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Abstract

Control systems with backlash at the input are considered in this paper. The goal
of this work is to characterize the attractor of such nonlinear dynamical systems, and
to design anti-windup inspired loops such that the system is globally asymptotically
stable with respect to this attractor. The anti-windup loops affect the dynamics of the
controllers, and allow to increase the performance of the closed-loop systems. Different
performance issues are considered throughout the paper such as robustness with respect
to uncertainty in the backlash, and L2 gain when external disturbances affect the
dynamics. Numerically tractable algorithms with feasibility guarantee are provided,
as soon as the linear closed-loop system, obtained by neglecting the backlash effect,
is asymptotically stable. The results are illustrated on an academic example and an
open-loop unstable aircraft system.
Keywords: Stability analysis, stabilization, backlash, anti-windup loops.

1 Introduction

Backlash operators are nonlinearities present in many mechanical systems. They are involved
in mechanical slacks, static friction, elastic displacements and ferromagnetism. Figure 1
shows some examples and [10] is a good introduction of this kind of nonlinearity. Since
many smart actuators and materials contain a backlash, and since they are often used for
precise control systems, such as position regulation, it is crucial to take the backlash operator
into account in the design or the analysis of the closed loop. Neglecting them can reduce
the performance or alleviate the stability objective.

There are many different models for backlash operators, see [10] for a survey of possible
models. Here we will focus on a component-wise model considered in [10, 13, 19, 4, 12]. The
undesirable effect of such a nonlinearity map has been already analyzed using circle criterion
in [7], assuming that the control system is open-loop stable, an assumption that is not
required in this paper. The present work is based on a Lyapunov method for control systems
with backlash operators in the loop. The control objective is to reduce the undesirable
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Figure 1: Left: mechanical slack with a longitudinal backlash. Right: rotational backlash.

effect of the nonlinearity by adding an extra dynamics. Such a strategy inspired by anti-
windup techniques has been already employed for control systems with saturated inputs, see
e.g. [16, 22], where it is shown how to design so called anti-windup gains to improve the
performance of saturating closed-loop systems.

To be more specific, our contribution is as follows. We succeed to compute numerically
tractable conditions for the design of nonstandard anti-windup (NSAW) gains that modify
the controller dynamics and its output for different control objectives. In presence of backlash
operators, the most natural control objective is probably the reduction of the attractor that
is the reduction of the ultimate bounded set where all solutions converge. In an ideal case
where the backslash is not present, the attractor is usually reduced to one point, thus our
NSAW technique can be seen as a method to approach as much as possible the ideal case.

Another natural control objective is the robustness issue, that is to guarantee some
stability properties in presence of external perturbations or disturbances in the loop and in
the backlash operator. The Lyapunov method applies for such cases, and we show how to
design NSAW gains guaranteeing the best performance in terms of robustness, with respect
to uncertainty in the backlash and with respect to external disturbances. Again our design
conditions are numerically tractable and apply as soon as the closed-loop system, without any
backlash, is asymptotically stable. On the other hand, no restrictive hypothesis is necessary
regarding the open-loop stability of the system. More precisely, our conditions are based
on the solution to a convex problem written in terms of Linear Matrix Inequalities that are
shown to have a solution allowing to explicitly compute NSAW gains.

The paper is organized as follows. The stability problem and the NSAW gain design
problem are introduced in Section 2 for backlash control systems. The main results are
given in Section 3 yielding a solution to the stability analysis and allowing to compute nu-
merically tractable conditions for the design of NSAW gains. Some extensions are given in
Section 4 when considering both external disturbances and backlash uncertainties. Illustra-
tive examples are given in Section 5 and some concluding remarks are collected in Section
6.

Notation. For two vectors x, y of Rn, the notation x � y means that x(i) − y(i) ≥ 0,

∀i = 1, . . . , n. 1 and 0 denote the identity matrix and the null matrix of appropriate dimen-

sions, respectively. x ∈ Rn+ means that x � 0. The Euclidian norm is denoted ‖ · ‖. A′ and

trace(A) denote the transpose and the trace of A, respectively. He{A} = A + A′. For two sym-
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metric matrices, A and B, A > B means that A−B is positive definite. In partitioned symmetric

matrices, the symbol ? stands for symmetric blocks. λmax(A) (respectively, λmin(A)) denotes the

maximal (respectively, minimal) eigenvalue of the matrix A.

2 Problem formulation

2.1 System description

The class of systems under consideration is described by:

ẋp = Apxp +Bpup
yp = Cpxp

(1)

where xp ∈ Rnp is the state, up ∈ Rm is the input of the plant, yp ∈ Rp is the measured
output. Ap, Bp, Cp are matrices of appropriate dimensions. The pairs (Ap, Bp) and (Cp, Ap)
are supposed to be controllable and observable, respectively. The function up is a backlash-
like nonlinearity.

The connection between the plant and the controller through its output yc ∈ Rm is
realized as follows:

up = Φ[yc] (2)

where Φ is a component-wise backlash operator (see, for example, [10, 13, 19, 4]). We denote
the set of continuous, piecewise differentiable functions f : [0,+∞)→ Rm by C1

pw([0,+∞);Rm),
that is the set of continuous functions f being, for some unbounded sequence (tj)

∞
j=0 in

[0,+∞) with t0 = 0, continuously differentiable on (tj−1, tj) for all j ∈ N. Given the vector
ρ in Rm

+ and L = diag(`(i)), with positive values `(i), i = 1, . . . ,m, the operator Φ is de-
fined as follows, for all f ∈ C1

pw([0,+∞);Rm), for all j ∈ N, for all t ∈ (tj−1, tj) and for all
i ∈ {1, . . . ,m}:

(
˙︷︸︸︷

Φ[f ](t))(i) =


`(i)ḟ(i)(t) if ḟ(i)(t) ≥ 0

and (Φ[f ](t))(i) = `(i)(f(i)(t)− ρ(i))

`(i)ḟ(i)(t) if ḟ(i)(t) ≤ 0
and (Φ[f ](t))(i) = `(i)(f(i)(t) + ρ(i))

0 otherwise

(3)

where 0 = t0 < t1 < . . . is a partition of [0,+∞) such that f is continuously differentiable
on each of the intervals (tj−1, tj), j ∈ N. Thus, Φ is a time-invariant nonlinearity with slope
restriction, as in [14]. Note however that it is a memory-based operator, since to compute it,
we need to have information about the past values of its input (this is not the case in [14]).
Since it is possible to stack several backlash operators into one backlash operator (with the
dimension equal to the sum of all dimensions), without loss of generality, the standard form
defined here remains valid.

The plant is controlled by the following output dynamical controller

ẋc = Acxc +Bcyp + θ1

yc = Ccxc +Dcyp + θ2
(4)
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where xc ∈ Rnc is the state, yp ∈ Rnp is the output of the plant, yc ∈ Rm is the output of
the controller. θ1 ∈ Rnc and θ2 ∈ Rm are input signals to be designed to perform a suitable
correction inspired by anti-windup action (see, for example, [16], [22] in the context of
saturation nonlinearities) for mitigating the undesired effects of the backlash. The principle
of the nonstandard anti-windup (NSAW) loop considered consists in picking the difference
between the output of the nonlinear actuator (Φ[yc]) and the output of the linearized one
(Lyc), which are available signals for building θ1 and θ2:

θ1 = Ec(Φ[yc]− Lyc)
θ2 = Fc(Φ[yc]− Lyc)

(5)

with Ec and Fc matrices of appropriate dimensions.

Remark 2.1 The design of the controller (4) may be performed with classical techniques
to stabilize the plant, disregarding the effects of the backlash nonlinearity (with θ1 = 0 and
θ2 = 0). In other words, it is assumed that the controller (4) stabilizes the plant (1) through
the linear interconnection up = Lyc (which corresponds to take Φ[yc] = Lyc) and therefore
the matrix:

A0 =

[
Ap +BpLDcCp BpLCc

BcCp Ac

]
(6)

is Hurwitz.

2.2 Problem formulation

The closed-loop system issued from (1), (2), (3), (4) and (5) reads as follows

ẋp = Apxp +BpΦ[yc]
ẋc = Acxc +Bcyp + Ec(Φ[yc]− Lyc)
yp = Cpxp
yc = Ccxc +Dcyp + Fc(Φ[yc]− Lyc)

(7)

Let us note that according to (3), one gets Φ[yc](t) ∈ IΦ with

IΦ = {Φ[yc] ∈ Rm;L(yc + ρ) � Φ[yc] � L(yc − ρ)} (8)

One can observe that, by definition, from any initial condition in IΦ, the solution Φ[yc](t)
remains confined in IΦ, ∀t ≥ 0. According to [11], [5], that means that the nonlinearity Φ is
active.

The presence of the backlash operator Φ may induce the existence of multiple equilibrium
points or a limit cycle around the origin. Furthermore, in a neighborhood of the origin,
system (1) operates in open loop. Hence, we are concerned with the asymptotic behavior of

the state x =
[
x′p x′c

]′ ∈ Rn, n = np + nc but not of the operator Φ. Therefore, we want
to study the stability properties of the following attractor:

A = S0 ⊆ Rn (9)

It is important to emphasize that the proposed technique does not require for the open-loop
system to be stable, contrary to [7], [17].

Then the problem we intend to solve can be summarized as follows.

4



Problem 2.1 Characterize the region S0 of the state space, containing the origin, and design
the NSAW gains Ec and Fc such that system (7) is globally asymptotically stable with respect
to S0, when initialized as in (8). In other words, S0 is a global asymptotic attractor for the
closed-loop dynamics (7), for any initial value of Φ in IΦ.

2.3 Closed-loop description and well-posedness

For conciseness, throughout the paper, we denote Φ̇ instead of
˙︷ ︸︸ ︷

Φ[yc], and Φ instead of Φ[yc].
Let us define the nonlinearity Ψ:

Ψ = Φ[yc]− Lyc (10)

Hence, with the augmented state x =
[
x′p x′c

]′ ∈ Rn, the closed-loop system reads:

ẋ = A0x+ (B +REc +BLFc)Ψ
yc = Kx+ FcΨ

(11)

with A0 defined in (6) and

K =
[
DcCp Cc

]
;B =

[
Bp

0

]
;R =

[
0
1

]
When Fc = 0, system (11) does no contain any algebraic loop. However, it can be interesting
to consider Fc 6= 0 in order to have more degrees of freedom to characterize the attractor
set S0. A particular attention should be paid to the well posedness of the implicit relation
defining yc in (11). Indeed, the algebraic loop yc = Kx + FcΨ is said to be well-posed if
there exists a unique solution yc of the second line of (11) for each Kx+ FcΨ. We have the
following well-posedness result:

Proposition 2.1 Under the assumption that 1 + FcL is nonsingular, the algebraic loop in
(11) is well defined, and the system (11) is well-posed.

To prove the proposition, note that from the definition of Φ, one can prove that the implicit
function g(yc) = yc −Kx + FcΨ = 0 has a solution, and therefore, provided that 1 + FcL
is nonsingular, Proposition 2.1 holds. See, for example, [22] (Chapter 2, page 38) for more
details.

3 Main Results

3.1 Theoretical conditions

The following result provides a solution to Problem 2.1, by adapting Lemma 1 in [18] to
system (11).

Theorem 3.1 Suppose there exist a symmetric positive definite matrix W ∈ Rn×n, two
diagonal positive definite matrices S2 ∈ Rm×m, T3 ∈ Rm×m, two matrices Ec ∈ Rnc×m,
Fc ∈ Rm×m and a positive scalar τ satisfying the following conditions

M1 < 0 (12)
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ρ′LT3Lρ− τ ≤ 0 (13)

with

M1 =

 He{A0W}+ τW ? ?
(B +REc +BLFc)

′ −T3 ?
−LKA0W −LK(B +REc +BLFc) −He{(1 + LFc)S2}

 (14)

Then, for any admissible initial conditions (x(0),Ψ(0)), the closed-loop system (11) is globally
asymptotically stable with respect to the set S0 defined as follows:

S0 = {x ∈ Rn;x′W−1x ≤ 1} (15)

In other words, Ec, Fc and S0 are solution to Problem 2.1.

Proof. First note that the satisfaction of relation (12) guarantees that the matrix 1 + LFc
is Hurwitz and therefore nonsingular, which implies that Proposition 2.1 holds.

To prove Theorem 3.1, we consider a quadratic Lyapunov function candidate V defined
by V (x) = x′Px, P = P ′ > 0, for all x in Rn. We want to verify that there exists a
class K function α such that V̇ (x) ≤ −α(V (x)), for all x such that x′Px ≥ 1 (i.e. for
any x ∈ Rn\S0), and for all nonlinearities Ψ satisfying Lemma 1 in [18]. By using the
S-procedure, it is sufficient to check that L < 0, where

L = V̇ (x)− τ(1− x′Px)

−Ψ′T3Ψ + ρ′LT3Lρ− 2(Ψ̇ + Lẏc)
′N1Ψ

−2(Ψ̇ + Lẏc)
′N2(Ψ̇ + (1−N3)Lẏc)

(16)

with τ a positive scalar and T3 a positive diagonal matrix. Choosing N1 = 01 and N3 = 1,
from the definition of Ψ in (10), noting that V̇ (x) = x′(A′0P + PA0)x + 2x′P (B + REc +
BLFc)Ψ, it follows that L = L0 + ρ′LT3Lρ− τ with

L0 =

 x
Ψ

Ψ̇

′M2

 x
Ψ

Ψ̇


with M2 defined as follows

M2 =

 He{PA0}+ τP ? ?
(B +REc +BLFc)

′P −T3 ?
−N2LKA0 −N2LK(B +REc +BLFc) −He{N2(1 + LFc)}

 (17)

The matrix M1 of relation (12) is directly obtained by pre- and post-multiplying M2 by W 0 0
0 1 0
0 0 S2

, where W = P−1 and S2 = N−1
2 .

The satisfaction of relations (12) and (13) implies both L0 < 0 and ρ′LT3Lρ − τ ≤ 0,
and then L < 0, for all (x,Ψ, Ψ̇) 6= 0, and for any x ∈ Rn\S0.

1The positive definiteness constraint of N1 of Lemma 1 in [18] can be relaxed in a positive semi-definiteness
constraint without loss of generality. It is the reason why in the current paper we fix N1 = 0.
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Therefore, the satisfaction of relation (12) ensures that there exists ε > 0, such that

L ≤ −ε‖
[
x′ Ψ′ Ψ̇′

]′ ‖2 ≤ −εx′x. Hence, since by definition one gets V̇ (x) ≤ V̇ (x) −
τ(1− x′Px) ≤ L, one can also verify

V̇ (x) ≤ −εx′x , ∀x such that x′Px ≥ 1 (18)

Furthermore, from (18), there exists a time T ≥ t0 + (x(t0)′Px(t0)− 1)λmax(P )/ε such that
x(t) ∈ S0, ∀t ≥ T , and therefore, S0 is an invariant set for the trajectories of system (11).
Hence, in accordance with [8], it concludes the proof of Theorem 3.1.

Let us comment the feasibility of conditions of Theorem 3.1.

Proposition 3.1 Theorem 3.1 enjoys the following properties:

1. Given Ec = 0 and Fc = 0, condition (12) is feasible if and only if matrix A0 is Hurwitz.

2. There always exist Ec and Fc non null such that condition (12) holds.

Proof. Let us first define matrix M0 corresponding to M1 in the case Ec = 0 and Fc = 0:

M0 =

 He{A0W}+ τW ? ?
B′ −T3 ?

−LKA0W −LKB −2S2

 (19)

Then, in this case, condition (12) corresponds to M0 < 0. Recall that matrix A0 is Hurwitz
by construction (see Remark 2.1). Then one can show that the inequality M0 < 0 is always
feasible by using

1) the fact that the stability property of A0 implies the existence of a matrix W = W ′ > 0
such that He{A0W}+ τW < 0;

2) the Schur complement to show that all the minors of matrix −M0 are positive for large
enough values of T3 and S2.

Let us now consider the case where Ec and Fc are non null. In this case, condition (12)
can be written as

M1 = M0+

He{(

 R
0

−LKR

Ec [ 0 1 0
]
}+He{

 BL 0
0 0

−LKBL −L

 (1⊗ Fc)
[
0 1 0
0 0 S2

]
}

(20)
Hence, if M0 < 0 is feasible, it is always possible to find some value for Ec, Fc such that
relation (20) is feasible, or equivalently such that M1 < 0 is feasible

Remark 3.1 Conditions of Theorem 2 in [18] can be deduced from that one of Theorem 3.1.
Indeed, as pointed out previously, the part due to N1 appearing in [18] is not useful to solve
Problem 2.1 and may be removed. Hence, by setting Ec = 0 and Fc = 0 in the conditions of
Theorem 3.1 one retrieves the conditions of Theorem 2 in [18] with N1 = 0 and P = W−1.
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3.2 Computational issues

Theorem 3.1 may be used to solve both the NSAW design Problem 2.1 and the analysis
problem (Ec and Fc given). It may then be noted that there are two sources of nonlinearities
in the conditions of Theorem 3.1. The first one is issued from the use of the S-procedure, with
the product τW , and is the unique source of nonlinearity in the stability analysis problem
and in the NSAW design problem of Ec only (Fc = 0 or given). This nonlinearity is easily
managed as τ is a simple parameter without much influence on the solution. It may be
selected arbitrarily by try-and-error until a feasible condition is found, or thanks to a grid
search, or encapsulated in an optimization problem with the Matlab function fminsearch. On
the other hand, when Fc is a decision variable, another nonlinearity occurs due to the product
FcS2. An iterative procedure may then be used, where S2 and Fc are alternatively a decision
variable, the other one being fixed to the solution to the previous step. The initialization
of the iterative process may be done with S2 solution to the analysis problem. Finally
optimization problems may be solved to evaluate the smallest set S0, typically described by
its volume, proportional to

√
det(W ) [3], and related to the trace of matrix W .

The following algorithm can then be considered for the analysis problem or to design the
gain Ec (Fc given, typically equal to 0) such that Theorem 3.1 holds.

Algorithm 3.1
min
τ

min
W,S2,T3(,Ec)

trace(W )

subject to conditions (12), (13)
(21)

Similarly, the following algorithm can be considered to design the gain Fc (and eventually
Ec) such that Theorem 3.1 holds.

Algorithm 3.2

• Step 1. Initialization. Given Ec = 0 and Fc = 0, solve the optimization problem (21).

• Step 2. Design. Keep the value of S2 and solve the following

min
τ

min
W,T3,Ec,Fc

trace(W )

subject to conditions (12), (13)
(22)

• Step 3. Analysis. Keep the values of Ec and Fc and solve (21).

• Step 4. Iterate between Step 2 and Step 3 until trace(W ) does not decrease more than
a given tolerance ε > 0.

In both algorithms, the Matlab function fminsearch is used to find the minimal value of
τ allowing to obtain a solution to optimization problems (21) and (22).
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4 Extensions

4.1 Existence conditions

Note that Theorem 3.1 implies that system (7) is asymptotically stable with respect to the
set S0 × IΦ, as soon as Φ is initialized in IΦ. Then, let us state an existence condition
regarding the robustness of the solution to Problem 2.1. To do that, denote respectively
the (set-valued) right-hand side of the first line of (11), the closed unit ball and the closed
convex hull of a set by F , B and co.

Proposition 4.1 Under the hypotheses of Theorem 3.1, there exists a continuous function
δ : Rn → R≥0 which is positive outside S0 such that the differential inclusion

ẋ ∈ coF (x+ δ(x)B) + δ(x)B (23)

is asymptotically stable with respect to the set S0 × IΦ, for any admissible initial condition,
i.e. Φ is initialized in IΦ,. It means that it exists a class KL-function β such that, all
solutions to (23), with Φ initialized in (8), satisfy

‖x(t)‖S0 ≤ β(‖x(0)‖S0 , t) ,∀t ≥ 0.

Proof. To prove this result, we first note that we may include all the dynamics in the two
first lines of (7) together with (3) in terms of a differential inclusion of the state x:

ẋ ∈ F (x) (24)

where F is a nonempty, compact, convex and locally Lipschitz set-valued function, by con-
sidering the Filippov regularization of (7). Moreover the attractor S0 is compact and, with
Theorem 3.1, the system (24) is globally asymptotically stable with the attractor S0. There-
fore, according to [20, Theorem 1], system (7) is robustly globally asymptotically stable
with the attractor S0. Moreover the distance of any point x to the set S0 is ‖x‖S0 . This
implies, with [20, Definition 8], the existence of a δ function and of a a class KL-function β
as considered in the statement of Proposition 4.1.

Remark 4.1 The notion of global ultimate boundedness with respect to a compact set S0

(see, for example, [8]) could be used, but the use of such a notion does not allow to ensure
Lyapunov stability of the considered compact set S0. That means that it may exist some
trajectories starting close to S0, which may not converge to it. However, the property of
global asymptotic stability of a compact set S0, as guaranteed in Theorem 3.1, allows to
inherit robustness property with respect to small perturbations, as developed in Proposition
4.1. Similar facts appear in the context of quantized systems as discussed in [6].

4.2 Uncertainty on the backlash

In this section, we address the case where the backlash operator is uncertain, in order to
study the impact of the uncertain backlash operator on the asymptotic stability of the closed
loop as done for example in [2] for the Coulomb friction. To be more specific, the uncertain
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parameter of backlash operator is ρ, that is ρ = ρN + ∆ρ, where ρN is the nominal part and
∆ρ the uncertain part with:

−µ � ∆ρ � µ (25)

for some constant vector µ in Rm with positives entries.

Remark 4.2 Taking into account explicitly the backlash uncertainty makes sense when as-
sociated to an NSAW strategy. Actually, in the case without NSAW, the smallest set S0 in
which the trajectories of the closed-loop system are uniformly ultimately bounded is forced by
the worst case ρ = ρN + µ. On the other hand, one cannot expect to access the true value of
the backlash in the NSAW scheme, and it has to be built by considering the a priori nominal
value of the uncertain backlash dead-zone ρ.

Then, in the control scheme (4), the NSAW signals are modified as follows:

θ1 = Ec(ΦN [yc]− Lyc)
θ2 = Fc(ΦN [yc]− Lyc)

(26)

where ΦN (which corresponds to ρN) represents the nominal backlash. Then, the closed-loop
system is modified as follows:

ẋ = A0x+ (B +REc +BLFc)ΨN +B(Ψ−ΨN)
yc = Kx+ FcΨN

z = Cx
(27)

with ΨN = ΦN − Lyc (associated to ρN), Ψ = Φ− Lyc (associated to ρ). Note also that:

−2Lρ− Lµ ≤ Ψ−ΨN ≤ 2Lρ+ Lµ.

Problem 2.1 is unchanged, excepted that it now concerns system (27) and a solution to this
uncertain problem is given by the following theorem.

Theorem 4.1 Suppose there exist a symmetric positive definite matrix W ∈ Rn×n, three
diagonal positive definite matrices S2 ∈ Rm×m, T3 ∈ Rm×m, T4 ∈ Rm×m, two matrices
Ec ∈ Rnc×m, Fc ∈ Rm×m and a positive scalar τ satisfying[

M1 ?
B′
[
1 0 0

]
−T4

]
< 0 (28)

ρ′LT3Lρ− τ + (2ρ′ + µ′)LT4L(2ρ+ µ) ≤ 0 (29)

with M1 defined in (14). Then, for any admissible initial conditions (x(0),Ψ(0)), the closed-
loop system (27) is well posed and globally asymptotically stable with respect to the set S0

defined in (15) and Ec, Fc and S0 are solution to the uncertain problem 2.1.

Algorithms 3.1 and 3.2 are simply modified by updating the conditions with (28) and
(29) instead of (12) and (13).
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4.3 External stability

Let us consider that plant (1) is affected by an additive disturbance as follows:

ẋp = Apxp +Bpup +Bpww
yp = Cpxp
z = Cpzxp

(30)

where w ∈ Rq is the additive perturbation and z ∈ Rnz is the performance output to be
attenuated. The exogenous signal w is supposed to be limited in energy:∫ ∞

0

w(t)′w(t) ≤ δ−1 (31)

with a positive finite scalar δ.
In that case, the plant (30) in closed loop with the controller (4) reads:

ẋ = A0x+ (B +REc +BLFc)Ψ +Bww
yc = Kx+ FcΨ
z = Cx

(32)

with

Bw =

[
Bpw

0

]
;C =

[
Cpz 0

]
Problem 2.1 is then modified as follows.

Problem 4.1 Characterize the regions S0 and S∞ of the state space, containing the origin,
and design the NSAW gains Ec and Fc such that:

1. When w = 0, the system (32) is globally asymptotically stable with respect to S0,
when initialized as in (8). In other words, S0 is a global asymptotic attractor for the
closed-loop dynamics (32), for any initial value of Φ in IΦ;

2. When w 6= 0, the closed-loop trajectories of system (32) remains bounded in the set
S∞.

3. When w 6= 0, characterize the L2-gain of the map from w to z. Then in this case we
are interested to prove that the map from w to z is finite L2-gain stable with∫ T

0

z(t)′z(t)dt ≤ γ2

∫ T

0

w(t)′w(t) + g(x(0)), ∀T ≥ 0 (33)

where g(x(0)) is a bias related to the initial condition x(0) =
[
xp(0)′ xc(0)′

]′ ∈ Rn.

Theorem 3.1 is modified to deal with Problem 4.1 as follows.

11



Theorem 4.2 Suppose there exist a symmetric positive definite matrix W ∈ Rn×n, two
diagonal positive definite matrices S2 ∈ Rm×m, T3 ∈ Rm×m, two matrices Ec ∈ Rnc×m,
Fc ∈ Rm×m and two positive scalars τ and γ satisfying (13) and the following condition[

M1 ?
M3 −γ1

]
< 0 (34)

with M1 defined in Theorem 3.1, and

M3 =

[
B′w 0 −B′wK ′L
CW 0 0

]
(35)

Then,

1. When w = 0, for any admissible initial conditions (x(0),Ψ(0)), the closed-loop system
(32) is globally asymptotically stable with respect to the set S0, where the set S0 is
defined in (15).

2. When w 6= 0,

(a) The closed-loop trajectories (32) remain bounded in the set S∞ defined as

S∞ = {x ∈ Rn;x′Px ≤ γδ−1 + x(0)′Px(0)} (36)

for any admissible initial conditions (x(0),Ψ(0)) such that x(0) ∈ Rn\S0 (i.e.,
x(0)′Px(0) ≥ 1).

(b) The map from w to z is finite L2-gain stable with∫ T

0

z(t)′z(t)dt ≤ γ2

∫ T

0

w(t)′w(t) + γx(0)′Px(0), ∀T ≥ 0 (37)

with P = W−1.

Proof. The proof of item 1 of Theorem 4.2 is directly obtained from the proof of Theorem
3.1. Indeed, in presence of disturbance we want to verify that there exists a class K function
α such that V̇ (x) + 1

γ
z′z − γw′w ≤ −α(V (x)), for all x such that x′Px ≥ 1, and for all

nonlinearities Ψ satisfying Lemma 1 in [18]. Mimicking the previous arguments, by using
the S-procedure, it is sufficient to check that Lw < 0, where

Lw = V̇ (x)− τ(1− x′Px)
−Ψ′T3Ψ + ρ′LT3Lρ

−2(Ψ̇ + Lẏc)
′N2Ψ̇ + 1

γ
z′z − γw′w

(38)

with τ a positive scalar and T3 a positive diagonal matrix. Then, it follows that Lw =
Lw0 + ρ′LT3Lρ− τ with

Lw0 =


x
Ψ

Ψ̇
w


′ [

M1 + C′C
γ

?[
B′wP 0 −B′wK ′LN2

]
−γ1

]
x
Ψ

Ψ̇
w


12



By pre- and post-multiplying the matrix in the inequality above by


W 0 0 0
0 1 0 0
0 0 S2 0
0 0 0 1

, with

W = P−1 and S2 = N−1
2 , and by using the Schur complement, the satisfaction of relations

(34) and (13) implies both Lw0 < 0 and ρ′LT3Lρ − τ ≤ 0, and then Lw < 0, for all
(x,Ψ, Ψ̇, w) 6= 0. By integrating Lw0 < 0 between 0 and T , one gets:

V (x(T ))− V (x(0)) +
1

γ

∫ T

0

z(t)′z(t)dt− γ
∫ T

0

w(t)′w(t) < 0

or still

V (x(T )) ≤ V (x(T )) +
1

γ

∫ T

0

z(t)′z(t)dt ≤ γ

∫ T

0

w(t)′w(t) + V (x(0))

Therefore one obtains relation (37) and the definition of S∞ given in (36). That concludes
the proof of item 2 of Theorem 4.2.

Algorithms 3.1 and 3.2 are updated in this case with the new condition (34) in plus of
(13), but also considering for the optimization criterion min γ or a mixed criterion min γ +
trace(W ).

Remark 4.3 The presence of an additive disturbance has no direct impact on the set S0 in
which converges the trajectory once the disturbance vanished. Then, during the design step, a
mixed criterion min γ+trace(W ) consisting in minimizing γ without neglecting the long term
convergence to S0, allows a trade-off between disturbance rejection and size of the attractor.
At the inverse, in the analysis step, it is recommended to separate both optimization problems.

5 Illustrative examples

Algorithms 3.1 and 3.2 (and their extensions to the uncertain and/or perturbed cases) have
been implemented in the Matlab environment, using Yalmip [9] and Mosek [1].

5.1 Academic example

Let us consider to illustrate the approach a small-size example described by (Ap, Bp, Cp,
Dp) = (0.1, 1, 1, 0), with the stabilizing PI control (Ac, Bc, Cc, Dc) = (0, -0.2, 1, -2) and
a backlash element given by (ρ, L) = (1.5, 1). Let us first compare the global asymptotic
attractor S0 obtained without and with NSAW. Algorithm 3.1 is used both for the analysis
of the system without NSAW, and to design an anti-windup gain Ec, whose the solution is
Ec = 0.11. The results are illustrated on Figure 2. The ellipsoidal sets S0 and trajectories
initiated from several initial conditions in the case without backlash (black dotted line), with
backlash alone (dashed red line) and with backlash and NSAW (solid blue line) illustrate the
positive effect of the NSAW. The simulations without NSAW also illustrate that the system
may converge to a fixed point or to a limit cycle around the origin.
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Figure 2: Academic example - Left: Plot of the ellipsoidal set S0 with (in magenta) and
without (in cyan) NSAW. State-space evolution of the system initiated in [1 0]′, [−1 0]′,
[0 1]′ and [0 − 1]′ without backlash (dotted black line), with backlash alone (solid blue
line) and with backlash and NSAW (dashed red line). Right: zoom of the left figure.

5.2 Four-dimensional unstable F-8 aircraft

Let us now consider an unstable MIMO plant model with four states and two inputs. It
corresponds to the longitudinal dynamics of an F-8 aircraft, slightly modified in [21] to
make it unstable. This model has been frequently used in the past to study the influence
of saturating inputs. In this paper, we do not consider saturations but concentrate on the
presence of backlash phenomenon in the input. Let us then consider the system defined by
the following matrices

Ap =


−0.8 −0.006 −12 0

0 −0.014 −16.64 −32.2
1 −0.0001 −1.5 0
1 0 0 0

 ; Bpu =


−19 −3
−0.66 −0.5
−0.16 −0.5

0 0

 ; Cp =

[
0 0 0 1
0 0 −1 1

]

The state variables correspond to the pitch rate, the forward velocity, the angle of attack
and the pitch angle. The elevator and flaperon angles are the input variables. The output
measurements are set as the pitch angle and the flight path angle (see [21] for details).
External disturbances are considered as acting at the input of the system, with Bpw = Bpu,
mimicking the effect of noise on the actuator signal.

5.2.1 State-feedback control (SF)

This system has already been used in [18] to illustrate the influence of backlash defined as
follows

L =

[
1 0
0 1

]
, ρ =

[
0.5
0.5

]
interconnecting the system with a state-feedback controller

K =

[
0.2672 0.0059 −0.8323 0.8089
0.5950 −0.1534 2.1168 0.0525

]
.
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In [18], the control problem was to compute a new state-feedback controller allowing to
minimize the global asymptotic attractor S0 for the closed-loop system. In the current
paper, the control problem is to compute a NSAW gain Fc allowing to minimize S0, but
without modifying the controller gain K. Algorithm 3.2 is used, initialized with τ = 0.5.

• First, Step 1 is performed for the nominal case, with conditions (12)-(13). It gives the
nominal value of S0, independently of the presence of additive disturbance (See Remark
4.3). The volume of the ellipsoid obtained without NSAW is v(W0) =

√
det(W0) =

19.8668.

• Secondly, a NSAW Fc is computed in Step 2 for the perturbed system with δ = 20,
considering conditions (13) and (34) in the optimization problem, with the cost function
γ + trace(W ). One then obtains for the NSAW gain:

Fc =

[
−0.9798 −0.2004

0.1946 −0.9794

]
Solutions with and without NSAW are compared in two directions.

• Ellipsoidal sets are compared in both cases. The analysis of the system with NSAW
is performed for the nominal case (Bpw = 0). It gives a volume v(W1) =

√
det(W1) =

0.0852 to be compared to v(W0) =
√

det(W0) = 19.8668. Note that it corresponds
more or less to the volume obtained in [18] when building a new state-feedback gain.

• L2 gains may be also compared in both cases, solving the analysis problem with cost
function γ. One obtains:

−without NSAW: γ0 = 40.8
−with NSAW: γ1 = 27.1

Results are also illustrated in Figures 3 to 6. The time evolution of the angle of attack (x3)
and the pitch angle (x4) are plotted in Figures 3 and 4, respectively, for the system without
backlash (dotted black line), with backlash alone (solid blue line) and with backlash and

NSAW (dashed red line), initiated from x0 =
[

0 0 1 0
]′

(angle of attack equal to 1).
The backlash characteristics Φ[yc] of the closed-loop systems without (left side) and with

NSAW (right side) are plotted in Figures 5 and 6 for the elevator and flaperon angles,
respectively.

5.2.2 Dynamic output-feedback control (DOF)

Let us now consider the same F-8 aircraft but controlled by a dynamic output feedback,
issued from [16]:

Ac =


−4.2676 0.0362 −11.7964 −31.7599
−1.7022 −0.0182 2703.8 470.5213
−0.9265 −0.0066 −7.0109 6.2734

1 0 0.0801 −3.2993

 ; Bc =


0.3711 1.9263
−3217.1 2717.5
7.6163 −9.1867
3.2192 0.0801


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Figure 3: F-8 example (SF) - Time evolution of the angle of attack (x3). System without
backlash (dotted black line), with backlash alone (solid blue line) and with backlash and
NSAW (dashed red line).

Cc =

[
−0.4485 −0.0045 1.3181 3.1974
3.9966 0.0144 −7.7734 −10.4292

]
; Dc =

[
0 0
0 0

]
Consider also that the exact dead-zone ρ of the backlash is unknown, with an uncertainty of
±10% around the nominal ρN =

[
0.15 0.15

]′
and that the system is prone to disturbance

limited in energy with bound δ = 20. A NSAW gain Ec may be computed by combining the
conditions (28), (29) and (34). One obtains:

Ec =


−18.6757 −2.9305
−421.7373 −119.8615

1.7229 −0.0357
2.0566 0.7154


The time evolution of the angle of attack (x3) for the system initiated with x3(0) = 1 is
plotted in Figure 7 for the system without backlash (dotted black line), with backlash alone
(blue line) and with backlash and NSAW (red line). Simulations with backlash are provided
with ρ = ρN + µ (solid line) and ρ = ρN − µ (dashed line). Once again, one can check that
the NSAW significantly reduces the effect of the backlash on the response of the closed-loop
system.

The influence of the backlash uncertainty is illustrated in Figure 8, relative to the time
evolution of the angle of attack. It is compared in this figure the evolution of the angle of
attack, in presence of a backlash with dead-zone ρ = ρN + µ, with a NSAW using either
the nominal dead-zone ρN (dashed red line) or the real dead-zone ρ (dashdot green line).
One can check that even with an approximate knowledge of the backlash dead-zone, one
can expect to reduce its effect on the system response thanks to a non-standard anti-windup
strategy.
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Figure 4: F-8 example (SF) - Time evolution of the pitch angle (x4). System without
backlash (dotted black line), with backlash alone (solid blue line) and with backlash and
NSAW (dashed red line).

Figure 5: F-8 example (SF) - Backlash characteristics Φ[yc] for the elevator angle (u1). Left:
system without NSAW. Right: system with NSAW.

6 Conclusion

Nonlinear control systems, such as those modeled with a backlash operator in the input,
have been studied in this paper. Under the assumption that the linear closed-loop system
is asymptotically stable, it was shown that some numerically tractable conditions hold so
that it is possible to estimate the attractor of the backlash control system. Moreover con-
ditions allow for the design of anti-windup loops to improve some performance, such as
sensitivity with respect to backlash uncertainty, or L2-gain with respect to external distur-
bances. Both academic and aeronautical examples illustrate the obtained results. The use
of a non-standard anti-windup loop showed its benefit in a similar way as in the presence of
saturation.

This work lets some research lines open. In particular, it would be relevant to study the
effect of the backlash when this nonlinearity affects the output. For such control problems,
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Figure 6: F-8 example (SF) - Backlash characteristics Φ[yc] for the flaperon angle (u2). Left:
system without NSAW. Right: system with NSAW.

Figure 7: F-8 example (DOF) - Time evolution of the angle of attack (x3). System without
backlash (dotted black line), with backlash alone (solid blue line) and with backlash and
NSAW (dashed red line).

it may be necessary to exploit an observer of the nonlinearity map in order to be able to
build the NSAW loop. Moreover it could be interesting to see the effect of the backlash on
infinite dimensional systems, maybe in a similar way as in [15] for the wave equation with
input saturation. Also some works are under progress on a complementary subject, namely
when both saturation and backlash nonlinearities are active in the closed loop.
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