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Abstract. In contrast to monovalent lithium or sodium ions, the reversible insertion of 

multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. Here, 

we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, 

achieved through aliovalent doping, to introduce a large number of titanium vacancies that act 

as intercalation sites. We present a broad range of experimental and theoretical 

characterizations that show a preferential insertion of multivalent ions into titanium vacancies, 

allowing a much greater capacity to be obtained compared to pure TiO2. This result highlights 

the possibility to use the chemistry of defects to unlock the electrochemical activity of known 

materials providing a new strategy for the chemical design of materials for practical 

multivalent batteries.  

 

Rechargeable batteries are increasingly used across a broad range of applications, from 

electric vehicles, to grid storage and load-leveling for primary renewable energy sources.1 At 

present, the continually increasing demands for energy storage are largely met by lithium-ion 

(Li-ion) batteries.2,3 A global transition from fossil fuels to low greenhouse-gas-emission 

energy sources, however, will require diverse energy-storage technologies, each appropriate 

for its target application.1 Batteries are expected to play a central role in any future global 

portfolio of energy storage technologies. In particular, it is expected that “beyond lithium” 

chemistries will allow batteries to be developed and implemented for applications not 

presently addressed by Li-ion technologies. Within this area, batteries based on multivalent 

ions are particularly attractive for large scale energy storage applications because of their 

superior theoretical volumetric energy densities. The development of multivalent batteries, 

however, still faces scientific challenges related to matching electrolyte properties with 

specific operating voltage windows, achieving reversible metal stripping and deposition, and 

the design of suitable electrode materials.4-9  

Among multivalent ions, the most promising cations for rechargeable batteries are Earth-

abundant, light, and have small ionic radii, such as Mg2+ (0.72 Å) and Al3+ (0.53 Å).7,10 

Following the pioneering work of Aurbach et al.,5 rechargeable magnesium-ion (Mg-ion) 

batteries have been considered a promising beyond-lithium-ion candidate. Magnesium metal 

can be used as an anode without the issues of dendrite formation that complicate Li 

technologies. Magnesium is abundant in the Earth’s crust, has a reduction potential of ca. -2.3 

V/NHE, and has a higher volumetric capacity than lithium metal.7,11,12 Despite these 

promising aspects, the development of rechargeable Mg-ion batteries has been impeded by 

intrinsic limitations related to intercalation chemistry of Mg2+.7,13-15 Divalent Mg2+ typically 
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exhibits strong electrostatic interactions with the host lattice, which can cause slow Mg2+ 

diffusion and inhibit reversible intercalation on practical timescales.13,16 Similar kinetic 

limitations, again due to strong Coulombic ion–lattice interactions, have hindered other 

multivalent battery technologies, such as Al-ion. Materials that are electrochemically active 

towards Li+ are typically inactive towards multivalent ions. To realize beyond-lithium 

devices, it is therefore necessary to develop new synthetic strategies for materials that 

reversibly insert multivalent ions. Here, we report the use of defect engineering to convert 

electrodes with poor electrochemical activities towards Mg and Al into functionally active 

electrodes for Mg- and Al-ion batteries. As a proof-of-concept, we demonstrate this strategy 

using the example parent material anatase-structured TiO2. This widely studied metal oxide 

can reversibly intercalate Li+ ions,17-20 but does not readily intercalate higher valence Mg2+ 

and Al3+ ions.21-23
   

Because Mg and Li ions have comparable ionic radii—0.72 Å and 0.76 Å, respectively—one 

might expect anatase TiO2 to readily accommodate magnesium ions. Recent calculations have 

predicted very similar intercalation energies for Mg2+ and Li+ in anatase TiO2 in the dilute 

limit (-1.74 eV and -1.85 eV respectively).24 Despite favourable thermodynamics, however, 

stoichiometric anatase shows poor electrochemical activity versus Mg, suggesting kinetic 

limitations.21,22 Liu et al.23 showed that Al3+, which has a smaller ionic radius of 0.53 Å, can 

be inserted into anatase in aqueous batteries. The extension of this work toward non-aqueous 

rechargeable batteries, however, remains to be done.    

Here, we report how doping anatase TiO2 to form a large number of charge-compensating 

titanium vacancies (22 %) greatly improves the electrochemical performance towards Mg and 

Al. The vacancies act as microstructural voids that readily accommodate Mg2+/Al3+, resulting 

in materials with greatly enhanced reversible capacities. This work shows that the targeted 

introduction of defects into electrode materials is a viable approach to engineering electrodes 

for multivalent batteries.  

Titanium vacancies as host sites for multivalent cations: DFT calculations 

The effect of introducing titanium vacancies into anatase TiO2 on intercalation behavior was 

first probed using density functional theory (DFT). We have previously shown that 

monovalent-doping (F-, OH-; hereafter denoted F-TiO2 for sake of clarity) of anatase TiO2 

introduces a large number of charge-compensating Ti vacancies,20 which preferentially 

intercalate monovalent ions such as Li. To study the behavior towards intercalation of 

multivalent ions, we first performed a series of DFT calculations to compare intercalation 

energies for Li, Mg, and Al in anatase TiO2 and in F-doped TiO2. For this we considered two 
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models for F-TiO2, featuring a single vacancy and a paired-double vacancy, each 

representative of the local structure observed by solid-state 19F NMR. Our calculated 

intercalation energies for Li, Mg, and Al at Ti vacancies in F-doped anatase TiO2 versus 

stoichiometric anatase TiO2 predicts strongly enhanced intercalation for F-doped TiO2. 

Figure 1 shows the three possible host sites considered: the interstitial site in stoichiometric 

anatase, and the single- and double-titanium vacancies in F-doped TiO2.
20 In the Ti vacancy 

calculations, we considered supercells where oxide ions in equatorial positions around the 

vacancies were preferentially replaced by fluoride ions, which we have previously shown 

corresponds to energetically favourable defect configurations.20 In F-doped TiO2, the F- 

dopants substitute for O2- ions, and charge-compensating Ti vacancies are formed, producing 

a defect ratio of 4 F- per VTi. For our DFT calculations our single- and double-vacancy 

systems have compositions of Ti351O68F4 and Ti1262O248F8.  

We calculated the intercalation energies of Li+, Mg2+, and Al3+ inserted at an interstitial site 

(in stoichiometric anatase TiO2), and at the VTi sites (in F-doped TiO2). In stoichiometric 

anatase TiO2, these calculations confirm the thermodynamic driving force for the intercalation 

of multivalent cations is smaller than for than for Li+. The intercalation energies for Li, Mg, 

and Al are -1.52 eV, -1.02 eV, and -1.25 eV respectively. In F-doped anatase systems, 

however, all three cations intercalate more readily at titanium vacancy sites, with intercalation 

energies of -2.92 eV (Li), -3.30 eV (Mg), and -3.13 eV (Al). Significantly, the change in 

intercalation energy for the multivalent ions is larger than for lithium. From a thermodynamic 

perspective, therefore, these titanium vacancy sites are predicted to readily intercalate not 

only lithium, but also multivalent ions. This suggests that the introduction Ti vacancies 

through targeted aliovalent doping might activate anatase TiO2 towards the intercalation of 

multivalent ions.  
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Figure 1. Titanium vacancies enabling insertion of Mg2+ and Al3+ in anatase. DFT 

calculated intercalation energies for Li, Mg, and Al in anatase TiO2 and in F-doped TiO2 

(bottom). Corresponding structural representations of the intercalation sites in stoichiometric 

(defect-free) Ti36O72, single vacancy Ti351O68F4 and double–vacancy Ti1262O248F8 anatase.  

 

Synthesis and electrochemical properties 

To test this hypothesis, drawn from our DFT calculations, we synthesized samples with high 

concentrations of titanium vacancies stabilized in the anatase TiO2 framework, which is 

achieved through the partial substitution of oxides ions by monovalent anions, such as 

fluoride and hydroxide groups.20,25 The previously reported synthetic strategy produces 

samples with general chemical formula Ti1-x-yx+yO2-4(x+y)F4x(OH)4y, where  represents a 

cationic vacancy. In this work, we used a compound with 22 % cationic vacancies, 

corresponding to Ti0.780.22O1.12F0.40(OH)0.48 (Figure S1 and Table S1 in Supporting 

Information).  

Atomic resolution images of Ti0.780.22O1.12F0.40(OH)0.48 nanocrystals, obtained from an 

aberration corrected TEM, allow direct visualization of the titanium vacancies (Figure 2a-e). 

The variation in atomic column intensity observed on the high-resolution image (Figure 2b) 

corresponds to a variation in the Ti atomic occupation, and hence points to the presence of 

vacancies.26 The intensity variation and dark contrast between atomic columns is emphasized 

in the colored image and in the line profile in the Figure 2c. High-resolution TEM images 

were calculated (space group I41/amd) with a Ti atomic occupancy fixed at 78 % with either a 
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uniform (Figure 2d) or random (Figure 2e) distribution. The calculated image featuring a 

random distribution of vacancies is in a good agreement with the experimental image.  

The electrochemical activity of Ti0.780.22O1.12F0.40(OH)0.48 vs. Mg2+ ions was evaluated using 

a three-electrodes Swagelok cell employing magnesium metal as anode and reference 

electrodes, and 2PhMgCl-AlCl3/THF solution as the electrolyte (Figure 2f). For comparison 

purpose, we evaluated the electrochemical activity of nanosized formally stoichiometric 

anatase TiO2 (Figure S1 and Table S1 in Supporting Information) which gives a reversible 

capacity of only 25 mAh g-1 (0.037 Mg2+ per formula unit) confirming the poor intercalation 

properties. Note that we employed nanoparticles of similar dimension to rule out size effects 

particularly well established for Li-insertion properties in this compound.27 

Ti0.780.22O1.12F0.40(OH)0.48 exhibits a remarkable electrochemical activity in agreement with 

the above mentioned statement emphasizing the positive role of titanium vacancies in storing 

multivalent ions. The first discharge capacity reaches 165 mAh g-1 and is further stabilized to 

140 mAh g-1 upon charging. The reversible capacity progressively increases during the first 

three subsequent cycles reaching about 155 mAh g-1, corresponding to the intercalation of 

~0.23 mole Mg2+ per formula unit. This value is approximately six times higher than for TiO2 

and is comparable to the reference electrodes Mo6S8 and Li4Ti5O12.
6,28 The number of Mg2+ 

ions that can be reversibly intercalated matches the concentration of titanium vacancies, as we 

will discuss below. Upon cycling, the charge-discharge curves present a sloping aspect, 

emphasizing a solid-solution behavior. The average voltage was 1.0 V vs. Mg2+/Mg, a value 

comparable to other titanium-based anode materials in Mg batteries, i.e. TiSe2 and 

Li4Ti5O12.
28,29 However, the electrode showed a large polarization with an average discharge 

and charge voltage of 0.5 and 1.5 V, respectively. The origin of such a polarization needs to 

be addressed. Finally, the Ti0.780.22O1.12F0.40(OH)0.48 electrode exhibits excellent rate 

capability (Figure S4a in Supporting Information) and cycling stability under high current 

densities. Under 150 mA g-1, the electrode maintained a capacity of around 100 mAh g-1 after 

200 cycles (Figure S4b in Supporting Information). Even under 300 mA g-1, a capacity of 

around 65 mAh g-1 was maintained after 500 cycles (Figure S4c in Supporting Information).  

Similar trend was observed for Al3+, with the presence of titanium vacancies enabling to 

unlock the electrochemical activity of anatase. Stoichiometric TiO2 showed negligible 

electrochemical activity vs. Al3+/Al with reversible capacity close to 30 mAh.g-1 (Figure 2g). 

Introducing vacancies leads to an increase of the capacity with the first discharge capacity 

reaching ca. 120 mAh.g-1 and further decreasing to 90 mAh.g-1 upon charging. In contrast to 

anion AlCl4
- intercalation in graphite,9 only a limited number of materials (Mo6S8

30, VO2
31 
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and V2O5
32) are prone to insert trivalent Al ions. Although the reversible capacity is found to 

be too low to enable practical applications, the presence of vacancies substantially improves 

the charge storage capability of anatase providing a new avenue to activate other types of 

chemical compounds.        

 
Figure 2. Titanium vacancies enable reversible electrochemical 

magnesiation/alumination in anatase. (a) High resolution Cs-corrected TEM image of a 

Ti0.780.22O1.12F0.40(OH)0.48 nanoparticle. (b) Atomic resolution image of anatase crystal 

(space group I41/amd) oriented along the [001] axis. (c) Colored HRTEM image with a profile 

plot of a line of atoms (white rectangle), which exhibit a clear intensity variation both of 

atomic columns and dark patchs in between. (d,e) Calculated high resolution TEM images of 

anatase structure oriented along [001] axis using MactempasX2 software with an average Ti 

occupancy of 78%: uniform (d) and random (e) distribution. The calculated image in Figure 

1e exhibits similar features that those observed in experimental HR image, which 

demonstrates the irregularity of the Ti occupancy in the structure. (f) Galvanostatic discharge-

charge curves for TiO2 and vacancy containing anatase vs. Mg. Cells were cycled under 20 

mA g-1 in the potential range of 0.05-2.3 V vs. Mg2+/Mg (the electrochemical stability of the 

electrolyte solution was determined by cyclic voltammetry shown in Figure S2 in Supporting 

Information). (g) Galvanostatic discharge-charge curves for TiO2 and vacancy containing 

anatase vs. Al. Cells were cycled under 20 mA g-1 in the potential range of 0.01-1.8 V vs. 

Al3+/Al (the electrochemical stability of the electrolyte solution was determined by cyclic 

voltammetry shown in Figure S3 in Supporting Information). 

 

Detailed analysis of the Mg storage mechanism 

Structural analysis on electrochemically magnesiated/de-magnesiated 

Ti0.780.22O1.12F0.40(OH)0.48 electrodes was performed via the pair distribution function (PDF), 

obtained by Fourier transformation of high-energy x-ray data (Figure 3a,b). This technique 
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provides diffuse and Bragg intensities and allows structural information to be collected for 

nanostructured materials.33 Strikingly, the PDF features show only slight changes upon 

electrochemical magnesiation and de-magnesiation, emphasizing a robust host framework that 

undergoes only minor structural changes (Figure 3b). From PDF refinements (Figure S6 and 

Table S2 in Supporting Information), we monitored the relative change of the lattice constants 

upon magnesiation (Figure 3c) which shows a negligible variation, i.e.  0.6 %. Such “zero-

strain” (ΔV < 0.6 %) behavior offers high mechanical stability with respect to repeated 

cycling.28  

We considered both octahedral interstitial sites and titanium vacancies as possible hosting 

sites for the intercalated Mg2+ ions. The occupancy of Mg2+ in octahedral interstitial sites (4b) 

and titanium vacancies (4a) obtained by PDF refinements as a function of discharge and 

charge state is shown in Figure 3d. This indicates the selective insertion of Mg2+ at titanium 

vacancies throughout the whole insertion process. Most notably, the discharge capacity 

matches the number of inserted Mg2+ obtained by PDF refinement, consistent with two-

electron redox reactions. Upon charge, Mg2+ ions are extracted from the titanium vacancies 

confirming the reversibility of the reaction.  
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Figure 3. Ex-situ structural analysis of magnesiated/de-magnesiated electrodes. (a,b) 
Discharge/charge curves with different points selected for ex-situ PDF analysis. EOD and 

EOC refer to end-of-discharge and end-of-charge, respectively. (c) Percentage of relative 

change of the lattice constants (a, c: unit cell parameters, V: volume) with respect to the initial 

state of the pristine electrode. (d) Mg2+ occupancy within the titanium vacancy site (4a) and 

octahedral interstitial site (4b).  

 

Local spectroscopic analysis of chemically magnesiated sample was performed using EDX 

and EELS measurements (Figure 4a,b) in STEM mode. EDX mapping (Figure 4a) was 

acquired at the K edge of Mg element overlaid with a HAADF-STEM image of the reduced 

sample. The chemical mapping revealed a heterogeneous localization of Mg atoms in 

agreement with a random Ti vacancies distribution. EELS-STEM spectra (Figure 4b) shows 

two double peaks corresponding to the edges L2 and L3 of Ti element. The intensity ratio of 

L2 and L3 provides information about the valence state of Ti (see Supporting Information for 

calculation details and Figure S7).34 Based on this method, the occurrence of TiIII in the 

reduced sample was clearly established. The rate of TiIII was estimated at 32 % yielding 
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Mg0.13TiIV
0.52TiIII

0.260.09O1.12F0.40(OH)0.48 (assuming that Mg2+ ions occupy only Ti 

vacancies). Moreover, the EELS-STEM map (Figure 4e) of this L2/L3 ratio exhibits a clear 

inhomogeneity in term of degree of oxidation, which is consistent with a random distribution 

of Ti vacancies.  

Further local information was obtained from 19F solid-state NMR spectroscopy. Figures 4f,g 

show the 19F MAS NMR spectra of pristine sample Ti0.780.22O1.12F0.40(OH)0.48 and 

chemically magnesiated sample Mg0.13TiIV
0.52TiIII

0.260.09O1.12F0.40(OH)0.48. The fluorine 

environments TiIV
2-F, TiIV

2-F and TiIV
3-F have been previously identified in the pristine 

compound at isotropic chemical shift (iso) values equal to 98, -4 and -88 ppm, respectively20 

(Figure 4f). The 19F NMR spectrum of the magnesiated sample (Figure 4g) reveals the 

disappearance of the line characteristic of TiIV
2-F species and a strong intensity decrease for 

the resonance assigned to TiIV
2-F species. This confirms a filling of the vacancies by Mg2+, 

and is consistent with our PDF data (Figure S8 and Table S3 in Supporting Information). 

Concomitantly, a broad resonance appears at ~ -180 ppm. This isotropic chemical shift value 

is between those for TiIII
2-F environment in TiF3 (Figure S9 in Supporting Information) and 

Mg3-F environment in MgF2 (19F iso = -197.3 ppm).35,36 These observations are consistent 

with the formation of new fluorine environments with different numbers of surrounding Mg2+, 

TiIV, TiIII species and vacancies (Figures S10-11 and Tables S4-6 in Supporting Information). 

Dipolar coupling interactions between the unpaired electrons of Ti3+ and the 19F nuclei 

account for the broadness of the 19F NMR resonances of the magnesiated sample which also 

reflects the diversity of the fluorine environments. 
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Figure 4. Chemical and local characterizations of Mg2+ in anatase. (a) EDX mapping 

acquired at the K edge of Mg element overlaid with a HAADF-STEM image of 

Mg0.13Ti0.780.09O1.12F0.40(OH)0.48. (b) EELS-STEM spectra of 

Mg0.13Ti0.780.09O1.12F0.40(OH)0.48 exhibiting double peaks corresponding to the edges L2 and 

L3 of Ti element after the background subtraction. The ratio of the integration of both green 

areas (L3 for TiIII and L2 for TiIV) provides information about the degree of oxidation of Ti. 

(c) High resolution STEM image acquired in HAADF mode of 

Mg0.13Ti0.780.22O1.12F0.40(OH)0.48. (d) EELS-STEM mapping of the red square area in 

HAADF-STEM image with a loss energy range from 400 to 500 eV. (e) Based on the EELS 

spectrum and the associated map, the mapping of the L2/L3 ratio is obtained exhibiting the 

strong inhomogeneity of the oxidation degrees of Ti, which is consistent with Ti occupancy 

distribution. Experimental 19F solid-state MAS NMR spectra of (f) 

Ti0.780.22O1.12F0.40(OH)0.48 (60 kHz) and (g) chemically magnesiated sample 

Mg0.13Ti0.780.09O1.12F0.40(OH)0.48 (34 kHz). The asterisks indicate the main spinning 

sidebands. The dashed lines indicate the 19Fiso values of TiIV
3−F, TiIV

2−F, and Ti2–F 

environments in Ti0.780.22O1.12F0.40(OH)0.48. Solid lines indicate the 19Fiso values of TiIII
2−F 

environment in TiF3 and Mg3−F environment in MgF2. The arrows indicate the tentative 

assignment of the NMR resonances to the various species in the chemically magnesiated 

sample (TiIV are in black and TiIII are en red). Fits of these spectra are given as supporting 

information (Figures S10-11, Tables S4 and S6). 

 

Based on these results, we interpret the Mg2+ storage mechanism as insertion at titanium 

vacancies, with a Ti4+/Ti3+ redox couple. The insertion reaction can be expressed as 

(TiIV
0.780.22)

[4a]O1.12F0.40(OH)0.48 + xMg2+ + 2xe- → (TiIV
0.78-2xTiIII

2x0.22-

xMgx)
[4a]O1.12F0.40(OH)0.48 (1). 

The theoretical capacity based on Eq. (1) is 166 mAh g-1, which is close to the 155 mAh g‑1 

observed reversible capacity. Because the charge storage capacity depends on the 

concentration of titanium vacancies, the maximum charge storage capacity of this material 
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can be optimized opening a new approach for the development of electrode materials for 

multivalent batteries.  

To further understand the kinetic aspects of Mg2+ diffusion, we extracted the diffusion 

coefficient as a function of the depth of discharge, using the galvanostatic intermittent 

titration technique (GITT).37,38 A concentration dependence of the Mg diffusion coefficient is 

observed (Figure 5), which is characteristic of an intercalation compound featuring vacancy-

mediated diffusion.39 The Mg diffusion can be separated into two domains. The first and 

second region displayed an average diffusion coefficient of about 9.10-17 and 4.10-18 cm2 s-1, 

respectively. These values are comparable to the lithium diffusion coefficient in anatase 

nanoparticles (7 nm), i.e. 6.2×10-17 cm2 s-1.40 According to the NMR data, the Ti2-F and 

Ti21-F environments are present at relative proportions of 33 and 67 % (Table S5). 

Strikingly, the relative proportions of Mg2+ inserted within the first (33 %) and second (67 %) 

region match the relative proportions of double and single vacancy fluorine environments. 

According to DFT calculations, the insertion of Mg is more favorable into the paired 

vacancies system than the single one. Hence, it can be concluded that magnesiation first 

occurs in one of the paired vacancies before filling the single one, and we assigned the two 

domains observed in Figure 4a to the diffusion of Mg2+ via Ti2-F and Ti21-F/TiMg1-F 

species.  

In anatase TiO2, the Mg diffusion coefficient rapidly decreases with increasing Mg 

concentration showing that Mg intercalation is kinetically limited. Our calculation result, that 

Mg intercalation into stoichiometric anatase TiO2 is energetically favorable (in the dilute 

limit) is consistent with previous studies.24 It is, however, possible that thermodynamic 

factors also hamper Mg intercalation into anatase at higher Mg concentrations. An additional 

DFT calculation for a supercell containing two Mg2+ ions at adjacent interstitial octahedra, 

however, gave an intercalation energy very close to that of a single isolated Mg 

(ΔE = ‑1.00 eV per Mg), suggesting that direct Mg–Mg repulsion is not a significant 

thermodynamic factor, supporting our supposition that this is a kinetic limitation. 
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Figure 5. Vacancy mediated diffusion mechanism of Mg2+ in anatase. Evolution of 

diffusion coefficient of Mg2+ in anatase TiO2 and in Ti0.780.22O1.12F0.40(OH)0.48 as a function 

of the discharge depth.  

 

In this work, we have demonstrated that the introduction of titanium vacancies provides a 

thermodynamically favorable driving force to insert multivalent cations such as Mg2+ and 

Al3+ into a textbook compound, anatase TiO2. The stabilization of new vacant sites that are 

able to insert multivalent cations allows the kinetically limitation observed in pure 

stoichiometric anatase to be overcome.  

The interstitial site in stoichiometric anatase TiO2, and the titanium vacancy in F-TiO2, are 

both octahedrally coordinated by anions. The interstitial site in TiO2 is purely oxygen 

coordinated, while the Ti vacancy in F-TiO2 has a fluorine rich environment. Such a 

difference in the anionic environment is expected to induce interaction changes between 

intercalated cations and the host anionic sublattice. We found that Mg2+ and Al3+ adopt a five-

fold coordination mode in anatase TiO2 but a six-fold coordination mode in F-TiO2. Emly and 

Van der Ven41 have discussed how higher coordination modes increase the charge 

redistribution over more titanium–anion bonds, thus lowering the migration barrier of cations. 

By analogy, we suggest that an increase of the coordination mode of the intercalated species 

enable an efficient charge redistribution thus contributing to overcome kinetic limiation 

observed in pure anatase. Moreover, the increase of the coordination mode is accompanied by 

an increase of the volume of the coordination polyhedra. Comparing the cell volume 

variations induced by lithium intercalation in pure anatase and Mg in vacancy containing 

anatase shows that the vacancies mitigate the internal stress induced by the redox process. 

Based on the Ti4+/Ti3+ redox couple, the multiple electron transfer accompanied by the 

intercalation of multivalent cations achieves similar capacity with half and one-third of 
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inserted Mg2+ and Al3+, respectively, as compared to lithium ions. Hence, for similar capacity, 

the electrode volume variation is significantly lower.  

In the doping strategy described here, the formation of new available vacant sites is 

accompanied by a proportional decrease in the amount of redox-active transition metal 

centres, which decreases the theoretical maximum storage capacity. Nevertheless, a small 

concentration of vacancies can allow a high capacity to be obtained, especially for multi-

electron transfer. For example, the full utilization of the titanium vacancies with a three 

electrons process can yield a capacity of ~250 mAh g-1.  

In addition to the enhanced thermodynamically driving force, the observed vacancy mediated 

diffusion mechanism shows that the high concentration of vacancies removes kinetic 

limitations. By analogy with the work of Ceder et al42, we surmise that the homogeneous 

distribution of high concentrations of vacancies creates a percolating network of diffusion 

pathways that facilitates the diffusion of high-valence cations.  

To conclude, we have shown that introducing cationic vacancies unlocks the electrochemical 

activity of electrode materials towards multivalent cations such as Mg and Al. The use of 

defect chemistry43,44 to design advanced electrode materials for multivalent-ion batteries can 

exploit a large range of materials either starting from structures exhibiting naturally occurring 

vacancies45 or synthetically introduced46.  
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Methods 

Synthesis and chemical magnesiation. Ti0.780.22O1.12F0.4(OH)0.48 was synthesized using a 

mild solvothermal process described in our previous report.20 Briefly, a solution containing 

1.2 mL of HF and 24.8 mL of isopropanol was added to 4 mL of titanium isopropoxide in a 

45 mL Teflon line container with a fixed ratio of F/Ti setting at 2. After sealing, the solution 

was heated at 90 °C for 12 hours. After cooling down to room temperature, the white 

precipitate was separated from the solution using centrifugation and washed several times 
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with ethanol. The solid was dried at 80 °C overnight, and further outgassed at 150 °C 

overnight under vacuum. For comparison, anatase TiO2 was synthesized using the same 

solvothermal process without HF.  

Chemical magnisiation has been performed by using the intercalating agent ethylmagnesium 

bromide (CH3CH2MgBr). Intercalation reactions using ethylmagnesium bromide solution 

(3.0 M in diethyl ether, Sigma-Aldrich) were carried out by adding the CH3CH2MgBr 

solution drop-by-drop with the excess concentration in diethyl ether to the solid host 

Ti0.780.22O1.12F0.4(OH)0.48 and stirring the mixture for 48 hours at room temperature. The 

obtained powder was collected by filtration, washed with anhydrous diethyl ether solvent, and 

dried under vacuum. All subsequent operations were carried out in an argon-filled glove box. 

Mg battery electrochemical characterization. The working electrode was composed of 80 

wt% active material, 10 wt% conductive carbon (SuperP, Timcal), and 10 wt% 

polyvinylidene difluoride (PVDF, Aldrich) binder, where active material is either TiO2 or 

Ti0.780.22O1.12F0.4(OH)0.48. They were suspended in N-methyl-2-pyrrolidone (NMP, Sigma-

Aldrich) by hand milling using a mortar, and then drop coated on a Mo foil at the geometrical 

active mass density of 2 mg cm-2. 0.2 mol L-1 2PhMgCl-AlCl3/THF was used as the 

electrolyte, and borosilicate glass-fiber filter paper (Whatmann grade GF/A) was used as the 

separator. Mg metal (99.9%, Good fellow) was used as the reference electrode and the counter 

electrode. Electrochemical measurements were carried out at 25 oC using a three-electrode 

Swagelok-type cell assembled in an argon-filled glove box. Galvanostatic discharge-charge 

measurements at different current densities in the potential range of 0.05-2.3 V vs. Mg2+/Mg 

were performed, and the specific capacities were calculated based on the mass of the active 

material within the electrode. Diffusion coefficient was estimated using galvanostatic 

intermittent titration technique (GITT).37,38 GITT measurements were carried out after single 

discharge-charge cycle. A constant-current discharge pulse of 10 mA g-1 was applied to a cell 

for 1 h followed by a relaxation potential measurement for 10 h. Potential variation (dEocp/dt) 

after 10 h was smaller than 5 mV h-1, and this protocol was repeated until the cell potential 

reached 0.05 V vs. Mg2+/Mg. 

Al battery electrochemical characterization. The working electrode was composed of 80 

wt% active material, 10 wt% conductive carbon (Super P, Timcal), and 10 wt% 

polytetrafluoroethylene (PTFE, 60 wt % dispersion in water, Aldrich) binder, where active 

material is either TiO2 or Ti0.780.22O1.12F0.4(OH)0.48. They were suspended in Milli-Q water 

by hand milling using a mortar, and then drop coated on a glassy carbon plate (HTW 

Germany) at the geometrical active mass density of 2 mg cm-2. Al wire (>99.99%, Aldrich), 
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and Al metal plate (99.99%, Alfa Aesar) were used as the reference electrode, and the counter 

electrode. A chloroaluminate based room-temperature ionic liquid ([EMIm]Cl-AlCl3) was 

used as the electrolyte. It was prepared by slowly mixing 1-ethyl-3-methylimidazolium 

chloride ([EMIm]Cl, 98%, Aldrich) and anhydrous AlCl3 (99.99%, Ultra-dry, Alfa Aesar) 

under stirring condition by the mole ratio of 1:1.1 in an argon-filled glove box. [EMIm]Cl 

was dried at 120 °C under the vacuum (< 1 Pa) for 12 h prior to use. Borosilicate glass-fiber 

filter paper (Whatmann grade GF/D) was used as the separator. Electrochemical 

measurements were carried out at 25 oC using a three-electrode Swagelok-type cell assembled 

in an argon-filled glove box. Galvanostatic discharge-charge measurements in the potential 

range of 0.01-1.8 V vs. Al3+/Al were performed by using Biologic MPG-2 system, and the 

specific capacities were calculated based on the mass of the active material within the 

electrode. 

Electron microscopy (STEM-EELS). High-resolution TEM experiments were acquired 

using a JEOL-ARM200F 200 kV equipped of a Cs image corrector and a Cold-FEG. TEM 

images have been processed using FIJI and Digital Micrograph softwares. HR-TEM images 

were calculated using the MactempasX-2 software. EDX-STEM and EELS-STEM analyses 

were acquired using a FEI-TITAN 80-300 kV with ChemiSTEM capability (Cs probe 

corrector and X-FEG). EELS experiments were carried out on a post-column energy filter 

system (Gatan Tridiem 865 ER) operated at 80 kV. The processing of the EELS spectrum 

images was carried out using Hyperspy multidimensional data analysis 

(https://doi.org/10.5281/zenodo.240660). 

Ex-situ synchrotron X-ray scatting characterization. To obtain an insight picture of Mg 

intercalation/deintercalation process during the entire electrochemical reaction, the Swagelok 

cells with active electrode materials at different discharged and charged states were 

disassembled in the glove box and the electrodes were washed by tetrahydronfuran (THF) to 

remove the residuals. After evacuating the THF, the active materials were scraped off from 

Mo foil, loaded inside in the Kapton capillaries and sealed in the Argon-filled glove box to 

avoid exposing to air for the high energy synchrotron X-ray scatting characterization, and data 

were collected at the starting electrode and the electrodes recovered in various discharged and 

charged states.  

The chemically magnisiated sample was loaded inside in the Kapton capillaries and sealed in 

the Argon-filled glove box to avoid exposing to air for synchrotron X-ray scatting 

characterization. 
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For pair distribution function (PDF) analysis, X-ray scattering data, from which it would be 

suitable to obtain the PDF data, were measured at the 11-ID-B beamline at the Advanced 

Photon Source located at Argonne National Laboratory. Synchrotron diffraction data were 

collected using high energy X-rays (λ = 0.2128 Å) allowing high values of momentum 

transfer.47,48 One-dimensional diffraction data were obtained by integrating the diffraction 

images within fit2D.49 The G(r) function was extracted from the data following Fourier 

transformation using PDFgetX2,50 after correcting for background and Compton scattering. 

The refinement of the PDF data was performed using the PDFgui software.51 Refined 

parameters were the instrument parameters, the lattice parameters, the atomic displacement 

parameters, the anion position, the cationic site occupancy, and the Mg occupancy. 

19F solid-state MAS NMR spectroscopy. Experimental details about the 19F solid-state 

magic angle spinning (MAS) NMR spectrum of Ti0.780.22O1.12F0.40(OH)0.48 have been 

reported previously.20 19F solid-state MAS NMR experiments on chemically magnesiated 

sample and TiF3 were performed on a Bruker Avance III spectrometer operating at 7.0 T (19F 

Larmor frequency of 282.2 MHz), using a 2.5 mm CP-MAS probehead. Samples were kept in 

a dry glove box under nitrogen atmosphere and the rotors were filled inside the glove box to 

avoid any hydration of the samples. As the samples are paramagnetic, all spectra were 

recorded at high spinning frequencies (≥ 30 kHz) to enhance the sensitivity and resolution.52 

19F MAS NMR spectra were acquired using one pulse sequence. The 90° pulse length was set 

to 1.75 μs and the recycle delay to 20 s (2 s for TiF3). Depending on the samples and 

sequences, between 128 and 512 scans were accumulated. Isotropic peaks were discriminated 

from spinning sidebands by comparing spectra acquired at two spinning frequencies (30 and 

34 kHz). Due to air frictional heating, the sample temperature increases with the spinning 

frequency. 207Pb isotropic chemical shift of Pb(NO3)2 was used as a NMR thermometer.53,54 

19F MAS NMR spectra are referenced to CFCl3 and they were fitted with the DMFit 

software,55 using, as for diamagnetic systems, four parameters: the isotropic chemical shift, 

δiso (ppm) = (δxx + δyy + δzz)/3, the chemical shift anisotropy (CSA), δcsa (ppm) = δzz - δiso, the 

asymmetry parameter, ƞcsa = |δyy - δxx|/ δcsa, and the Gaussian-Lorentzian shape factor. The 

principal components of the chemical shift tensor are defined in the sequence |δzz - δiso| ≥ |δxx - 

δiso| ≥ |δyy - δiso|. Hyperfine interactions between the unpaired electrons and the studied nucleus 

are not explicitly considered in these fits. 

Density functional theory (DFT) calculations. Density functional theory (DFT) calculations 

were performed using the plane-wave code VASP,56,57 with valence electrons described by a 

plane-wave basis with a cutoff of 500 eV. Interactions between core and valence electrons 
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were described with the PAW method,58 with cores of [Ar] for Ti, [He] for O, [He] for F, [He] 

for Li, [Ne] for Mg, and [He] for Al. The calculations used the revised Perdew-Burke-

Ernzerhof generalized gradient approximation PBEsol,59 supplemented with a Dudarev +U 

correction applied to the Ti d states (GGA+U). We used a value of UTi,d = 4.2 eV, which has 

previously been used to model lithium intercalation in anatase TiO2 and TiO2(B).60-62 To 

model intercalation into stoichiometric anatase, we first performed a full geometry 

optimization on a 3×3×1 anatase TiO2 supercell (108 atoms). Optimised lattice parameters 

were obtained from a series of constant volume relaxations, with the resulting data fitted to 

the Murnaghan equation of state. X=(Li, Mg, Al) intercalation was modelled with a single 

inserted ion at an interstitial site (XTi36O72). To model intercalation into 

Ti0.780.22O1.12F0.40(OH)0.48, we considered both a [VTi+4FO] vacancy complex, and a 

[2VTi+8FO] paired vacancy complex, where the vacancies occupy [100]-aligned adjacent Ti 

sites. Both structures have the maximum possible number of FO in the same (001) plane as the 

vacancies, i.e. in equatorial sites for the coordination octahedra. These configurations have 

previously been shown from DFT calculations to be the most stable for each stoichiometry.22 

Single vacancy calculations used a parent 3×3×1 anatase supercell, and paired vacancy 

calculations used a parent 4×4×2 anatase supercell. Vacancy intercalation calculations used 

the same optimized lattice parameters as the stoichiometric 3×3×1 cell. Individual 

calculations were considered geometry optimized when all atomic forces were smaller than 

0.01 eV Å-1. All calculations were spin polarized, and used a 2×2×2 Monkhorst-Pack grid for 

sampling k-space for the 3×3×1 cells, and a 1×1×1 grid for the 4×4×2 cells. To calculate 

intercalation energies, reference calculations for the corresponding metallic bulks were 

performed using the same convergence criteria as above. We considered 2 atom cells for Li 

and Mg, and a 4 atom cell for Al, with 16×16×16 Monkhorst-Pack grids for k‑space 

sampling. A data set containing the calculation inputs and outputs, and the analysis scripts for 

calculating the intercalation energies is available at the University of Bath Data Archive.63  

 

Data availability. The source data necessary to support the findings of this paper are 

available from the corresponding author upon request. Supporting data for the computational 

work described in this study is available as Ref. 63, published under the CC-BY-SA-4.0 

license. This repository contains (1) the complete DFT dataset used to support the findings of 

this study; (2) a Python script for collating the relevant data; (3) a Jupyter notebook 

containing all computational data analysis. (2) & (3) use the vasppy Python module, 

available under the MIT license.64 
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