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Abstract

This paper addresses the boundary control problem of fluid transport
in a Poiseuille flow taking the actuator dynamics into account. More pre-
cisely, sufficient stability conditions are derived to guarantee the exponential
stability of a linear hyperbolic differential equation system subject to non-
linear quadratic dynamic boundary conditions by means of Lyapunov based
techniques. Then, convex optimization problems in terms of linear matrix
inequality constraints are derived to either estimate the closed-loop stabil-
ity region or synthesize a robust control law ensuring the local closed-loop
stability while estimating an admissible set of initial states. The proposed
results are then applied to application-oriented examples to illustrate local
stability and stabilization tools.
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1. Introduction

In industrial processes, a large variety of physical systems is governed by
hyperbolic partial differential equations (PDEs) such as hydraulic networks
[4, 21] and gas devices [11, 12]. In particular, fluid transport is often modeled
by balance laws (or conservation laws when additive and dissipative terms are
disregarded) which are hyperbolic PDEs normally used to express the funda-
mental dynamics of open conservative systems. However, infinite dimensional
systems introduce variable time-delays making the closed-loop control much
more challenging and, moreover, distributed measurements and actuators are
not usually available. As a consequence, it is more common that actuators
and measurements are located at the boundaries which is desired in practical
applications as, for instance, in the references previously cited. In addition,
a large number of numerical techniques based on finite-dimensional tools,
which are often used to the stability analysis of PDE systems, provides only
approximate solutions.

On the other hand, Lyapunov theory has been largely applied for several
decades to deal with the stability analysis and control design of finite di-
mensional systems described by ordinary differential equations (ODEs) [37].
In the particular case of linear dynamical systems, a large number of sta-
bility and stabilization results are cast in terms of linear matrix inequality
(LMI) constraints [6], which are numerically solved using dedicated software
[30]. The LMI framework is a powerful tool for linear and nonlinear finite-
dimensional systems, since it can deal with a large diversity of control and
systems theory problems such as robust stability, domain of attraction esti-
mation, input-to-output performance, state or dynamic output-feedback con-
trol, and state estimation (see [6, 7, 32, 18, 13, 24] among other references).
As a result, LMIs have been successfully applied in a wide diversity of con-
trol oriented applications as, for instance, wind turbine operation, satellite
attitude regulation, turbo-charged combustion engine control and bioprocess
control and estimation [31, 19].

In the context of infinite dimensional systems, the stability problem of
boundary control for first-order hyperbolic systems using quadratic strict
Lyapunov functions was more recently stated; see, for instance, [16, 15, 33].
A common assumption in most of available results is that the boundary action
is faster than the wave travel making possible to establish a static relationship
between the control input and the boundary condition. However, there are
applications where the dynamics associated to the boundary control action
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cannot be neglected as, for instance, in the temperature control of an airflow
in a heating column. To deal with dynamic boundary actions, the infinite-
dimensional system discretization together with the use of finite-dimensional
tools are often employed. On the other hand, several approaches considering
infinite-dimensional based techniques have been recently proposed. To cite a
few, some sufficient conditions for the exponential stability of hyperbolic sys-
tems with linear time invariant dynamic boundary conditions were proposed
in [10], the backstepping technique for the boundary control of hyperbolic
and time-delayed systems was considered in [28], the dynamic boundary sta-
bilization of linear parameter-varying (LPV) hyperbolic systems using the
LMI framework was studied in [12], the problem of stability analysis and
control synthesis for first-order hyperbolic linear PDEs over a bounded inter-
val with spatially varying coefficients was the focus of [29], and a multimodel
approach with a bilinear matrix inequality to deal with the stability of a hy-
perbolic system representing the flow in a open channel was proposed in [23].
It turns out that the majority of the latter references consider only dynamic
boundary actions described by linear differential equations.

This paper addresses the boundary stabilization of uncertain first-order
hyperbolic systems with boundary actions governed by an uncertain nonlin-
ear quadratic differential equation. It should be emphasized that the class of
quadratic systems can describe state-space models containing quadratic non-
linearities in the state variables and bilinear terms involving the state and
control signal. Moreover, this class of systems can represent a large num-
ber of processes such as distillation and heating columns [25, 10], induction
motors [3] and DC–DC converters [35], which has attracted recurring inter-
est of the control practitioners; see, for instance, [2, 1, 36, 17] and references
therein. Notice, in the context of infinite dimensional systems, that boundary
actions are often nonlinear as, for instance, in the geometric average parti-
cle volume regulation of plug-low reactors, flow regulation in open channels
delimited by overflow spillways and the vibration rejection in flexible ma-
rine risers [14, 16, 26]. In particular, local boundary stabilization conditions
for the coupled linear first-order hyperbolic system and nonlinear quadratic
dynamic boundary actuation are in this paper proposed in terms of a finite
set of LMI constraints based on the Lyapunov stability theory. The local
stability is characterized in a regional context, that is, bounded initial states
will imply that the state trajectories remain bounded and they converge to
the equilibrium point as the time goes to infinity. Hence, an optimization
problem is proposed for the boundary feedback control design in order to de-
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termine a quadratic boundary state feedback control law that maximizes the
set of admissible boundary initial conditions while guaranteeing the stability
of the coupled ODE-PDE system.

The remaining of this paper is organized as follows. The problem of in-
terest is stated in Section 2. Then, Section 3 presents the main stability
results for uncertain first-order linear hyperbolic system subject to nonlinear
boundary conditions. Next, the stability results are adapted in Section 4 to
control synthesis by means of an appropriate similarity transformation where
a stabilizing nonlinear boundary state feedback control law is designed in or-
der to maximize the region of admissible initial conditions. Then, Section 5
provides two application-based examples in order to demonstrated the po-
tentials of the proposed approach. Finally, Section 6 ends the paper giving
some concluding remarks.

Notation: R+ = [0,+∞), Rn is the n-dimensional Euclidean space, Rm×n

is the set of m × n real matrices with real entries, In in the n × n identity
matrix, 0n is the n× n zeros matrix and diag{· · ·} denotes a block-diagonal
matrix. For a real matrix S, S ′ denotes its transpose, He{S} stands for
S + S ′, and S > 0 means that S is symmetric and positive-definite. For two
polytopes X and Y , X × Y denotes the meta-polytope obtained by cartesian
product and V(X ) is the set of all vertices of X . For a vector ξ ∈ Rn, the
k-component of ξ is denoted by ξ(k). The usual Euclidian norm in Rn is
denoted by ‖ · ‖, whereas the set of all functions φ : (0, L) → Rn such that∫ L
0
φ(x)′φ(x) dx < ∞ is denoted by L2((0, L);Rn) that is equipped with

the norm ‖ · ‖L2((0,L);Rn). Given a topological set J , and an interval I in R+,
the set C0(I,J ) is the set of continuous functions φ : I → J .

2. Problem Statement

Let n be a positive integer, Ω an open non-empty set of Rn and ∆ a non
empty convex set of Rnδ . Consider the general class of first-order uncertain
hyperbolic systems of order n defined as follows:

∂tξ(t, x) + Λ(δ)∂xξ(t, x) = 0, t ∈ R+, x ∈ [0, L], (1)

where ξ : R+ × [0, L] → Ω, δ ∈ ∆ is a bounded sufficiently smooth vector
function of time; ∂t and ∂x represent (first order) partial derivatives with
respect to time and space, respectively; Λ(δ) : ∆→ Rn×n is a diagonal and
continuous matrix function (called the characteristic matrix), i.e., Λ(δ) =
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diag{λ1(δ), λ2(δ), . . . , λn(δ)} with λi(δ) being positive continuous functions,
for all δ ∈ ∆ and i = 1, . . . , n.

Assumption 1. The diagonal elements of Λ(δ) ∈ Rn×n satisfy the following
inequalities for all δ ∈ ∆:

0 < λ1(δ) < · · · < λn(δ).

Remark 1. Assumption 1 implies that system (1) has only positive convect-
ing speeds, however it does not add any loss of generality. Note that, for first
order hyperbolic systems with both negative and positive convecting speeds,
there always exists a variable transformation to obtain a system as in (1)
satisfying Assumption 1 (see the beginning of proof of Theorem 1 in [10],
or Page 7 of [34] or Remark 1 of [12] or Remark 3 of [11]). In particular,
consider system (1) with the diagonal elements of Λ(δ) ordered as follows

λ1(δ) < · · · < λm(δ) < 0 < λm+1(δ) < · · · < λn(δ), ∀ δ ∈ ∆,

and let ξ : R+ × [0, L]→ Ω ∈ Rn be partitioned as

ξ(t, x) =

[
ξ−(t, x)
ξ+(t, x)

]
, ξ− ∈ Rm, ξ+ ∈ Rn−m.

Then, applying the transformation

ξ̃(t, x) =

[
ξ−(t, L− x)
ξ+(t, x)

]
yields a system as in (1) with only positive convection speeds.

Associated with (1), consider the following nonlinear quadratic dynamic
boundary action:{

ξ̇in(t) = A(ξin(t), δ)ξin(t) +B(ξin(t), δ)u(t),

u(t) = G(ξin(t))ξin(t) +Kξout(t),
(2)

where
ξin(t) = ξ(t, 0) , ξout(t) = ξ(t, L) (3)

are the boundary conditions of (1) interconnecting the boundary dynamics of
(1) with (2), ξin ∈ Ξ ⊂ Rn and ξout ∈ Rn are the state vectors of the dynamic
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boundary condition at x = 0 and x = L, respectively, and assumed to be
measurable, u(t) ∈ Rnu is the boundary control input, Ξ is compact region
of the boundary state-space containing ξin = 0 and to be specified later in
this paper. Notice to ease the presentation that the system and boundary
dynamics uncertainties are merged into the vector δ, i.e., the elements of δ
comprise both system and boundary dynamics modeling errors.

Further, K ∈ Rnu×n is a real constant matrix and A(·) ∈ Rn×n, B(·) ∈
Rn×nu , G(·) ∈ Rnu×n are affine matrix functions on their arguments, that is:

[A(ξin, δ) B(ξin, δ)] = [A0 B0] +
n∑
i=1

ξin(i) [Ai Bi]

+

nδ∑
j=1

δ(j)

[
Ăj B̆j

]
, (4)

G(ξin) = G0 +
n∑
i=1

ξin(i)Gi, (5)

with Ai, Bi, and Gi, i = 0, 1, . . . , n, and Ăj, B̆j, j = 1, . . . , nδ, being given
constant real matrices with appropriate dimensions. It is assumed that the
pair (A0, B0) is stabilizable and the unforced system of (2) is allowed to be
unstable.

In addition, the initial conditions of the coupled PDE-ODE system of (1)
and (2), namely

ξ(0, x) = ξ(x) and ξin(0) = ξin , (6)

are assumed to satisfy:

ξ ∈ D1 and ξin ∈ D2 , (7)

where the sets D1 and D2 are defined as follows

D1 :=

{
ξ ∈ L2((0, L);Rn) :

∫ L

0

ξ(x)′ξ(x) dx ≤ σ

}
, (8)

D2 :=
{
ξin ∈ Rn : ξin

′P1ξin ≤ 1
}
,

with the scalar σ > 0 and the matrix P1 > 0 defining the sizes of D1 and D2,
respectively. In the particular case of linear dynamic boundary conditions,
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that is, when Ai, Bi, Ǎi and B̌i are null matrices, for i = 1, . . . , n, the ex-
istence and uniqueness of solutions to (2), (3) and (6) for initial conditions
satisfying (7) is ensured, see e.g. [15]. As these solutions may not be dif-
ferentiable everywhere, the concept of weak solutions to partial differential
equations has to be used; see [21] and references therein for further details.

In view of the above scenario, this paper is concerned in obtaining suffi-
cient conditions to the regional stability and stabilization problems for cou-
pled PDE-ODE system of (1) and (2) as stated below:

P1 For given state feedback gain matrices G(ξin) and K(ξout) as defined
in (5), derive stability analysis conditions ensuring the robust local sta-
bility of the coupled PDE-ODE system while determining a maximized
set of initial boundary states D2 for a given set D1.

P2 Design the state feedback gain matrices G(ξin) and K(ξout) as defined
in (5), ensuring the robust local stability of the coupled PDE-ODE
system while maximizing the set of initial boundary states D2 for a
given set D1.

Before ending this section, the notion of exponential stability to be con-
sidered in this paper is introduced for the coupled PDE-ODE system of (1)
and (2).

Definition 1. The coupled PDE-ODE system of (1) and (2), with initial
conditions ξ and ξin satisfying (7), is said to be locally robustly exponentially
stable if there exist positive scalars α and β such that the following holds:(

‖ξin(t)‖+ ‖ξ(t, ·)‖L2((0,L);Rn)
)
≤ βe−αt

(
‖ξin‖+ ‖ξ‖L2((0,L);Rn)

)
,

∀ t ∈ R+, δ ∈ ∆. (9)

3. Local Stability Analysis

In this section, it is developed an LMI approach to derive a numerical and
tractable solution to the robust regional stability analysis problem P1 as de-
fined in Section 2. To this end, consider the following Lyapunov function can-
didate defined for all continuously differentiable functions ξ : R+×[0, L]→ Ω:

V (ξ) = ξ′inP1ξin +

∫ L

0

e−µxξ(x)′P2ξ(x) dx, (10)
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where P1, P2 ∈ Rn×n are positive definite diagonal matrices and µ is a positive
scalar.

Then, evaluating the time derivative of V (·) along the solutions to (1)
and (2) with (7) leads to (see, for instance, [16] and [11] for further details):

V̇ (ξ(t, ·)) = 2ξin(t)′P1

(
A(ξin, δ) +B(ξin, δ)G(ξin)

)
ξin(t)

+ 2ξin(t)′P1B(ξin, δ)Kξout(t)−
[
e−µxξ(t, x)′Λ(δ)P2ξ(t, x)

]x=L
x=0

− µ
∫ L

0

e−µxξ(t, x)′Λ(δ)P2ξ(t, x) dx

In light of the above and taking (3) into account, V̇ (ξ(t, ·)) can be cast
as follows:

V̇ (ξ(t, ·)) = −m1(ξ, δ) +m2(ξin, ξout, δ) (11)

where

m1(ξ, δ) = µ

(
ξ′inΛ(δ)P1ξin +

∫ L

0

e−µxξ(t, x)′Λ(δ)P2ξ(t, x) dx

)
,

m2(ξin, ξout, δ) = ξ′aΦ(ξin, δ)ξa, ξa =

[
ξin
ξout

]
,

Φ(ξin, δ)=


A(ξin, δ)

′P1+P1A(ξin, δ)

+G(ξin)′B(ξin, δ)
′P1

+P1B(ξin, δ)G(ξin)

+Λ(δ)P2 + µΛ(δ)P1

P1B(ξin, δ)K

K ′B(ξin, δ)
′P1 −e−µΛ(δ)P2

 .

Due to Assumption 1 and since Λ(·) is a continuous function on the
compact set ∆, there exists a sufficiently small positive scalar ε such that
ε ≤ λ1(δ), for all δ ∈ ∆, which implies that εIn ≤ Λ(δ) for all admissible δ.

Then, provided that

m2(ξin, ξout, δ) ≤ 0 , ∀ (ξin, δ) ∈ Ξ×∆, ξout ∈ Rn (12)

for a set Ξ (that will be defined latter), the following holds

V̇ (ξ(t, ·)) ≤ −µεV (ξ(t)), ∀ t ∈ R+, (13)

from the fact that m1(ξ(t, ·), δ) ≥ µεV (ξ(t, ·)).
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Notice that the inequality (13) implies that the coupled PDE-ODE sys-
tem is locally exponentially stable if the condition (12) is satisfied along the
solutions to (1) and (2) for all ξ̄ ∈ D1 and ξ̄in ∈ D2. Hence, we have to
guarantee that the solution to the coupled PDE-ODE system is confined to
a region

R(γ) := {ξ : V (ξ) ≤ γ} (14)

for a certain γ > 0.
Firstly, from (13), the following holds:

V (ξ(t, ·)) ≤ e−µεtV (ξ̄) , ∀ δ ∈ ∆.

Next, provided that ξ ∈ D1, ξin ∈ D2 and µ > 0, there exists a sufficiently
large positive scalar % such that the following holds:∫ L

0

e−µxξ(x)′P2 ξ(x) dx ≤
∫ L

0

ξ(x)′P2 ξ(x) dx ≤ %

∫ L

0

ξ(x)′ξ(x) dx ≤ %σ.

In the above inequality, observe that % is any scalar equal or larger than the
largest eigenvalue of P2.

Then, the following upper bound on V (ξ̄) is obtained

V (ξ̄) ≤ 1 + %σ,

as soon as ξ ∈ D1, ξin ∈ D2 which, in view of the above, implies that:

V (ξ(t, ·)) ≤ γ , γ = 1 + %σ, ∀ t ∈ R+, δ ∈ ∆. (15)

Now, let V1(ξin) = ξ′inP1ξin, then it follows from (10) that:

V1(ξin(t)) ≤ V (ξ(t, ·)) ≤ γ, ∀ t ∈ R+, δ ∈ ∆. (16)

Let the following set:

R1 := {ξin : V1(ξin) = ξ′inP1ξin ≤ γ}. (17)

Thus, the condition in (16) guarantees that ξin ∈ R1 for all t ∈ R+ and
δ ∈ ∆, since V1(ξin(t)) ≤ V (ξ(t, ·)) ≤ V (ξ̄) ≤ γ for all t ∈ R+ and δ ∈ ∆.
Then, provided that R1 ⊂ Ξ, the condition in (12) holds along the solutions
to (1) and (2) for all ξ ∈ D1 and ξin ∈ D2.

In the sequel, it is introduced the main result of this section which pro-
poses a numerical and tractable solution to problem P1 in terms of a finite
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set of LMI constraints. To this end, it is assumed that Ξ is a given symmet-
ric hyper-rectangle (i.e., a polytopic region) containing ξin = 0 with known
vertices. Moreover, Ξ can be also equivalently defined in terms of its faces
as below

Ξ = {ξin ∈ Rn : |ci′ξin| ≤ 1, i = 1, . . . , nf}, (18)

with ci ∈ Rn, i = 1, . . . , nf , defining the faces of Ξ.

Theorem 1 (Stability Analysis). Consider the PDE-ODE system (1) and
(2), with the initial conditions defined by (7) and (8), and given control gains
G(ξin) and K. Let Ξ and ∆ be given polytopes, and σ, µ be given positive
scalars. Suppose there exist diagonal matrices P1 and P2, a matrix W , with
appropriate dimensions, and a positive scalar % satisfying the following:

P1 > 0, P2 > 0, %In − P2 ≥ 0, (19)[
γ γcj

′

γcj P1

]
≥ 0, j = 1, . . . , nf , (20)

Θ(ξin, δ, µ) + He{WM(ξin)} < 0,

∀ (ξin, δ) ∈ V(Ξ×∆), (21)

where γ = 1 + %σ and

Θ(ξin, δ, µ) =

 N ′
(
A(ξin, δ)

′P1+P1A(ξin, δ) + Λ(δ)P2 + µΛ(δ)P1

)
N

+G′B(ξin, δ)
′P1N+N ′P1B(ξin, δ)G

N ′P1B(ξin, δ)K

K ′B(ξin, δ)
′P1N N ′(−e−µΛ(δ)P2)N

 ,
N =

[
In 0n×n2

]
, G =

[
G0 G1 · · · Gn

]
,

M(ξin) =

[
Π(ξin) −In2 0

0 N (ξin) 0

]
, Π(ξ) =

 ξ(1) ⊗ In...
ξ(n) ⊗ In

 ,

N (ξ) =



ξ(2)In −ξ(1)In 0 · · · · · · 0
0 ξ(3)In −ξ(2)In 0 · · · 0
...

. . .
. . .

. . . · · ·
...

... · · ·
. . .

. . .
. . .

...
0 · · · · · · 0 ξ(n)In −ξ(n−1)In

 . (22)
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Then, the origin of the coupled PDE-ODE system of (1) and (2) is locally
robustly exponentially stable in the sense of Definition 1. Moreover, for any
ξ ∈ D1 and ξin ∈ D2, the system trajectories remain bounded to R1 as defined
in (17), for all t ≥ 0, and vanish to zero as the time goes to infinity.

Proof 1. Suppose the conditions of Theorem 1 are satisfied, then from con-
vexity arguments the condition in (21) is also satisfied for all (ξin, δ) ∈
Ξ×∆, ξout ∈ Rn.

Firstly, let us show that (21) implies that (12) holds. To do that, let

Ψ(ξin) =

[
Πa(ξin) 0

0 In

]
, Πa(ξ) =

[
In

Π(ξ)

]
.

Hence, pre- and post-multiplying (21) by Ψ(ξin)′ and Ψ(ξin), respectively,
yields

Φ(ξin, δ) < 0, ∀ (ξin, δ) ∈ Ξ×∆,

since M(ξin)Ψ(ξin) = 0 by construction, and thus

m2(ξin, ξout, δ) ≤ 0, ∀ (ξin, δ) ∈ Ξ×∆, ξout ∈ Rn.

Next, in light of the definition of V (ξ) in (10) and taking (11)-(12) into
account, the following holds:

V̇ (ξ(t, ·)) ≤ −µεV (ξ(t)), ∀ t ∈ R+.

Now, notice that (20) implies R1 ⊂ Ξ; see, e.g., [6]. Hence, for all ξ ∈ D1

and ξin ∈ D2, it follows that V1(ξin(t)) ≤ V (ξ(t, ·)) ≤ V (ξ̄) ≤ γ for t ∈ R+

and δ ∈ ∆, which completes the proof.

Theorem 1 can be applied to obtain the largest estimate of the set D2

of admissible initial boundary states assuming that D1 and Ξ are given a
priori. For instance, the volume of D2 can be approximately maximized by
minimizing the trace of P1 (since the trace of P−11 is the sum of the squared
semi-axis lengths of D2) leading to the following optimization problem

min
µ,%,P1,P2,W

trace{P1} subject to (19)-(21). (23)

Notice that the matrix inequalities in (19)-(21) become LMIs when µ is given.
Hence, it can be applied a line search over µ in order to obtain a solution to
optimization problem in (23) via semi-definite programming.
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Remark 2. To be precise, the Lyapunov function in (10) is not differentiable
along all L2 solutions. However it is continuously differentiable along the
smooth solutions, and thus, by density, the analysis developed in this section
is also correct for L2 solutions . See, for instance, [5, page 67] for further
details.

4. Regional Stabilization

This section addresses the problem of designing the state feedback gain
matrices G(·) and K(·) such that the coupled PDE-ODE system of (1) and
(2) with (7) is regionally exponentially stable for all δ ∈ ∆. The proposed
design will be based on Theorem 1 together with a similarity transformation
and matrix parameterizations involving the Lyapunov matrix P1.

Thus, consider the following definitions:

ηin = P1ξin, ηout = P1ξout, η = P1ξ, Q1 = P1
−1,

Q2 = Q1P2Q1, Gp(ξin) = G(ξin)Q1, Kp = KQ1,
(24)

with Q1 > 0.
Now, observe that m1(ξ, δ) and m2(ξin, ξout, δ) in (11) can be respectively

recast as follows:

m1(ξ, δ) = µ

(
η′inQ1Λ(δ)ηin +

∫ L

0

e−µxη(t, x)′Q2Λ(δ)η(t, x) dx

)
, (25)

m2(ξin, ξout, δ) = η′aΦp(ξin, δ)ηa, (26)

where

ηa=

[
ηin
ηout

]
,

Φp(ξin, δ) =


Q1A(ξin, δ)

′+A(ξin, δ)Q1+
Gp(ξin)′B(ξin)′ +B(ξin)Gp(ξin)

+Q2Λ(δ) + µQ1Λ(δ)
B(ξin, δ)Kp

K ′pB(ξin, δ)
′ −e−µΛ(δ)Q2

 .
Hence, using similar arguments to Section 3, the condition V̇ (ξ(t, ·)) ≤
−µεV (ξ(t, ·)) will hold for t ∈ R+ if m2(ξin, ξout, δ) as defined in (26) satisfies

m2(ξin, ξout, δ) ≤ 0, ∀ (ξin, δ) ∈ Ξ×∆, ξout ∈ Rn. (27)
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In addition, notice that the condition %In − P2 ≥ 0 was considered in
Section 3 to obtain a bound γ on V (ξ(t, ·)) such that (16) holds for all
t ∈ R+ and δ ∈ ∆. To this end, the following result will be instrumental to
obtain a numerical and tractable solution.

Lemma 1 ([20]). Let P and R be real square matrices with P > 0 and R
nonsingular. Then, the following holds:

R′P−1R ≥ R +R′ − P (28)

Because of the parametrization of P2 in (24), it follows that %In−P2 ≥ 0
can be equivalently written as follows:

Q1Q
−1
2 Q1 − ϕIn ≥ 0, (29)

with ϕ = %−1, and noting that P2 = Q−11 Q2Q
−1
1 .

Hence, the following inequality is a sufficient condition for (29) to hold:

2Q1 −Q2 − ϕIn ≥ 0, (30)

by applying Lemma 1 with R = Q1 and P = Q2.
In view of the above developments, it is proposed in the sequel an LMI-

based result for designing the state feedback gain matrices G(ξin) and K such
that the origin of the coupled PDE-ODE of (1) and (2) is robustly regionally
stable in closed-loop.

Theorem 2 (Regional Stabilization). Consider the PDE-ODE system (1)
and (2), with the initial conditions defined by (7) and (8). Let Ξ and ∆ be
given polytopes, and ϕ, σ and µ be given positive scalars. Suppose there exist
diagonal matrices Q1 and Q2, and matrices W , S, Fi, i = 0, 1, . . . , n, with
appropriate dimensions, satisfying the following:

Q1 > 0, Q2 > 0, 2Q1 −Q2 − ϕIn ≥ 0, (31)

1− γc′jQ1cj ≥ 0, j = 1, . . . , nf , (32)

Θp(ξin, δ, µ) + He{WM(ξin)} < 0,

∀ (ξin, δ) ∈ V(Ξ×∆), (33)
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where γ = 1 + σϕ−1 and

Θp(ξin, δ, µ) =

 N ′
(
Q1A(ξin, δ)

′+A(ξin, δ)Q1

)
+F ′B(ξin, δ)

′N
+N ′B(ξin, δ)F +N ′

(
Λ(δ)Q2 + µΛ(δ)Q1

)
N

N ′B(ξin, δ)S

S′B(ξin, δ)
′N −e−µΛ(δ)Q2

 ,
F =

[
F0 F1 · · · Fn

]
. (34)

Then, the origin of the coupled PDE-ODE system (1) and (2), with

G(ξin) = F0Q
−1
1 +

n∑
i=1

ξin(i)FiQ
−1
1 , K = SQ−11 , (35)

is locally robustly exponentially stable in the sense of Definition 1. Moreover,
for any ξ ∈ D1 and ξin ∈ D2, the solution to the coupled PDE-ODE system re-
mains bounded to R1 as defined in (17), with P1 = Q−11 and P2 = Q−11 Q2Q

−1
1 ,

for all t ≥ 0, and vanish to zero as the time goes to infinity.

Proof 2. Suppose the conditions of Theorem 2 are satisfied, then from con-
vexity arguments the condition in (33) is also satisfied for all (ξin, δ) ∈
Ξ×∆, ξout ∈ Rn.

Firstly, let us show that (33) implies that (27) holds. To do that, let

Ψ(ξin) =

[
Πa(ξin) 0

0 In

]
, Πa(ξ) =

[
In

Π(ξ)

]
.

Hence, pre- and post-multiplying (33) by Ψ(ξin)′ and Ψ(ξin), respectively,
yields

Φp(ξin, δ, µ) < 0, ∀ (ξin, δ) ∈ Ξ×∆,

since M(ξin)Ψ(ξin) = 0 by construction.
Now, pre- and post multiplying the above by η′a and ηa, respectively, leads

to (12) taking the definitions of ηin and ηout in (24) into account and the
fact that:

G(ξin) = FΠa(ξin)P1, K = SP1 .

Next, notice that (32) implies D ∈ Ξ; see, e.g., [6]. Then, consider the
condition 2Q1−Q2−ϕIn ≥ 0 on the right-hand side of (31). From Lemma 1,
it follows that:

P−12 − ϕIn ≥ 0,

14



since P2 = Q−11 Q2Q
−1
1 . Hence, multiplying the above by P2% with % = ϕ−1,

the following is obtained
%In − P2 ≥ 0.

Thus, the rest of this proof follows straightforwardly from Theorem 1.

Similarly to the stability analysis counterpart, Theorem 2 can be applied
for designing the state feedback gain matrices G(ξin) and K, as defined in
(5), in order to robustly regionally stabilize the coupled PDE-ODE system
of (1) and (2) in closed-loop while maximizing the volume of D2 for a given
set D1. Thus, the following optimization problem solves problem P2:

max
µ,ϕ,Q1,Q2,F0,...,S,W

logdet(Q1) subject to (31)-(33). (36)

Notice that the matrix inequalities in (31)-(33) are LMIs when ϕ and µ
are given a priori. Hence, a solution to the above optimization problem is
obtained via semi-definite programming by applying a gridding technique
over ϕ and µ.

5. Illustrative Examples

In this section, two application-based examples are presented to illustrate
the results derived in the paper. The first one consists on designing a bound-
ary controller to regulate the outlet temperature in a Poiseuille flow system.
Then, in the second one, it is performed a local stability analysis of a lossless
transmission line connected to a constant power load.

5.1. Poiseuille Flow System

The fluid transport system is normally used for industrial applications
such as the ventilation system of mining industry [38] and hydraulic networks
[22]. To investigate the phenomenon of fluid transport in a Poiseuille flow
subject to dynamic boundary conditions, an experimental setup has been
designed to test and validate the proposed results.

The experimental setup consists on a heating column encasing a resistor,
a tube, two ventilators, a gas speed meter and three distributed temperature
sensors [8]. The control objective is tracking the outlet temperature by driv-
ing the power dissipated on the heating resistor at different air flow speeds
through the tube. Only the outlet temperature and the flow speed will be
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considered as measurements for a closed-loop boundary control strategy and
thus G(ξin) is set to be zero. In this work, it is assumed that the output
ventilator is off.

The modeling of the experimental setup is done by considering two sub-
systems: the heating column and the tube. One-dimensional transport model
is used to describe the gas density, speed and pressure variations in the tube.
For the dynamic boundary conditions, it is considered a zero-dimensional
model of control volume approach with heat exchanges coming from the
heating resistor in the column. The perfect gases law is used to convert
density on temperature.

System description and modeling are presented in [9, 8]. Applying some
simplifications (according [9, Section 4]) the system of PDEs reduces to the
following convection equation

∂ρ(t, x)

∂t
+ v(t)

∂ρ(t, x)

∂x
= 0, (37)

where v(t) is the time-varying convection parameter of (37). The gas speed
v(t) in the tube is measured.

For the dynamic boundary condition, considering that the input mass flow
rate to be expressed as ṁin = v(t)ρ(t, 0)At. Thus, the dynamic boundary
condition can be expressed as:

ρ̇(t, 0) = −Rγ̃Tinv(t)At
pinV0

ρ(t, 0)2 +
γ̃v(t)At
V0

ρ(t, 0)− R

pinV0Cv
ρ(t, 0)dQ, (38)

where At is the tube cross section area.

Temperature Boundary Control

The output temperature boundary control is designed for (37) with bound-
ary conditions (38). Let define the density error as:

ξ = ρ− ρref , (39)

where ρref is the desired output density. It is easy to show that system (37)
with boundary conditions (38) can be expressed as follows:

∂ξ(t, x)

∂t
+ Λ(δ)

∂ξ(t, x)

∂x
= 0, (40)

with the boundary conditions:

ξ̇in = −A(δ)ξin
2 + a(δ)ξin −BξindQ, ξ0 = ξin, (41)
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where A(δ) =
Rγ̃Tinv(δ)At

pinV0
, a(δ) =

γ̃v(δ)At
V0

and B =
R

pinV0Cv
The speed v(δ) is measured and is considered an uncertain parameter.

The temperature inside the heating column is not measurable. Let define
the control input using a feedback (partial) and feedforward linearization as:

dQ = F (δ, ρref ) +Kξout, ξout = ξ(t, L), (42)

with F (δ, ρref ) = Cvγ̃v(δ)At

(pin
R
− Tinρref

)
and K to be designed.

This yields to the system (40) with boundary condition (41), which corre-
sponds to the system considered in Theorem 1 and Theorem 2. Let define the
convex set ∆ = [1, 3] as the flow speed 1 m/s and 3 m/s in order to operate
the experimental setup between the temperatures of 300 K and 325 K.

In order to design the boundary control for system (40) with boundary
condition (41), consider the control architecture given in Figure 1.

Figure 1: Flow tube control architecture.

In addition, let the following system parameters: adiabatic constant
γ̃ = 1.4; molar mass of dry air M = 28.97 g/mol.K; ideal gas constant
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R = 8.3143 J/(mol.K); specific heat constant for constant pressure Cp =
1.005 KJ/Kg.K for constant volume Cv = 0.718 KJ/Kg.K; initial pres-
sure pin = 1 Bar (or, equivalently, 1 × 105 Pa in SI units); initial tem-
perature Tin = 300 K; initial density ρ = 1.1768 Kg/m3 column volume
V0 = 4 × 10−3m3; tube cross section area At = 6.4 × 10−3m2; and the tube
length L = 1 m.

In this scenario, we have applied Theorem 1 with (23) to show that the
closed-loop system illustrated in Figure 1 is locally stable considering K =
−0.8, µ = 0.3 and Ξ = [−40, 40] . It is displayed in Figure 2 the time
response of the outlet temperature’s error eL(t) considering a step change of
25 K on the outlet temperature’s reference. It should be noticed the nice
performance achieved by the proposed controller. Nevertheless, the result
obtained by the linear controller uL(t) = −0.8ξout can be further improved if a
polytopic set Ξout bounding the outlet temperature’s trajectory ξout(t), for all
t ≥ 0, is known a priori which is the case in this example. Then, Theorem 1
with (23), K(ξout) = −0.8 + 8ξout, µ = 0.3 and ξout ∈ Ξ = [−40, 40] is
applied to demonstrate that the closed loop system is locally stable with
the nonlinear control law uNL = K(ξout)ξout. For illustrative purposes, the
closed-loop response of the outlet temperature’s error eNL(t) considering the
latter control law is also given in Figure 2. It is observed that the convergence
of the temperature error with the non-linear gain outperformed the linear
counterpart.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

10

15

20

25

Figure 2: Temperature error trajectories eL(t) and eNL(t) for flow speed 1 m/s.

Now, in order to illustrate the effectiveness of the proposed nonlinear
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boundary control design strategy, consider system (40) with boundary con-
ditions as defined in (41). Thus, applying Theorem 2 with (36) and consider-
ing K(ξout) = K0 + ξoutK1, µ = 0.5 and Ξ = [−40, 40] leads to the following
control gains:

K0 = −0.9, K1 = 9.5. (43)

Figure 3 presents the closed-loop simulations for the latter control gains
considering a step change on the outlet temperature’s reference from 300 K
to 325 K and three different flow speeds (namely, v = 1 m/s, v = 2 m/s
and v = 3 m/s). Notice that the outlet temperature’s trajectory robustly
follows the reference and, as expected, the faster is the flow speed, the faster
is the convergence time of the fluid transport. In addition, Figure 4 shows
the respective control inputs obtained for the latter simulations.

(a) Flow speed 1 m/s (b) Flow speed 2 m/s

(c) Flow speed 3 m/s

Figure 3: Output temperature boundary control results using the proposed control (43)
to the coupled PDE-ODE experimental setup.

In a scenario similar to that shown in Figure 3, now considering v(t) =
2 + sin(12.56 t). Note that in this case, the couple PDE-ODE system is time
variant. Without lost of generality, and using gain scheduling, the Theorem 2
is applied with (36) and considering K(ξout(t)) = K0 + δ(t)ξoutK1, µ = 0.5
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Figure 4: Control inputs for v = 1 m/s, v = 2 m/s and v = 3 m/s.

and Ξ = [−40, 40] leads to the following control gains:

K0 = −0.6., K1 = 7.8. (44)

Figure 5 presents the closed-loop simulations for the latter control gains.
Notice that the outlet temperature’s trajectory robustly follows the reference
with a small degradation of transient behavior.

Figure 5: Output temperature boundary control results for v(t) = 2 + sin(12.56 t).
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5.2. Transmission line connected to a Constant Power Load (CPL)

Consider the lossless electrical line connecting a power supply to a con-
stant power load as shown in Figure 6. The electrical line dynamics (repre-

Figure 6: Transmission line connecting an inductive power supply to a Constant Power
Load (CPL)

sented by the model of the telegrapher equations [27, page 123], [5, page 18])
is described by the following system of conservation laws:

∂tI(t, x) +
1

L`
∂xV (t, x) = 0,

∂tV (t, x) +
1

C`
∂xI(t, x) = 0, (45)

where I(t, x) is the current intensity along the line, V (t, x) is the voltage
along the line, L` is the line self-inductance per unit length, C` is the line
capacitance per unit length.

For the circuit represented in Figure 6, the following dynamic boundary
conditions are considered:

L0
dI(t, 0)

dt
+R0I(t, 0) + V (t, 0) = U(t), (46)

CL
dV (t, L)

dt
+
V (t, L)

RL

− ϕ1(V (t, L)− V ∗) + ϕ2(V (t, L)− V ∗)2 = I(t, L),

where R0 is the internal resistance of the power supply, and the parallel
connection of RL, CL and the CPL represent the load. Notice in the above
boundary dynamics that the CPL is approximated by considering the first
two terms of a Taylor expansion, with V ∗ being the operation point and

ϕ1 =
P

(V ∗)2
, ϕ2 =

P

(V ∗)3
.
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The operating point is defined by means of a constant input voltage U∗

leading to the following steady state conditions:

V ∗2 −
(

RLU
∗

R0 +RL

)
V ∗ +

R0RLP

R0 +RL

= 0, U∗2 −
(

4R0P (R0 +RL)

RL

)
≥ 0,

I∗ =
U∗ − V ∗

R0

. (47)

Following the modeling technique provided in [5], the Riemann coordi-
nates are defined as follows

ξ1(t, x) ,(V (t, x)− V ∗) + (I(t, x)− I∗)
√
L`
C`
,

ξ2(t, x) ,(V (t, x)− V ∗)− (I(t, x)− I∗)
√
L`
C`
, (48)

and thus the inverse coordinates are given by

I(t, x) =I∗ +
ξ1(t, x)− ξ2(t, x)

2

√
C`
L`
,

V (t, x) =V ∗ +
ξ1(t, x) + ξ2(t, x)

2
. (49)

Next, expressing the dynamics of (45) and considering Assumption 1 (see
Remark 1) and the boundary conditions (46) in Riemann coordinates yields
the following system of first-order Hyperbolic equations:

∂tξ(t, x) + Λ∂xξ(t, x) = 0, ξ(t, x) =

[
ξ1(t, x)
ξ′2(t, x)

]
,

ξ′2(t, L− x) = ξ2(t, x), (50)

Λ =

[
λ1 + δ 0

0 λ2 + δ

]
, λ1 = λ2 ,

1√
L`C`

,

[
Ẋ1(t)

Ẋ2(t)

]
=

[
−α1 − δ 0

0 −α2 − ζ2X2

] [
X1(t)
X2(t)

]
+

[
0 −β1
β2 0

] [
ξ1(t, L)
ξ′2(t, L)

]
+

[
0 β1 + δ
0 0

]
Û(t).[

ξ1(t, 0)
ξ′2(t, 0)

]
=

[
1 0
0 1

] [
X1(t)
X2(t)

]
+

[
0 1
−1 0

] [
ξ1(t, L)
ξ′2(t, L)

]
, (51)
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with

α1 =
1

L0

√
L`
C`

+
R0

L0

, α2 =
1

CL

√
C`
L`

+
1

RLCL
− ϕ1

CL
,

β1 =
2

L0

√
L`
C`
, β2 =

2

CL

√
C`
L`
, ζ2 =

ϕ2

CL
, Û(t) = U(t)− U∗,

where the uncertainty δ has been added to the model to cope with possible
modeling errors.

For controlling the output voltage of the circuit represented in Fig. 6,
consider the following control law:

Û(t) = K(ξout)ξout, K(ξout) = K0 +
2∑
i=1

ξout(i)Ki, ξout =

[
ξ1(t, L)
ξ′2(t, L)

]
,

K(ξout) =

[
0 k1
0 0

]
︸ ︷︷ ︸

K0

+ ξ1(t, L)

[
0 0
0 0

]
︸ ︷︷ ︸

K1

+ ξ′2(t, L)

[
0 k2
0 0

]
,︸ ︷︷ ︸

K2

.

with k1 and k2 being tuning parameters.
To evaluate the local stability of the closed-loop system, it is assumed

normalized values of the system parameters, i.e., R0 = 1, L0 = 1, RL = 1,
CL = 1, L` = 1 and C`) = 1. In addition, it is considered that U∗ = 1
and the constant output power is set to P = 0.1 to satisfy the equilibrium
conditions given in (47). Also, for this example, the domains of ξ(t, x) = ξ,
X(t) and δ are supposed to be known a priori.

In order to apply the results given in Section 3, the following domains
were considered

D̃1 :=

{
ξ ∈ L2((0, L);Rn) :

∫ L

0

ξ(x)′ξ(x) dx ≤ 0.2

}
,

Ξ̃ =
{
X ∈ R2 : |Xi| ≤ 0.5, i = 1, 2

}
, ∆ = [−0.1 0.1], (52)

leading to the domain of attraction estimate given in Figure 7 obtained from
optimization problem (23) with µ = 0.2. Notice that the derived estimate

D̃2 =
{
X ∈ R2 : X ′P̃1X ≤ 1

}
, P1 =

[
4.23 0.00
0.00 4.25

]
, (53)
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is defined in terms of the auxiliary variable X(t). The projection of the
above set in Riemann coordinates can be easily obtained by noticing that
X(t) = M ξ̄(t), where

M =

[
1 0 0 −1
0 1 1 0

]
, ξ̄(t) =


ξ1(t, 0)
ξ′2(t, 0)
ξ1(t, L)
ξ′2(t, L)

 .
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Figure 7: Stability domain D̃2.

6. Concluding Remarks

This paper has focused on the boundary control of uncertain first-order
hyperbolic system subject to nonlinear boundary actuation dynamics. An
LMI based result has been proposed for assessing the regional robust ex-
ponential stability of the closed-loop system. The stability result is then
extended to cope with nonlinear boundary control design based on strict
Lyapunov functions. Two application-based examples were considered to
illustrate the proposed results, where simulation results have shown the ef-
fectiveness of the proposed technique.
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[16] Coron, J.-M., d’Andréa-Novel, B., Bastin, G., 2007. A Strict Lyapunov
Function for Boundary Control of Hyperbolic Systems of Conservation
Laws. IEEE Transactions on Automatic Control 52 (1), 2–11.

[17] Coutinho, D. F., De Souza, C. E., 2012. Nonlinear state feedback de-
sign with a guaranteed stability domain for locally stabilizable unstable
quadratic systems. IEEE Transactions on Circuits and Systems I: Reg-
ular Papers 59 (2), 360–370.

[18] Coutinho, D. F., Fu, M., Trofino, A., Danes, P., 2008. L2-gain analysis
and control of uncertain nonlinear systems with bounded disturbance
inputs. International Journal of Robust and Nonlinear Control 18 (1),
88–110.

[19] Coutinho, D. F., Wouwer, A. V., 2013. A robust non-linear feedback
control strategy for a class of bioprocesses. IET Control Theory and
Applications 7 (6), 829–841.

26



[20] De Oliveira, M. C., Geromel, J. C., Bernussou, J., 2002. Extended H2

and and H∞ norm characterizations and controller parametrizations for
discrete-time systems. International Journal of Control 75 (9), 666–679.

[21] Diagne, A., Bastin, G., Coron, J.-M., 2012. Lyapunov exponential sta-
bility of linear hyperbolic systems of balance laws. Automatica 48, 109–
114.

[22] Dos Santos, V., Prieur, C., 2008. Boundary control of open channels with
numerical and experimental validations. IEEE Transactions on Control
Systems Technology 16 (6), 1252–1264.

[23] Dos Santos Martins, V., Rodrigues, M., Diagne, M., 2012. A multi-
model approach to Saint-Venant equations: A stability study by LMIs.
Applied Mathematics and Computer Science 22 (3), 539–550.

[24] Duan, G.-D., Yu, H.-H., 2013. LMIs in Control Systems. CRC Press,
Boca Raton, FL.

[25] Espana, M., Landau, I., 1978. Reduced order bilinear models for distil-
lation columns. Automatica 14 (4), 345–355.

[26] Ge, S. S., He, W., Ee-How, B. V., Choo, Y. S., 2010. Boundary Control
of a Coupled Nonlinear Flexible Marine Riser. IEEE Transactions on
Control Systms Technology 18 (5), 1080–1091.

[27] Heaviside, O., 1892. Electromagnetic induction and its propagation, 2nd

Edition. Vol. 2. In Eletrical Papers, Macmillan and co, London.

[28] Krstic, M., Smyshlyaev, A., 2008. Backstepping boundary control for
first-order hyperbolic pdes and application to systems with actuator
and sensor delays. Systems & Control Letters 57 (9), 750–758.

[29] Lamare, P.-O., Girard, A., Prieur, C., 2016. An optimisation approach
for stability analysis and controller synthesis of linear hyperbolic sys-
tems. ESAIM: Control, Optimisation and Calculus of Variations 22 (4),
1236–1263.

[30] Lofberg, J., 2004. Yalmip: A toolbox for modeling and optimization
in matlab. In: Computer Aided Control Systems Design, 2004 IEEE
International Symposium on. IEEE, Taipei, Taiwan, pp. 284–289.

27



[31] Mohammadpour, J., Scherer, C. W., 2012. Control of Linear Parameter
Varying Systems with Applications. Springer, New York.

[32] Papachristodoulou, A., Prajna, S., 2005. A tutorial on sum of squares
techniques for systems analysis. In: Proceedings of the American Control
Conference. Portland, OR, pp. 2686–2700.

[33] Prieur, C., Girard, A., Witrant, E., 2014. Stability of switched linear
hyperbolic systems by lyapunov techniques. IEEE Transactions on Au-
tomatic Control 59 (8), 2196–2202.

[34] Tang, Y., Prieur, C., Girard, A., 2015. Tikhonov theorem for linear
hyperbolic systems. Automatica 57, 1–10.

[35] Thounthong, P., Pierfederici, S., 2010. A new control law based on the
differential flatness principle for multiphase interleaved DC–DC con-
verter. IEEE Transactions on Circuits and Systems II: Express Briefs
57 (11), 903–907.
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