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Abstract

This paper investigates the proportional-integral (PI) boundary feedback control for the linear hyperbolic systems of balance laws
which control and output measures are located at the boundaries. We address the issue of feedback stabilization by means of PI
boundary controllers. By constructing a new weighted Lyapunov function, the sufficient conditions in terms of matrix inequalities
are developed for the exponential stability of closed-loop systems. These results are illustrated by the linearized Aw-Rascle-Zhang
(ARZ) traffic flow model. We design a PI boundary controller to stabilize the oscillations of the traffic parameters of a freeway
segment and evaluate the performance with numerical simulations.

Keywords: Hyperbolic systems of balance laws, Boundary control, Lyapunov function, Exponential stability, ARZ traffic flow
model.

1. Introduction

In this paper, we are concerned with balance laws governed
by linear hyperbolic partial differential equations (PDEs). Such
systems have been extensively used to model physical processes
and engineering problems. The typical examples include Saint-
Venant equation for open channels in [1], Euler equation for gas
pipes in [2], and Aw-Rascle-Zhang equation for long roads in
[3, 4].

Boundary feedback control has been central for stabilization
of the hyperbolic balance laws. Many results have established
appropriate boundary conditions for linear or quasi-linear sys-
tems in L2 or H2 topology spaces as in [5, 6, 7, 8, 9]. Interested
readers are suggested to review literature with [10].

Proportional-integral (PI) control is one of the mostly used
method in engineering since its advantage is to cancel forced
oscillations and attenuate load disturbances. Frequency domain
is widely used to prove boundary stability of the closed-loop
systems. An explicit necessary and sufficient condition is pro-
posed in [11] for linear density-flow systems by using Laplace
transformation. Similar results are developed with the opera-
tor and semi-group approach in [12]. Backstepping method is
exploited in [13] to elaborate the PI-based trajectory tracking.
Moreover, Lyapunov approach is considered in [14, 15, 16] for
linear, nonlinear and network hyperbolic systems of conserva-
tion laws following the idea introduced in [17]. However, only
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few results appear in this direction due to the difficulties of con-
structing an appropriate Lyapunov candidate with PI boundary
control.

Aw-Rascle-Zhang (ARZ) model, compared to scalar LWR
model [18], [19], developed a velocity equation to reveal the
anisotropic property of traffic dynamics. In [20], spectral analy-
sis is applied to design boundary control for the linearized ARZ
model. An integrated on-ramping metering and variable speed
limit control is proposed in [21] to ARZ model by investing the
boundary stabilization of positive hyperbolic systems. To deal
with the model uncertainties, [22] develops the stochastic sta-
bility for Markov jumped hyperbolic systems with application
to ARZ model. Recently, boundary control are developed in
[23] by using the backstepping method to reduce stop-and-go
oscillations for the congested traffic.

This paper constructs a new weighted Lyapunov function to
prove the exponential stability of n-order linear hyperbolic bal-
ance laws with PI boundary control. For the best of our knowl-
edge, existing results are focused on 2× 2 systems. In [10, Sec-
tion 5.4], PI boundary stabilization of linearized density-flow
systems described by balance laws is provided with application
to control in navigable rivers. Moreover in this later work, the
source term is assumed to be stable. In our paper, we do not
need this assumption on the source term. Furthermore we con-
sider a more general linear hyperbolic system of balance laws
and a practical application to freeway traffic by the linearized
ARZ equation. PI boundary feedback controller is designed to
stabilize the system by using integrated on-ramp metering and
variable speed control. With respect to [15], we do not consider
only a scalar conservation law, but rather a hyperbolic system
of balance laws.

The paper is organized as follows. The statement of the PI
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boundary control for linear balance laws and the main result
are given in Section 2. In Section 3 we present the proof of the
main result by using the Lyapunnov techniques. Section 4 is
devoted to the PI boundary stabilization of the linearized ARZ
model. Some concluding remarks and possible further research
lines are presented in Section 5.

Notation. Rn and Rn×n denote the set of n-order vectors and
n-order matrices. For a matrix A, A> denotes the transpose,
λmax(A) denotes the largest real part of eigenvalues of A, and
for a partitioned symmetric matrix, the symbol ? stands for the
symmetric blocks. Given an integer n, In is the identity matrix
of order n. Given a function g : [0, L] → Rn, we define its L2-

norm as ‖g‖L2((0,L);Rn) =

√∫ L
0 |g(x)|2dx where |·| is the Euclidean

norm in Rn. We call L2((0, L);Rn) the space of all measurable
functions g for which ‖g‖L2((0,L);Rn) < ∞.

2. Preliminaries and main results

Consider the one-dimensional n×n linear hyperbolic systems
of balance laws

ξt + Λξx = Mξ, t ∈ [0,∞), x ∈ (0, L), (1)

where ξ : (0, L) × [0,∞) → Rn, Λ ∈ Rn×n and M ∈ Rn×n.
Without loss of generality, we may assume that Λ is a di-
agonal matrix with non-zero real diagonal entries such that
Λ = diag{Λ+,−Λ−}, in which Λ+ = diag{λ1, . . . , λm}, Λ− =

diag{λm+1, . . . , λn}, 1 ≤ m ≤ n, and λi > 0 for all i ∈ {1, . . . , n}.
For simplicity, we use the notations

ξin(t) ,
[
ξ+(0, t)
ξ−(L, t)

]
, ξout(t) ,

[
ξ+(L, t)
ξ−(0, t)

]
,

to denote the input and the output of the system (1) on the left
and the right boundaries, respectively, where ξ+, ξ− are defined
as ξ+ = [ξ1, . . . , ξm]> ∈ Rm and ξ− = [ξm+1, . . . , ξn]> ∈ Rn−m.

In this paper, our concern is to analyze the exponential sta-
bility of the system (1) under boundary conditions of the PI
feedback types, i.e.,

ξin(t) = Kpξout(t) + KI

∫ t

0
ξout(τ)dτ, (2)

where Kp ∈ Rn×n and KI ∈ Rn×n are matrix gains, and an initial
condition of the form

ξ(x, 0) = ξ0(x), x ∈ (0, L). (3)

The well-posedness and the existence of the classical maxi-
mal solutions of C0([0,∞); L2((0, L);Rn)) of the Cauchy prob-
lem (1)-(3) are easily adapted from [10, Appendix Theorem
A.4]. The definition of the exponential stability for the system
(1) is then given as follows.

Definition 1. The linear hyperbolic system (1)-(2) is exponen-
tially stable if there exist ν > 0 and C > 0 such that, for every
ξ0 ∈ L2((0, L);Rn), the solution to the Cauchy problem (1)-(3)
satisfies

‖ξ(·, t)‖L2((0,L);Rn) ≤ Ce−νt‖ξ0‖L2((0,L);Rn), (4)

for all t ∈ [0,∞).

We then have the following stability theorem.

Theorem 1. The linear hyperbolic system (1)-(2) is exponen-
tially stable if there exist a diagonal matrix P1 ∈ Rn×n, a sym-
metric matrix P2 ∈ Rn×n, and a matrix P3 ∈ Rn×n, a real con-
stant µ, such that the following matrix inequalities hold, for all
x ∈ [0, L],

(i) P =

[
P1 P3
? P2

]
> 0, (5)

(ii) Ωe(x) =

 Ωe
11(x) Ωe

12(x) P3(x)
? Ωe

22 Ωe
23

? ? Ωe
33

 < 0, (6)

where

Ωe
11(x) = M>P1(x) + P1(x)M − 2µ|Λ|P1(x),

Ωe
12(x) = M>P3(x) − µ|Λ|P3(x),

Ωe
22 =

1
L

(K>I |Λ|P1E1KI + K>I |Λ|P3E3 + E3P>3 |Λ|KI),

Ωe
23 =

1
L

(K>I |Λ|P1E1Kp − |Λ|P3E4 + E3P>3 |Λ|Kp) + P2,

Ωe
33 =

1
L

(K>p |Λ|P1E1Kp − |Λ|P1E2),

with P1(x) = P1diag
{
e−2µxIm, e2µxIn−m

}
, P3(x) =

P3diag {e−µxIm, eµxIn−m}, |Λ| = diag{Λ+,Λ−}, and
E1 = diag

{
Im, e2µLIn−m

}
, E2 = diag

{
e−2µLIm, In−m

}
, E3 =

√
E1,

E4 =
√

E2.

Remark 1. It can be noticed that Theorem 1 provides a numer-
ical tractable method to determine the gains Kp and KI of the PI
controller by solving the set of matrix inequalities (5), (6). This
result is also consistent with the classical dissipative boundary
condition for the linear hyperbolic systems of balance laws in
[24], in which only the proportional feedback control is consid-
ered, as setting KI = 0.

Note that the deadbeat control obtained by letting KP = KI =

0 stabilizes the linear hyperbolic system (1)-(2) in finite time
but it is not robust with respect to small errors, in particular
when the matrix M is not stable. To be more specific, any small
error, when numerically computing the controller, or when im-
plementing it, destabilizes the system. In contrast, our approach
is based on a Lyapunov function which guarantees a robustness
and a performance of the closed-loop system.

Exploiting the linearity we can differentiate (1) with respect
to x and the boundary condition (2) with respect to t to study
the stability of the linear hyperbolic system (1)-(2) in H1 norm.
By doing so we would get similar conditions for the stability
analysis in H1 Sobolev space. ◦

Inspired from [17], we construct a new weighted Lyapunov
function to prove the exponential stabilization of the closed-
loop system (1)-(2) with the PI controller.

The Lyapunov function candidate V : L2((0, L);Rn) × Rn →
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R has the following form

V(ξ, ζ) =

∫ L

0

[
ξ>P1(x)ξ + ξ>P3(x)ζ + ζ>P>3 (x)ξ

]
dx

+Lζ>P2ζ

=

∫ L

0

[
ξ
ζ

]> [
P1(x) P3(x)
? P2

] [
ξ
ζ

]
dx, (7)

where ζ : [0,∞)→ R is the integral of the output of the system
(1), i.e.,

ζ(t) =

∫ t

0
ξout(τ)dτ. (8)

Remark 2. The weighted Lyapunov function V(ξ, ζ) is an ex-
tension of the one V(ξ) in [17], in which only the proportional
feedback control is considered. The functions of the added
two terms in V(ξ, ζ), which involve the integral variable ζ, are
to measure the energy change introduced by the integral con-
troller. ◦

The proof of Theorem 1 is provided in the next section.

3. Proof of the main result

3.1. Proof in the case where m = n

To clarify the demonstration, we first prove Theorem 1 in the
special case where m = n, which means that the characteristic
matrix Λ = Λ+ with λi > 0, for all i = 1, . . . , n. In this case, the
PI boundary controller (2) is simply rewritten as

ξ(0, t) = Kpξ(L, t) + KI

∫ t

0
ξ(L, τ)dτ. (9)

Moreover, condition (ii) of Theorem 1 is turning into the single
matrix inequality as

(ii′) Ω =

 Ω11 Ω12 P3
? Ω22 Ω23
? ? Ω33

 < 0, (10)

where

Ω11 = M>P1 + P1M − 2µΛP1,

Ω12 = M>P3 − µΛP3,

Ω22 =
1
L

(K>I ΛP1KI + K>I ΛP3 + P>3 ΛKI),

Ω23 =
1
L

(K>I ΛP1Kp − e−µLΛP3 + P>3 ΛKp) + P2,

Ω33 =
1
L

(K>p ΛP1Kp − e−2µLΛP1).

We assume for the time-being that the solution ξ to (1) with
the boundary condition (9) and the initial condition (3) is of
class C1 on [0, L] × [0,∞). Under this assumption (that will
be relaxed later on) the function V defined in (7) is of class
C1, and the first step of the proof is to compute the estimation

of the time-derivative V̇ along the solution (ξ, ζ). It yields the
following:

V̇ =

∫ L

0

[
2ξ>t P1ξe−2µx + ξ>t P3ζe−µx + ζ>P>3 ξte−µx

+ξ>P3ξ(L, t)e−µx + ξ>(L, t)P>3 ξe
−µx

]
dx

+2Lξ>(L, t)P2ζ

= V̇1 + V̇2 + V̇3

with

V̇1 , 2
∫ L

0
ξ>t P1ξe−2µxdx,

V̇2 ,
∫ L

0

[
ξ>t P3ζ + ζ>P>3 ξt + ξ>P3ξ(L, t)

+ξ>(L, t)P>3 ξ
]

e−µxdx,

V̇3 , 2Lξ>(L, t)P2ζ.

Using the PDE (1) and an integration by parts for V̇1 and V̇2,
we obtain

V̇1 = 2
∫ L

0

[
−Λξx + Mξ)

]> P1ξe−2µxdx

=
[
−ξ>ΛP1ξe−2µx

]L

0
− 2µ

∫ L

0
ξ>ΛP1ξe−2µxdx

+

∫ L

0
ξ>

[
M>P1 + P1M

]
ξe−2µxdx (11)

and

V̇2 =

∫ L

0

[
−Λξx + Mξ

]> P3ζe−µxdx

+

∫ L

0
ζ>P>3

[
−Λξx + Mξ

]
e−µxdx

+

∫ L

0

[
ξ>P3ξ(L, t) + ξ>(L, t)P>3 ξ

]
e−µxdx,

=
[
−ξ>ΛP3ζe−µx − ζ>P>3 Λξe−µx

]L

0

−µ

∫ L

0

[
ξ>ΛP3ζ + ζ>P>3 Λξ

]
e−µxdx

+

∫ L

0

[
ξ>M>P3ζ + ζ>P>3 Mξ

]
e−µxdx

+

∫ L

0

[
ξ>P3ξ(L, t) + ξ>(L, t)P>3 ξ

]
e−µxdx. (12)

Then, substituting the PI boundary condition (9) into (11) and
(12), we have the time-derivatives

V̇1 = −ξ>(L, t)ΛP1ξ(L, t)e−2µL

+
[
Kpξ(L, t) + KIζ

]>
ΛP1

[
Kpξ(L, t) + KIζ

]
+

∫ L

0
ξ>

[
M>P1 + P1M − 2µΛP1

]
ξe−2µxdx

3



=

[
ζ

ξ(L, t)

]> [
K>I ΛP1KI

?

K>I ΛP1Kp

K>p ΛP1Kp − e−2µLΛP1

] [
ζ

ξ(L, t)

]
+

∫ L

0
ξ>

[
M>P1 + P1M − 2µΛP1

]
ξe−2µxdx

=

∫ L

0

 ξe−µx

ζ
ξ(L, t)


>  M>P1 + P1M − 2µΛP1

?
?

0 0
K>I ΛP1KI

L
K>I ΛP1Kp

L

?
K>p ΛP1Kp

L −
e−2µLΛP1

L


 ξe−µx

ζ
ξ(L, t)

 dx, (13)

and

V̇2 = −ξ>(L, t)ΛP3ζe−µL − ζ>P>3 Λξ(L, t)e−µL

+
[
Kpξ(L, t) + KIζ

]>
ΛP3ζ + ζ>P>3 Λ

[
Kpξ(L, t) + KIζ

]
−µ

∫ L

0

[
ξ>ΛP3ζ + ζ>P>3 Λξ

]
e−µxdx

+

∫ L

0

[
ξ>M>P3ζ + ζ>P>3 Mξ

]
e−µxdx

+

∫ L

0

[
ξ>P3ξ(L, t) + ξ>(L, t)P>3 ξ

]
e−µxdx

=

[
ζ

ξ(L, t)

]> [
K>I ΛP3 + P>3 ΛKI

?

P>3 ΛKp − e−µLΛP3
0

] [
ζ

ξ(L, t)

]
+

∫ L

0

 ξe−µx

ζ
ξ(L, t)


>

×

 0 M>P3 − µΛP3 P3
? 0 0
? ? 0


 ξe−µx

ζ
ξ(L, t)

 dx

=

∫ L

0

 ξe−µx

ζ
ξ(L, t)


> 

0 M>P3 − µΛP3

?
K>I ΛP3

L +
P>3 ΛKI

L
? ?

P3
P>3 ΛKp

L −
e−µLΛP3

L
0


 ξe−µx

ζ
ξ(L, t)

 dx. (14)

Moreover, the time-derivative V̇3 may be rewritten in the inte-
gral form as

V̇3 =

∫ L

0

 ξe−µx

ζ
ξ(L, t)


>  0 0 0

? 0 P2
? ? 0


 ξe−µx

ζ
ξ(L, t)

 dx. (15)

Combining V̇1 in (13), V̇2 in (14), and V̇3 in (15) together, the
time-derivative of V(ξ, ζ) satisfies

V̇ =

∫ L

0

 ξe−µx

ζ
ξ(L, t)


>

×

 Ω11 Ω12 P3
? Ω22 Ω23
? ? Ω33


 ξe−µx

ζ
ξ(L, t)

 dx. (16)

It follows from the condition (ii′) that Ω < 0, then there exists
a constant ν = −

λmax(Ω)
λmax(P) > 0 such that

V̇ ≤ λmax(Ω)
∫ L

0

 ξe−µx

ζ
ξ(L, t)


>  ξe−µx

ζ
ξ(L, t)

 dx

≤ −νV(ξ, ζ). (17)

By remarking the definition of V(ξ, ζ), and coming from the
condition (i) that P > 0, we have V(ξ, ζ) > 0 for any classical
solutions of (1)-(2). On the other hand, there exist β > 0 (de-
pending on Pi, i = 1, 2, 3) such that the following inequalities
hold

1
β

(∫ L

0
|ξ|2dx + |ζ |2

)
≤ V(ξ, ζ)

≤ β

(∫ L

0
|ξ|2dx + |ζ |2

)
. (18)

Estimates (17) and (18) are obtained under the assumption
that ξ is of class C1 on [0, L] × [0,∞). But the selection of
β and ν does not depend on the C1-norm of ξ: they depend
only on the C0([0,∞); L2((0, L);Rn))-norm of ξ. Hence, using
a classical density argument (see e.g., [10, Section 2.1.3]), the
estimates (17) and (18) remain valid in the distribution sense if
ξ is only of class C0.

Let ξ ∈ C0([0,∞); L2((0, L);Rn)) be the maximal solution of
the Cauchy problem (1)-(2). Using estimates (17) and (18) for
all t ∈ [0,∞), we get that

‖ξ(·, t)‖L2((0,L);Rn) ≤

∫ L

0
|ξ|2dx + |ζ |2

≤ βV(ξ, ζ)

≤ β2e−νt
(∫ L

0
|ξ0|2dx + |ζ(0)|2

)
= β2e−νt‖ξ0‖L2((0,L);Rn), (19)

Consequently, the hyperbolic system (1)-(2) is exponentially
stable in L2-norm by choosing C = β2.

This concludes the proof of Theorem 1 in the case m = n.

Remark 3. Depending on the relaxation matrix M being stable
or not, the variable µ included in the matrix Ω might be positive
or negative in Theorem 1. In fact, it is helpful to reduce the con-
servative of the design of the boundary feedback controller by
sufficiently exploiting the relaxation structure of source terms
as considered by [6]. ◦

3.2. Proof in the case where 0 < m < n.

In this section, we modify the proof of Theorem 1 in Sec-
tion 3.1 to deal with the case 0 < m < n. The case m = 0 is
equivalent to the case m = n by considering ξ(L − x, t) instead
of ξ(x, t).
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The major difference lies in the time-derivatives V̇1, V̇2 which
are now rewritten, respectively, as follows:

V̇1 =

∫ 1

0

 ξ
ζ
ξout


>  M>P1(x) + P1(x)M − 2µ|Λ|P1(x)

?
?

0 0
K>I |Λ|P1E1KI

L
K>I |Λ|P1E1Kp

L

?
K>p |Λ|P1E1Kp

L −
|Λ|P1E2

L


 ξ

ζ
ξout

 dx,

(20)

and

V̇2 =

∫ 1

0

 ξ
ζ
ξout


> 

0 M>P3(x) − µ|Λ|P3(x)
?

K>I |Λ|P3E3

L +
E3P>3 |Λ|KI

L
? ?

P3(x)
E3P>3 |Λ|Kp

L −
|Λ|P3E4

L
0


 ξ

ζ
ξout

 dx, (21)

where the matrices Ei, i = 1, 2, 3, 4, are defined in the statement
of Theorem 1. Since P > 0 and Ωe(x) < 0, it may be checked
that Theorem 1 can be established for the case 0 < m < n in a
manner completely parallel to the one that we have followed in
the case m = n.

4. PI boundary control for ARZ traffic flow model

4.1. ARZ Model and Linearization

The traffic dynamics in a freeway segment are given by the
so-called Aw-Rascle-Zhang equations, x ∈ (0, L){

∂tρ + ∂x(vρ) = 0
∂tv + (v − ρp′(ρ))∂xv =

V(ρ)−v
τ

(22)

where ρ(x, t) is the vehicle density, v(x, t) is the average speed,
τ is the relaxation time related to driving behavior. The variable
p(ρ) is the traffic pressure defined as

p(ρ) = v f − V(ρ), (23)

where v f is the free flow speed.
The speed-density fundamental diagram V(ρ) is given in the

form of Greenshields model in [25]

V(ρ) = v f

(
1 −

(
ρ

ρm

)γ)
, (24)

where ρm is the maximum density and constant γ > 0.
Let z = v, w = v + v f

(
ρ
ρm

)γ
, then the nonlinear equation (22)

may be written in the characteristic Riemann coordinates as{
∂tw + z∂xw =

v f−w
τ

∂tz +
[
(1 + γ)z − γw

]
∂xz =

v f−w
τ

(25)

where the sign of the velocity (1 + γ)z − γw (positive or nega-
tive), indicates the freeway traffic lies in the free-flow or in the
congested mode, as in [22]. We assume that the system (25) is
strictly hyperbolic.

Figure 1: The evolution of the deviation w̃ of the linearized system (28) with PI
boundary control (36).

Figure 2: The evolution of the deviation z̃ of the linearized system (28) with PI
boundary control (36).

Denote (w∗, z∗) being the steady state of the system (25), the
corresponding (ρ∗, v∗) of the system (22), satisfying w∗ = v f or
function v∗ = V(ρ∗). The deviations from the nominal states
(w∗, z∗) are defined as

w̃(x, t) = w(x, t) − w∗, (26)
z̃(x, t) = z(x, t) − z∗. (27)

We then obtain the linearized model

∂t

[
w̃
z̃

]
+

[
z∗ 0
0 (1 + γ)z∗ − γw∗

]
∂x

[
w̃
z̃

]
=

[
−1/τ 0
−1/τ 0

] [
w̃
z̃

]
. (28)

4.2. PI boundary feedback control

As the freeway traffic lies in the congested regime, i.e. (1 +

γ)z∗ − γw∗ < 0, for the boundary feedback control, the inflow
speed v(0, t) and outflow density ρ(L, t) are measured, and the
inlet on-ramp metering r(t) and the outlet speed limit v(0, t) are
control units.
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Precisely, we introduce the PI boundary feedback law:

r(t) = r∗ + kr
p(ρ(L, t) − ρ∗)

+kr
i

∫ t

0
(ρ(L, τ) − ρ∗)dτ, (29)

v(L, t) = v∗ + kv
p(v(0, t) − v∗)

+kv
i

∫ t

0
(v(0, τ) − v∗)dτ, (30)

where r∗ is the nominal flux rate that satisfies the equilibrium
relationship pin + r∗ = ρ∗v∗, and kr

p, kr
i , kv

p and kv
i are tuning

gains.
Let ρ̃ = ρ−ρ∗, ṽ = v−v∗, and from the PI controller (29)-(30)

directly, we have

r(t) = r∗ + kr
pρ̃(L, t) + kr

i

∫ t

0
ρ̃(L, τ)dτ, (31)

ṽ(L, t) = kv
pṽ(0, t) + kv

i

∫ t

0
ṽ(0, τ)dτ. (32)

Using the flow-conserving condition at the inlet of the up-
stream boundary, i.e., x = 0, we have

pin + r(t) = ρ(0, t)v(0, t). (33)

After the linearization of the flow-conserving condition (33)
with the integrating of the feedback control laws (29)-(30), we
have the following boundary condition:

kr
pρ̃(L, t) + kr

i

∫ t

0
ρ̃(L, τ)dτ = v?ρ̃(0, t) + ρ?ṽ(0, t). (34)

As further assume γ = 1, and α =
v f

ρm
, and deleting the high-

order terms, we could rewrite the condition (34) in the Riemann
coordinates as

w̃(0, t) = ṽ(0, t) + αρ̃(0, t)

=

(
1 −

αρ?

v?

)
ṽ(0, t) +

αkr
p

v?
ρ̃(L, t) +

αkr
i

v?

∫ t

0
ρ̃(L, τ)dτ

=
kr

p

v?
w̃(L, t) +

kr
i

v?

∫ t

0
w̃(L, τ)dτ

+

(
1 −

αρ?

v?
−

kr
pkv

p

v?

)
ṽ(0, t)

−

(kr
pkv

i

v?
+

kr
i k

v
p

v?

) ∫ t

0
ṽ(0, τ)dτ. (35)

Combining (30) and (35) together for the system (28), we
have the following PI boundary feedback control[

w̃(0, t)
z̃(L, t)

]
= Kp

[
w̃(L, t)
z̃(0, t)

]
+ KI

∫ t

0

[
w̃(L, τ)
z̃(0, τ)

]
dτ, (36)

where

Kp =

[ kr
p

v? 1 − αρ?

v? −
kr

pkv
p

v?

0 kv
p

]
, (37)

and

KI =

[ kr
i

v?
−kr

pkv
i −kr

i kv
p

v?

0 kv
i

]
. (38)

Figure 3: The evolution of ρ of the nonlinear ARZ model (22) with PI boundary
control (29)-(30) and steady-state (ρ∗, v∗) = (120, 70).

Figure 4: The evolution of v of the nonlinear ARZ model (22) with PI boundary
control (29)-(30) and steady-state (ρ∗, v∗) = (120, 70).
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4.3. Simulations
The developed PI boundary feedback control laws (29)-(30)

for the stabilization of freeway traffic are now tested with the
numerical simulation.

To this end, we consider a freeway segment whose road pa-
rameters are given, respectively, as ρm = 200 veh./km, v f = 150
km/hour, a = 0.75, pin = 6600 veh./hour, r∗ = 1800 veh./hour.
The total road length L = 1 km and the relation time τ = 60
second.

Given the steady-state (ρ∗, v∗) = (120, 70), which satisfies
the ARZ equations (22) with λ∗1 = −20 > 0. Choose the tuning
parameters in (29)-(30) as kv

i = −0.2, kv
p = 0.1, kr

i = −2.5, and
kr

p = 7. The associated boundary condition matrices Kp and Ki

are given, respectively, as

Kp =

[
0.1000 −0.0814

0 0.1000

]
, (39)

KI =

[
−0.0357 0.0236

0 −0.2000

]
. (40)

Taking µ = 0.01 and solving the inequality conditions (i)-(ii) of
Theorem 1, we obtain the following diagonal matrix P1, sym-
metric matrix P2, and matrix P3

P1 =

[
0.0610 0
? 0.7755

]
, (41)

P2 =

[
2.1817 0.6366
? 1.3823

]
, (42)

P3 =

[
0.0375 0.0094
0.1604 0.3192

]
. (43)

To compute the numerical solutions of the system (28), we
discretize them using the two-step variant of Lax-Wendroff

method in [26]. The initial deviations from the steady-state
(ρ∗, v∗) are given as{

ρ(x, 0) = ρ∗ + 8 sin(5πx)
v(x, 0) = v∗ + 12 cos(5πx) (44)

Figs. 1 and 2 show the time evolutions of the derivative com-
ponents w̃, z̃, of the linearized system (28), respectively. Figs.
3 and 4 show the evolution of the vehicle density ρ(x, t) and the
average speed v(x, t) of the nonlinear ARZ model (22) with PI
boundary feedback control (29)-(30). It is observed that both
variables converge to their steady-state ρ∗ = 120veh./km, and
v∗ = 70km/hour, and almost arrive in the finite time about 0.2
hour, as expected from Theorem 1.

5. Conclusion

We have addressed the issue of the PI boundary control of
the linear hyperbolic balance laws. The main contribution is
the Lyapunov stability analysis of the proposed closed-loop sys-
tem. In Theorem 1, the sufficient conditions given as a set of
matrix inequalities can be used to choice the proper tuning pa-
rameters of the boundary condition. The efficiency of the theory
contribution is illustrated with the boundary stabilization of the
linearized ARZ model. The future research will focus on the
extension of Theorem 1 to the nonuniform case and quasilinear
hyperbolic systems in the H2 space.
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