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Abstract—This paper focuses on the design of passive filters
with a ladder structure. Based on convex optimisation, we
propose an approach to extend the traditional LC-ladder filter
design method to lossless passive components. To achieve this, a
generalised variable T (s) is introduced, leading to a new convex
formulation of the design problem. The approach is applied on
an academic design problem: the design of a LC-bandpass ladder
filter. This provides a first and crucial step before designing filters
of practical interest.

Index Terms—Frequency Filter Design, Passive Components,
Ladder Structure

I. INTRODUCTION

Despite the rise of digital filters, analog filters are still of
importance for electronics applications. In particular, they are
used in high frequency circuits or low power applications,
where their digital counterparts are too costly or requires too
much power [1]. In RadioFrequency applications, analog pas-
sive filters, based on acoustic resonators (such as SAW/BAW),
are especially appreciated for their performance, low-power
consumption and high-quality factor.

In order to face future challenges, new sophisticated compo-
nents with better characteristics (filtering performance, power
consumption, integration,...) are emerging [2]. The resulting
system consequently becomes increasingly complex and tra-
ditional design methods cannot efficiently solve the design
problems. In order to improve the design flow and to solve
highly complex design problems, new systematic design meth-
ods are required. Convex optimisation is a natural candidate to
develop such methods. It is a powerful framework, endowed
with generic solvers, able to optimally solve a large variety
of engineering problems [3]. Furthermore, many analysis and
design problems can be formulated as an Linear Matrix
Inequality (LMI) optimisation problem, which is an important
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class of convex optimisation known to be solvable in a decent
computational time [4].

A specificity of analog filters is the configuration the ele-
ments are set in, known as the structure of the filter. Some
structure may demonstrate substantial benefits. For example,
LC filters with a ladder structure are known to be robust
to component value variability [5]. However, the introduction
of a structure makes the resulting design problem harder to
solve. In the System Design community, it is well known
that optimisation algorithms for design problems of structured
systems have a prohibitive computational complexity [6].

The usual design method of passive filters involves two
steps. First, a transfer function s21, whose frequency-response
is under modulus constraints, is computed. When s21 is a
standard transfer function, depending on the Laplace variable
s, the synthesis problem can be transformed into an LMI
optimisation problem [7]. Second, the resulting transfer func-
tion s21 needs to verify realisability constraints, in order to
be implementable in a given structure. These constraints are
complex to find, and even harder to check, for a general struc-
ture. In fact, they generally lead to a non-convex formulation
of the problem and require a good initial point to prevent
convergence issues [1], [8]. However, for a LC-ladder filter,
i.e. a ladder filter where inductances L and capacitances C
are alternatively set in the serial and the parallel arms, these
conditions appear to be simple and can be easily included into
the LMI optimisation problem of the synthesis of s21 [5].

In the Control community, a paradigm has recently emerged
to formulate analysis and design problems of structured sys-
tems as LMI optimisation problems. The underlying idea is the
introduction of a generalised variable which encompasses the
information pertaining to the structure. In the last decade, this
approach has been successful in many areas of applications as
diverse as formation flying [9], micro-Electronics [10], [11],
biological networks [12]. Our purpose is to apply this idea to
the design of structured passive filters.



Recently, the synthesis problem of a transfer function
s21(T (s)) depending on a generalised variable T (s) has been
formulated as an LMI optimisation problem [13]. The main
contribution of this paper is then to provide realisability
conditions that can be included in this formulation, in the
case where T (jω)∗ = T (jω). The resulting circuit has then
a ladder structure with serial elements impedance of the form
Z(T (jω)) = α · T (jω) and parallel elements admittance of
the form Y (T (jω)) = β · T (jω). This is applied to the direct
synthesis of LC-bandpass filter with a ladder structure. This
result may be viewed as an intermediary, but crucial, result
before tackling design problems of practical interest.

A. Structure of the paper

This paper is organised as follows. Section II presents the
design problem of LC-ladder filters. Section III introduces
and solves the extended design problem of T -elements ladder
filters. The approach is illustrated in Section IV on the design
of a LC-bandpass ladder filter. Section V concludes the paper.

B. Notations and Definitions

The letter s stands for the Laplace variable and jR̄ for
the entire imaginary axis. z∗ and <e{z} respectively de-
note the complex conjugate and the real part of the com-
plex number z. A T -element refers to en element described
by an impedance Z [resp. an admittance Y ] of the form
Z(T (jω)) = α · T (jω) [resp. Y (T (jω)) = α · T (jω)], where
α is a real, positive scalar.

Definition 1 (Passive Element). An element with an
impedance Z is said to be passive if Z satisfies: ∀ω ∈ R,
Z(jω) + Z(jω)∗ ≥ 0. It is said to be lossless-passive if
Z(jω) + Z(jω)∗ = 0.

Definition 2 (T -positive-real). A rational function f(T (s))
of a complex variable T (s) is said to be T -positive-real if
f(T (s)) is real for T (s) real and

<e{f(T (s))} > 0 for <e{T (s)} > 0

Definition 3 (T -bounded-real). Any real rational function
h(T (s)) that satisfies the conditions:

1) h(T (s)) has no poles on the closed right-half plane.
2) ∀T (jω) ∈ jR̄, |h(T (jω))| ≤ 1

is said to be a T -bounded-real rational function.

II. LC-LADDER FILTER DESIGN

A. Background about Passive Filters

A passive filter is traditionally considered as a two-port
network Q, composed of analog passive elements, inserted
between a generator (Eg, Rg) and a resistive load Rl (Fig. 1).
The input-output power transfer of a passive two-port Q is
characterised by the scattering matrix S:

U1 −RgI1
2
√
Rg

U2 −RlI2
2
√
Rl

 =

[
s11 s12
s21 s22

]
︸ ︷︷ ︸

:=S


U1 +RgI1

2
√
Rg

U2 +RlI2

2
√
Rl



Fig. 1: An Analog Filter

Fig. 2: Example of a spectral mask for bandpass requirements

where U1 and I1 are respectively the complex input voltage
and current. For a lossless-passive network Q, the scattering
parameters are linked by the relation:

|s21(jω)|2 = 1− |s11(jω)|2 (1)

Frequency-filter constraints are set on the squared magnitude
of the scattering parameter |s21(jω)|2, as it represents the
power gain between the generator and the source [14]. These
frequency-domain constraints will be referred to as the spectral
mask in the sequel.

Example 1. Typical spectral mask for passive filters are
bandpass constraints, illustrated in Fig. 2 and correspond to:

∀ω ∈ R, |s21(jω)| ≤ 1 (2)
∀ω ∈ [0;ωU1

], |s21(jω)| ≤ U1 (3)
∀ω ∈ [ωL1

;ωL2
], |s21(jω)| ≥ L (4)

∀ω ∈ [ωU2
;∞[, |s21(jω)| ≤ U2 (5)

The behaviour of the two-port Q terminated on Rl can
be represented by the input impedance zin, defined by:



zin = U1/I1. Then, simple calculation provides the relation:

zin = Rg ·
1 + s11
1− s11

(6)

B. Ladder Structure

Passive filters are mostly designed in a ladder form. His-
torically the most studied in circuit theory, ladder passive
filters are known to have low sensitivity to component values
variations [5], [15]. In addition, ladder filters have the property
that all the transmission zeros are included in the anti-resonant
frequencies of the series arms and the resonant frequencies of
the parallel arms [16], [17].

A ladder topology for four elements is illustrated in Fig. 3.
This results in a specific decomposition for zin:

zin = Z1 +
1

Y2 +
1

Z3 +
1

Y4 +
1

Rl

(7)

When Z2i−1(s) = α2i−1 · s and Y2i(s) = α2i · s, i ∈
{1, 2}, the decomposition of (7) is referred to as a continued
fractional expansion.

Rg

Eg

Z1 Z3

RlY2 Y4

Fig. 3: Example of a Ladder Filter

C. LC-Ladder Filter Design Problem

In a LC-ladder filter, serial and parallel elements are re-
spectively inductances L and capacitances C. As far as the
authors know, this is the only filter design problem, with a
prescribed structure, which has a convex formulation.

This problem is usually decoupled into two sub-problems:
1) the synthesis of the scattering parameter s21 under fre-
quency modulus constraints and 2) the satisfaction of the LC-
ladder realisability conditions [5].

1) Synthesis Problem: The first sub-problem deals with
the synthesis of the scattering parameter s21, which should
satisfy a spectral mask SM, such as for instance bandpass
requirements.

Problem 1 (Standard Synthesis Problem). Given a spectral
mask SM,
Compute a0, . . ., an and b0, . . ., bm such that

s21(s) =
b0 + b1 · s+ . . .+ bm · sm

a0 + a1 · s+ . . .+ an · sn

and |s21(jω)| satisfies SM.

2) LC-Ladder Realisability Conditions: The second sub-
problem is about finding the conditions such that the filter,
resulting from Problem 1, is in a LC-ladder form. One has
then to find the conditions such that zin can be decomposed
as a continued-fractional expansion in s.

Problem 2 (LC-Ladder Realisability Conditions).
Given s21 (or zin),
Find conditions such that zin admits a continued fractional
expansion in s:

zin(s) = α1 · s+
1

α2 · s+
1

. . .
αn · s+ 1

Rl
(or Rl)

(8)

with α1 > 0, α2 > 0, . . ., αn > 0.

D. LC-Ladder Filter Design Methods

Structural realisability conditions are in general difficult to
formulate as an LMI optimisation problem. However, those for
LC-ladder filters are rather simple. It appears that sufficient
conditions are that s21(s) is T -bounded-real, with T (s) = s,
and is a stable all-pole function, i.e. s21(s) = 1

g(s) with g a
Hurwitz polynomial [5].

In the traditional approach, solutions of Problem 1 are calcu-
lated using the Butterworth or the Chebyshev approximations.
A prototype lowpass filter is then obtained [18]. As these
approximations always satisfy the LC-ladder realisability con-
ditions, a prototype LC-ladder filter is synthesised. Using
element and frequency transformations, other standard filters
may be obtained [5]. However, the resulting impedances of
the transformed elements may not represent components of
practical interest.

In [7], it is shown how Problem 1 can be formulated as
an LMI optimisation problem. By adding the realisability
conditions, one can formulate the LC-ladder filter design
problem as an LMI optimisation problem. In the next section,
it is shown how this approach can be extended to ladder
filter with other lossless-passive elements. To achieve this, a
generalised variable T (s) is introduced. The resulting design
problem remains an LMI optimisation problem.

III. GENERALISED VARIABLE APPROACH

A. Introduction of a Generalised Variable

Design problems with a prescribed system structure are
known to be generally complex to solve [6]. An idea has
recently emerged in order to take the internal structure into
account, via the introduction of a generalised variable T . From
a System theory perspective, these systems are viewed as the
interconnection of identical subsystems [12]. The resulting
design problem is then the design of the interconnection of
these subsystems [10].

Considering ladder filters, this paradigm can be applied
as follows. Serial elements should have an impedance as
Z2i−1(T (jω)) = α2i−1 · T (jω), while the parallel elements
should have an admittance as Y2i(T (jω)) = α2i · T (jω).



The resulting decision variables are then the parameters
α1, α2, . . . , αn. Here, the variable T represents the internal
structure of the linear model of the components. The next
example illustrates this idea.

Example 2. Usual LC serial and parallel arms for ladder
bandpass filters are given in Fig. 4. The serial impedance Zs

Ls
Cs

(a) Serial

CpLp

(b) Parallel

Fig. 4: Usual serial/parallel arms for LC bandpass filters

and the parallel admittance Yp are given by:

Zs(jω) = Ls ·
ω2
0s − ω

2

jω
Yp(jω) = Cp ·

ω2
0p − ω

2

jω

with ω2
0s = 1/LsCs and ω2

0p = 1/LpCp. In the particular case
where ω2

0s = ω2
0p = ω2

0 , the impedance Zs and the admittance
Yp can be expressed as:

Zs(T (jω)) = Ls · T (jω) Yp(T (jω)) = Cp · T (jω)

where T will be the generalised variable and is defined as

T (s) :=
ω2
0 + s2

s
(9)

Remark 1. In this example, ω0s and ω0p need to be equal to
a fixed, chosen ω0. This constraint is not specific to our ap-
proach and also appears in the standard design methodology.
For typical bandpass constraints of (2)-(5), ω0 is usually set
to ω0 =

√
ωL1

ωL2
[18].

Remark 2. Standard LC-lowpass, LC-highpass and LC-
bandstop ladder filters may be considered by respectively
defining T (s) := s, T (s) := 1/s and T (s) := s/(ω2

0 + s2).

B. Filter Synthesis with a Generalised Variable

This subsection considers the extension of the standard
synthesis problem of Problem 1 to the synthesis problem
of the scattering parameter s21 as a rational function of the
generalised variable T .

Problem 3 (Generalised Variable Synthesis Problem).
Given a spectral mask SM,
Compute a0, . . ., an and b0, . . ., bm such that

s21(T (s)) =
b0 + b1 · T (s) + . . .+ bm · Tm(s)

a0 + a1 · T (s) + . . .+ an · Tn(s)

and |s21(T (jω))| satisfies SM.

Based on the ideas of [19], [20], the approach developed
in [7] has recently been extended [13] to solve Problem 3.
This leads to an equivalent LMI optimisation problem, which
can then be efficiently solved.

C. T -Elements Ladder Realisability

1) New Problem Formulation:

Problem 4 (T -Elements Ladder Realisability Conditions).

Given s21 (or zin),
Find conditions such that zin admits a continued fraction in
T (s):

zin(T (s)) = α1·T (s)+
1

α2 · T (s) +
1

. . .
αn · T (s) + 1

Rl
(or Rl)

(10)
with α1 > 0, α2 > 0, . . ., αn > 0.

Having a decomposition of zin as in (10), the serial elements
are given by Z2i−1(T (jω)) = α2i−1 · T (jω) and parallel ele-
ments by Y2i(T (jω)) = α2i · T (jω).

2) Extended Ladder Realisability condition: The next the-
orem directly extends the realisability conditions from LC-
ladder filters to T -elements ladder filters. Refer to Appendix
A for the proof.

Theorem 1. Assume that T (s) = −T (−s).
Let zin be a T -positive-real rational function written as

zin(T (s)) =
N(T (s))

D(T (s))

Suppose that

1

2
(zin(T ) + zin(−T )) =

1

D(−T )D(T )
(11)

Then zin(T (s)) admits a continued fraction expansion such
as in (10), with α1 > 0, α2 > 0, . . ., αn > 0.

Remark 3. When T (s) = s, the usual realisability conditions
are found [5].

Remark 4. Evaluated on the jω-axis, the assumption on T
of Theorem 1 becomes T (jω) + T (jω)∗ = 0. Thus, this
theorem is available for all the lossless passive elements with
impedance [resp. admittance] Z(T (jω)) = α · T (jω) [resp.
Y (T (jω)) = α · T (jω)]. In particular, this includes any
components modelled as the interconnection of inductances
and capacitances.

Conditions of Theorem 1 seem hard to connect to the convex
optimisation problem of the synthesis problem of s21. The aim
of Corollary 1 is to provide this connection.

Corollary 1. Assume that T (s) = −T (−s).
Let s21(T (s)) be a T bounded-real rational function written

as

s21(T (s)) =
N(T (s))

D(T (s))

Suppose that

s21(T (s))s21(−T (s)) =
1

D(T (s))D(−T (s))



Then the resulting zin(T (s)) admits a continued fraction
expansion such as in (10), with α1 > 0, α2 > 0, . . ., αn > 0.

T -elements ladder realisability conditions of Corollary 1
are that s21 is T -bounded-real and has a constant numerator.
These conditions can be easily added to the LMI optimisation
problem of the synthesis of s21(T ). The global design problem
is then an LMI optimisation problem.

IV. APPLICATION

In this section, our approach is illustrated on an academic
example: the design problem of a LC-bandpass ladder filter.
The constraints are those of (2)-(5) with ωU1

= 0.75 rad/s,
ωL1 = 1 rad/s, ωL2 = 1.5 rad/s and ωU2 = 2.2 rad/s, and
U1 = 0.1, L = 0.96 and U2 = 0.2. The generalised variable
T is defined as in (9) with ω0 =

√
ωL1
· ωL2

.
In order to get the maximum power transmitted (matching

impedance), the internal resistance of the generator and the
resistive load are generally considered to be equal to the
same value R: Rg = Rl = R. The value of R can be
normalised to R = 1Ω, as impedance scaling may be achieved
subsequently [5].

First, the squared magnitude |s21(T (jω))|2 is computed
using the Robust Control toolbox of Matlab, by applying the
LMI optimisation-based approach described in [13]:

|s21(T )|2 = 0.05402
T 8+0.08091·T 6+0.009036·T 4−0.00008729·T 2+0.05402

which satisfies the condition of Corollary 1. Recall-
ing that T (jω) = −T (−jω), by (1) it comes that
|s11(T (jω))|2 = 1− |s21(T (jω))|2. Then, using the spectral
factorisation technique [13], s11(T ) is calculated:

s11(T ) =
T 4 + 0.5784 · T 3 + 0.2079 · T 2 + 0.02954 · T

T 4 + 1.78 · T 3 + 1.625 · T 2 + 0.8693 · T + 0.2324

Thus, using (6), zin(T ) is obtained:

zin(T ) = 1.665·T 4+1.963·T 3+1.525·T 2+0.7481·T+0.1934
T 3+1.179·T 2+0.699·T+0.1934

Finally, by decomposing zin(T ) as in (10), the ladder circuit
of Fig. 5 is obtained, with:

L1 ≈ 1.665 H C1 =
1

L1 · ω2
0

≈ 0.4004 F

C2 ≈ 2.767 F L2 =
1

C2 · ω2
0

≈ 0.2409 H

L3 ≈ 2.204 H C3 =
1

L3 · ω2
0

≈ 0.3025 F

C4 ≈ 0.848 F L4 =
1

C4 · ω2
0

≈ 0.7862 H

V. CONCLUSION

In this paper, we have focused on the design of analog filter
with lossless-passive elements set in a ladder structure. To
achieve this, a generalised variable T (s) has been introduced.
We have extended the LC-ladder filter design method to the
design of T -elements ladder filters. We finally applied this
approach to the direct design of LC-bandpass ladder filter.

Rg

Eg

L1
C1 L3

C3

RlC2L2 C4L4

Fig. 5: Illustrative Example - a LC bandpass ladder filter

Fig. 6: Synthesis of a bandpass filter

Future research directions include the application of the
developed approach to other ladder filters made of components
modelled as interconnected inductances and capacitances. This
approach may also be extended to lossy passive components.

Modern RadioFrequency filters are made of two kinds of
acoustic resonators set in a ladder form. Serial components

have impedances as Zs(jω) = αs ·
1

jω
·
ω2 − ω2

rs

ω2 − ω2
as

and paral-

lel Zp(jω) = αp ·
1

jω
·
ω2 − ω2

rp

ω2 − ω2
ap

. This leads to the introduc-

tion of two generalised variables Ts(s) and Tp(s) such that
Zs(Ts(jω)) = αs · Ts(jω) and Zp(Tp(jω)) = αp · Tp(jω).
Therefore, extending the approach to two generalised variables
would be another direction of practical interest.

APPENDIX
PROOFS OF THEOREM 1 AND COROLLARY 1

Let first state and demonstrate the following lemma.

Lemma 1. Let z be a T -positive-real rational function. Then,
if it exists, a pole at infinity must be simple and have real
positive residue.

Proof of Lemma 1. Let T (s) be a complex variable such
that <e{T (s)} > 0. Let be a pole at infinity of or-
der n of the rational function z. In the neighbourhood
of this pole, using a Laurent expansion, we may write



that the dominant part of this expansion is an · Tn(s),
where an is called a residue. Using a polar form, one
can write an = |an|ejθ1 and T (s) = |T (s)|ejθ2(s), where
θ2(s) ∈

(
−π2 ; π2

)
, as <e{T (s)} > 0. Then

<e{an · Tn(s)} = |an||T (s)|n cos (θ1 + nθ2(s))

which is strictly positive for all θ2(s) in
(
−π2 ; π2

)
, by defini-

tion. This implies that θ1 = 0 and n ∈ {0, 1}. Therefore, a
pole at infinity is at most simple and an > 0.

Let demonstrate now Theorem 1.

Proof of Theorem 1. Without loss of generality, let assumes
that the degree n of the numerator N is greater than or equal
to the degree d of the denominator D: n ≥ d.

By Lemma 1, as zin is T -positive-real rational, a pole at
infinity, if it exists, must be simple and then n and d may
differ by at most 1:

|n− d| ≤ 1

Furthermore, by (11), N and D cannot have same degree,
leading to |n − d| = 1. Then, using the partial fractional
expansion technique, this leads to:

zin(T (s)) = α1 · T (s) + z2(T (s))

with the residue α1 positive α1 > 0. Moreover, as

∀T (jω) ∈ jR̄ <e{zin(T (jω))} = <e{z2(T (jω))}

using the minimum-real part theorem [5],z2 is also a T -
positive-real rational function. Furthermore, as

1

2
(z2(T (s)) + z2(−T (s))) =

1

2
(zin(T (s)) + zin(−T (s)))

=
K

D(T (s))D(−T (s))

then y2 = 1/z2 has also a pole at infinity:
y2(T (s)) = α2 · T (s) + y3(T (s)). The process can then
be iterated until the value of the resistance Rl is obtained.
This occurs after a number of infinity pole extractions equal
to the degree of the input impedance zin.

Finally, let demonstrate Corollary 1.

Proof of Corollary 1. As s21 is a T -bounded-real rational
function, by (1), s11 is also a T -bounded-real rational function.
Mere calculation provides: ∀T (jω) ∈ jR̄,

<e{zin(T (jω))} = Rg ·
1− |s11(T (jω))|2

|1− s11(T (jω))|2
≥ 0

Moreover, as s11 has no pole on the closed right-half plane,
according to the maximum modulus theorem, |s11(T (s))| has
its maximum value for T (s) ∈ jR̄. So <e{zin(T (s))} > 0 in
<e{T (s)} > 0. Thus zin is a T positive-real rational function.
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