
pj
j |Kj

is conjugated
to Φj ∈ H for all j = 1, . . . , n.

In particular Hn is periodic shrinking with period p for gn+1, and it
contains Kn+1 by construction. This implies that the period pn+1 of
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Kn+1 is a multiple of p. By construction we have,

‖gn+1−gn‖ ≤ ‖gn+1−g∗n‖+‖g∗n− g̃n‖+‖g̃n−gn‖ < 3 · ε

3 · 2n+1
=

ε

2n+1
.

Moreover diam(Hn) < δ̃n < ε/2n. We have constructed gn+1 and the
boxes Hn and Kn+1 that satisfy the inductive properties for n + 1
instead of n, as required.

We have defined a sequence {gn}n≥1 of continuous maps or home-
omorphisms on M , and sequences {Hn}n≥1, {Kn} of compact boxes
such that the Properties (44) and (45) are satisfied for all n ≥ 1. Since
‖gn+1 − gn‖ ≤ ε/2n+1 for all n ≥ 1 the sequence {gn}n≥1 is Cauchy.
So, there exists a limit map g. Since gn is an ε-perturbation of f for
all n ≥ 1, the limit map g also is. Finally, by construction we have
gk(x) = gn(x) for all x ∈

⋃pn
j=0 g

j
n(Kn), gpnk |Kn is topologically conju-

gated to Φn ∈ H for all n ≥ 1 and for all k ≥ n. Thus {Kn}n≥1 is a
good sequence of periodic shrinking boxes for g, as required. �

Remark 5.3. As a consequence of Lemmas 5.2 and 3.1 (after applying
the same arguments at the end of the proof of Theorems 1 and 3),
generic continuous maps and homeomorphisms f have a sequence of
ergodic measures µn, each one supported on the f -orbit of a box Kn of
a good sequence {Kn}n≥1 of periodic shrinking boxes for f , satisfying
hµn(f) = +∞ for all n ≥ 1.

LetM denote the metrizable space of Borel probability measures on
a compact metric space M , endowed with the weak∗ topology. Fix a
metric dist∗ in M.

Lemma 5.4. For all ε > 0 there exists δ > 0 that satisfies the following
property: if µ, ν ∈M and {B1, B2, . . . , Br} is a finite family of pairwise
disjoint compact balls Bi ⊂M , and if supp(µ)∪supp(ν) ⊂

⋃r
i=1Bi, and

µ(Bi) = ν(Bi), diam(Bi) < δ for all i = 1, 2, . . . , r, then dist∗(µ, ν) < ε.

Proof. If M = [0, 1] the proof can be found for instance in [CT, Lemma
4]. If M is any other compact manifold of finite dimension m ≥ 1,
with or without boundary, just copy the proof of [CT, Lemma 4]
by substituting the pairwise disjoint compact intervals I1, I2, . . . , Ir ⊂
[0, 1] in that proof, by the family of pairwise disjoint compact boxes
B1, B2, . . . , Br ⊂M . �

Proofs of Theorems 2 and 4. For any ε > 0, take δ > 0 as in Lemma
5.4. Applying Lemma 5.2, generic continuous maps or homeomor-
phisms f have a good sequence of periodic shrinking boxes {Kn}n≥1,
and a sequence {µn} of ergodic f -invariant measures such that hµn(f) =

+∞ (see Remark 5.3) and such that supp(µn) ⊂
⋃pn−1
j=0 f j(Kn), where
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pn = ln · p, multiple of p, is the period of the shrinking box Kn. Taking
into account that {f j(Kn)}0≤j≤pn−1 is a family of pairwise disjoint com-
pact sets, and fpn(Kn) ⊂ int(Kn), we obtain for each j ∈ {0, 1, . . . , pn}
µn(f j(Kn)) = µn(f−j(f j(Kn))) = µn(f−j(f j(Kn)) ∩ supp(µn)) =

µn(Kn).

Since 1 =
∑pn−1

j=0 µn(f j(Kn)) = pn · µn(Kn); we obtain

µn(f j(Kn)) = µn(Kn) =
1

pn
=

1

ln p
, ∀ j = 0, 1, . . . , pn.

From Definition 5.1, there exists a periodic point x0 of period p
such that limn→+∞ supj≥0 Hdist(f j(Kn, f

j(x0))) = 0, where Hdist de-
notes the Hausdorff distance. Therefore, there exists n0 ≥ 1 such that
d(f j(Kn, f

j(x0)) < δ′ for all j ≥ 0 and for all n ≥ n0, where δ′ < δ/2
is chosen such that the family of compact balls B0, B1, . . . , Bp−1, cen-
tered at the points f j(x0) and with radius δ′, are pairwise disjoint. We
obtain f j(Kn) ⊂ Bj(mod.p) for all j ≥ 0 and for all n ≥ 0. Therefore,

µn(Bj) =
1

p
, ∀ j = 0, 1, . . . , p− 1, ∀ n ≥ n0.

Finally, applying Lemma 5.4, we conclude dist∗(µn, µ0) < ε for all n ≥
n0, where µ0 := (1/p)

∑p−1
j=0 δfj(p) is the f -invariant probability measure

supported on the periodic orbit of x0, which has zero entropy. �

6. Open questions

If f is Lipschitz then no invariant measure has infinite entropy, since
its topological entropy is finite. The following question arises: do The-
orems 1 and 3 hold also for maps with more regularity than continuity
but lower regularity than Lipschitz? For instance, do they hold for
Hölder-continuous maps?

A-priori there is a chance to answer positively this question for one-
dimensional Hölder continuous endomorphisms, because in such a case,
the topological entropy is generically infinite. This is a simple corollary
of the arguments in [FHT1]. Also for bi-Hölder homeomorphisms on
manifolds of dimension 2 or larger, there is a chance to answer positively
the above question, because their topological entropy is also generically
infinite [FHT], [FHT1]. In this article we focus only on the C0-case,
and leave for further research the eventual adaptation of our proofs,
if this adaptation is possible, to Cα-maps or homeomorphisms with
0 < α < 1.

The hypothesis of Theorems 1 and 3 states that M is a compact man-
ifold. It arises the following question: do some of the results also hold
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in other compact metric spaces that are not manifolds? For instance,
do they hold if the space is a Cantor set K?

If the aim were just to construct f ∈ Hom(K) with ergodic mea-
sures with infinite metric entropy, the answer would be positive. But
if the purpose were to prove that such homeomorphisms are generic in
Hom(K), the answer would be negative.

In fact, Theorem 3 holds in particular for the 2-dimensional square
D2 := [0, 1]2. One of the steps of the proofs consists in constructing
some fixed Cantor set Λ ⊂ D2, and a homeomorphism Φ on M that
leaves Λ invariant, and possesses an Φ-invariant ergodic measure sup-
ported on Λ with infinite metric entropy (see Lemma 3.1 and Remark
3.2). Since any pair of Cantor sets K and Λ are homeomorphic, we
deduce that any Cantor set K supports a homeomorphism f and an
f -ergodic measure with infinite metric entropy.

Nevertheless, the above phenomenon is not generic on a Cantor
set K. On the one hand, there also exists homeomorphisms on K
with finite, and even zero, topological entropy. (Take for instance
f ∈ Hom(K) conjugated to the homeomorphism on the attractor of
a Smale horseshoe, or to the attractor of the C1- Denjoy example on
the circle.) On the other hand, it is known that each homeomorphism
on a Cantor set K is topologically locally unique; i.e., it is conjugated
to any of its small perturbations [AGW]. Therefore, the topological
entropy is locally constant in Hom(K). We conclude that the homeo-
morphisms on the Cantor set K with infinite metric entropy, that do
exist, are not dense in Hom(K); hence they are not generic.
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