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FLAT TRACE STATISTICS OF THE TRANSFER OPERATOR OF
A RANDOM PARTIALLY EXPANDING MAP

LUC GOSSART
Institut Fourier, 100, rue des maths BP74 38402 Saint-Martin d’Heres France

ABSTRACT. We consider the skew-product of an expanding map E on the circle
T with an almot surely C* random perturbation 7 = 79 4+ 67 of a deterministic
function 1o:
e { TxR — TxR
(@y) — (E@),y+7(2)

The associated transfer operator £ : u € CZ°(TXR) — uoF can be decomposed
with respect to frequency in the y variable into a family of operators acting
on dimension 1:

u — e€TyoFE
We show that the flat traces of L} behave as normal distributions in the
semiclassical limit n,£ — oo up to the Ehrenfest time n < ¢ log€.

e :{ C°(T) — C°°(T)
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1. INTRODUCTION

This paper focuses on the distribution of the flat traces of iterates of the transfer

operator of a simple example of partially expanding map. It is motivated by the
Bohigas-Gianonni-Schmidt [BGS84] conjecture in quantum chaos (see below).
In chaotic dynamics, the transfer operator is an object of first importance linked
to the asymptotics of the correlations. The collection of poles of its resolvent,
called Ruelle-Pollicott spectrum, can be defined as the spectrum of the transfer
operator in appropriate Banach spaces (see [Rue76] for analytic expanding maps,
[Kit99],[BKTL.02],[BT07],[BT0g|,[GL0G], [FRSO§| for the construction of the spaces
for Anosov diffeomorphisms.)

The study of the Ruelle spectrum for Anosov flows is more difficult because of the
flow direction that is neither contracting nor expanding. Tsujii [Tsul(] constructed
appropriate Hilbert spaces for the transfer operator of contact Anosov flows. Dolgo-
pyat has shown in particular in [Dol98| the exponential decay of correlations (that
is a spectral gap of the transfer operator) for the geodesic flow on negatively curved
surfaces, and Liverani [Liv04] generalized this result to all contact Anosov flows.
A simple example of Anosov flow is the suspension of an Anosov diffeomorphism,
or the suspension semi-flow of an expanding map. Pollicott showed exponential
decay of correlations in this setting under a weak condition in [Pol85] and Tsujii
constructed suitable spaces for the transfer operator and gave an upper bound on
its essential spectral radius in [Tsu08].

In this article we study a closely related discrete time model, the skew product
of an expanding map of the circle. It is a particular case of compact group ex-
tension [Dol02], which are partially hyperbolic maps, with compact, isometric to
each other leaves in the neutral direction. Dolgopyat showed in [Dol02] that in this
case the correlation decrease generically rapidly. In our setting of skew-product
of an expanding map of the circle, Faure [Faull] has shown using semi-classical
methods an upper bound on the essential spectral radius of the transfer operator
under a condition shown to be generic by Nakano Tsujii and Wittsten [NTWIG6).
Arnoldi, Faure, and Weich [AFW17] and Faure and Weich [FW17] studied the case
of some open partially expanding maps, iteration function schemes, for which they
found an explicit bound on the essential spectral radius of the transfer operator in
a suitable space, and obtained a Weyl law (upper bound on the number of Ruelle
resonances outside the essential spectral radius). In the more general framework
of random dynamical systems in which the transfer operator changes randomly at
each iteration, for the skew product of an expanding map of the circle, Nakano and
Wittsten [NW15] showed exponential decay of correlations.

Semiclassical analysis describes the link between quantum dynamics and the
associated classical dynamics in a symplectic manifold. The transfer operator hap-
pens to be a Fourier integral operator and the semi-classical approach has thus
shown to be useful. The famous Bohigas-Giannoni-Schmidt

[BGS84] conjecture of quantum chaos states that for quantum systems whose
associated classical dynamic is chaotic, the spectrum of the Hamiltonian shows the
same statistics as that of a random matrix (GUE, GOE or GSE according to the
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symmetries of the system)(see also [Gut13] and [GVZJ91]). We are interested anal-
ogously in investigating the possible links between the Ruelle-Pollicott spectrum
and the spectrum of random matrices/operators. At first we try to get informa-
tions about the spectrum using a trace formula. More useful results could follow
from the use of a global normal form as obtained by Faure-Weich in [FW17].

1.1. Expanding map. Let us consider a smooth expanding map E : T — T on
the circle T = R/Z, that is, satisfying |E’| > 1, of degree I, and let us call

m = inf|E'| > 1
and

M = sup|E’|.

Lemma 1.1. For every integer n, E™ has I™ —1 fized points. The distance between
two consecutive periodic points is bounded from below by Ml
Proof. See appendix [A] O

We will write the set of periodic orbits of (non primitive) period n as
(1.1) Per(n) := {{z, E(z), - ,E" '(z)}, E"(2z) = z,2 € T},
and the set of periodic orbits of primitive period n as
(1.2)  Pp:={{z,B(z), - ,E" "(z)},n = min{k € N*, E¥(z) =2}, € T} .
This way,
(1.3) Per(n) = H P
min

For a function ¢ € C(T) and a point « € T we will denote by ¢? the Birkhoff sum
n—1

(1.4) o = o(E ().
k=0

Remark 1.2. If O € Per(n), then the Birkhoff sum ¢ is the same for every x € O.
We might therefore refer to it as ¢g,.

1.2. Transfer operator. Let us fix a smooth function 7 € C°°(T). We are inter-
ested in the partially expanding dynamical system on T x R defined by

(1.5) F(z,y) = (E(x),y + 7(x))
We introduce the transfer operator
r { L>(TxR) — L*TxR)

u +—> uolk

1.3. Reduction of the transfer operator. Due to the particular form of the
map F, the Fourier modes in y are invariant under £.: if for some ¢ € R and some
v € L*(T),

u(z,y) = v(z)e?,
then

Lru(z,y) = 4™ @y(B(x))e'Y.
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Given £ > 0 and a function 7, let us consequently consider the transfer operator
Ly defined on smooth functions v € C*°(T) by

Vo € T, Lev(x) := " @y(B(x)),

1.4. Spectrum and flat trace. The operator L¢ ,; can be extended to distribu-
tions D'(T) by duality. We will denote H™(T) the Sobolev space of order m € R.

Theorem 1.3 ([Rue86]). For every e > 0, there exists a real number m. such that
for every m > me, Ler : H-™(T) — H™™(T) is bounded and has an essential
spectral radius smaller than €. Moreover the discrete eigenvalues of modulus larger
than € and the associated eigenspaces do not depend on m.

The collection of those discrete eigenvalues, is denoted by Res(L¢ ;) and called
the Ruelle-Pollicott spectrum of the transfer operator L¢ .. We are interested in
their statistical properties when 7 is a random function. One way to get infor-
mations about the spectrum of such operators is using a trace formula. Although
Le¢ » is not trace-class, and although the Ruelle-Pollicott spectrum might not be
summable, we can give a certain sense to the trace of L¢ -.

Lemma 1.4 (Trace formula, [ABGT], |GT77]). For any integer n > 1, L} is a
kernel integral operator with Schwartz kernel
KE ,(x,y) = 7 8(y — E"(2)),

where T} is defined as in . The distribution K¢ can be integrated along the
diagonal {(z,z),x € T}. The resulting quantity is called flat trace of L . and can
be expressed as a sum over periodic points:

61'57':

1.6 LY = / K? (z,z)dr = —_

o o= Rt = 2L -
z,E"(z)=x

Proof. Let u € L*(T).

£ u(e) = e u(E (x))
_ /T 7 §(y — B (2))u(y)dy.

Thus

K¢, (v,7) = eifT;L(S(x — E™(x)).
Since F is expanding, x — & — E™(x) is a local diffeomorphism. We can therefore
effectuate the change of variables y = 2 — E™(z) in the following integral:

ei&';
/K” (x,a:)dx:/é(y) Z ———dy
5T 1 _ ETL /
: A @)
Z eifT;l
= n / _ .
o Fyg ") (2) =1

O

This trace is related to the Ruelle-Pollicott spectrum defined above in the fol-
lowing way (see for instance Theorem 1.8 in [Jéz17]):
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Proposition 1.5. Let { € R, let € > 0 be such that L¢, has no resonance of
modulus €, then

(1.7) IC>0,vneN,| L, — Y A" < Ce.
A€Res(Le 7)
[X]|>e€
1.5. Gaussian random fields. We define our random functions on the circle by
means of their Fourier coefficients. We are only interested in C' functions.

Definition 1.6. We will call centered stationary Gaussian random fields on T the
random functions 7 : T — R whose Fourier coefficients (c,(7)) oy are independent
Gaussian random variables.

The decay of the variances of the coefficients gives sufficient conditions for the
regularity of the field.

Lemma 1.7. Let k € N*. Let 7 be a stationary centered Gaussian random field,
such that for some n >0

1
72 = B [l(n)] = Ol
Then T is almost surely C*.
Proof. See appendix [B] O

A stationary centered Gaussian random field is characterized by its covariance
function:

Definition 1.8. Let 7 be a stationary centered Gaussian random field, and let

(Ug)pez be the family of variances of its Fourier coefficients. Its covariance function
K is defined by

(1.8) K(z) = Z ore T,

In other words, for any couple of points (x,y) € T?,
Elr(z)r(y)] = K(z —y).
The following lemma follows immediately from the previous definition.

Lemma 1.9. Let 7 and 7’ be two stationary centered Gaussian random fields, with
repective covariance functions K. and K... T+ 7' is also a stationary centered
Gaussian random field, and its covariance function K, satisfies

Kryr = K; + Koo
if, and only if T and T are independent (that is if, and only if their Fourier coeffi-
cients are independent).

In our setting, the following theorem is straightforward.

Lemma 1.10 (Bochner’s theorem). Let K be a continuous function on T. K is
the covariance function of a stationary Gaussian field if, and only if its Fourier
coefficients are non-negative.
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We will denote by N(0,02) (respectively N¢(0,02)) the real (respectively com-
plex) centered Gaussian law of variance o2, with respective densities
1 1,2

2
e 2,27 TIQ‘Z‘ .

1
and —e™
oV 2T o

1.6. Result. Let us define for every n € N:

[N

1
(1.9) A, = ZmQ Z (RN

’m\n OEPm,

Theorem 1.11. Let k € N*. Let 7y € C*(T). We suppose that the function T
that enters in has the form

(1.10) T=17+0T

with 1 a stationary Gaussian random field, whose covariance function K has
big enough Fourier coefficients, in the sense that

C

Then one has the convergence in law of the flat traces

(1.12) AT (L2 sr) — Ne(0,1)

as n,& go to infinity, with the constraint

log &
1.13 A0 <e<1,V(n,€), s.t. n<c .
(1.13) (7€) logl+ (k+ 3+ §)log M

Moreover, as stated in Lemma if there is 0 < n < € such that in addition

c

ElO > O,Vp S Z*,CP(K) S Im,

then 67 is a.s. Ck.

Remark 1.12. Condition (|1.13]) means that time n is smaller than a constant times
the Ehrenfest time log ¢, and this constant decreases with the regularity & of the
field o7.

Remark 1.13. Let us denote by 7. the spectral projector of the operator L , outside
the disk centered on 0 of radius e. Then the sum of powers of eigenvalues in (|1.7)
can be written

Tr(rely,)= > A"
AERes(Le¢,r)
[A[=e

Remark that the constant involved in the right hand side of the formula (1.7]) might
depend on €. But, if we assume that the right hand side is C&e™, i.e.

(1.14) 3C >0, > 0,Ve > 0,Yn e N, |T°LE - Y~ M| < C&e”,

[\jel>e
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then for e < ﬁz’ we have the same convergence as the flat trace in theorem m

A Te(me£2,) — Ne(0,1)
7T E—o0

The hypothesis (|1.14)) is proved only in the case of a prequantum map (see lemma
9.3.4 p.175 in [FTT12]). It can be conjectured for a generic map.

1.7. Sketch of proof. The proof is based around the following arguments:

(1) For ¢ large enough, we show that the phases appearing in the trace formula
behave as uniform random variables. The phases corresponding to pe-
riodic points in different orbits are independent from each other. Trb(L'gT)
is thus similar to a random walk on C where each step has some determin-
istic modulus and a uniform random phase. We therefore adapt the proof
of proposition in appendix [C] that concerns this random walk model.

(2) An important point is that if a random field 7 satisfies the convergence of
theorem [I.11] so will 7 + 7 for any random field 7 independent of 7. We
can indeed adapt the following lemma:

Lemma 1.14. Let X, X' be real independent random wvariables such that
e, X" are uniform on S*. Let Y,Y' be real random variables such that
X and X' are independent of Y,Y’, then e!X+Y) and X' +Y") gre still
independent uniform random variables on S*.

See appendix [D| for the proof.
(3) We use the previous point to construct a random field 7y satisfying the
convergence of theorem To do so, we write

(57’0 = Z(STJ‘,

j>1
where the d7; are independent Gaussian random fields such that
Vj > 1, Yx # y € Per(j),d7;(x) is independent of d7;(y).
Thus, for any n, we can write
010 = 0Ty, + 07,

so that 67 is independent of §7,, and that for any pair of points x € O €
Per(n),y € O’ € Per(n), if O # O’, then the random variables ¢*("™)z and
¢®(Tn)y are independent and close to be uniform for large values of £.

(4) According to Lemma the distance between periodic points decreases
exponentially fast with n. Hence, if we want d7g to be C*, we need the
amplitude sup|d7,| to decrease also exponentially fast with n. Precisely
we take the standard deviation /K, (0) of order ﬁ Then, for

n(k+i+e/2)”
a periodic point x of period n the Birkhoff sum (7,)2 is of typical size
ny/K,(0) = W To obtain a uniform phase, we want {77 > 1,
thus € > M"(*k+3+¢/2)  If we want this condition to hold for most of the
[™ — 1 periodic point, a factor {"™ appears, and we obtain heuristically the
condition:

é— > lnMn(k+%+e/2)
that gives (|1.13).
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(5) The field d79 constructed this way has a covariance function Ky satisfying

1

cp(Ko) = O(W)7

and this implies that d7 is almost surely C*. Now, if a Gaussian field has
a covariance function K whose Fourier coefficients satisfy

C

aC > O,Vp € Z, CP(K) 2 ]m

then

AC > 0,K =CKy+ K/,
where K’ has non negative Fourier coefficients, and is therefore from the-
orem [L.10] the covariant function of a centered Gaussian random field 67/

independent of 67g. The Gaussian field 7 := d79+d7’ then defined satisfies
the convergence of theorem as we saw in step (2).

2. NUMERICAL EXPERIMENTS

We consider an example with the non linear expanding map
(2.1) E(z) =22+ 0.9/(27) sin(27(z + 0.4))

plotted on Figure [II In Figure 2] we have the histogram of the modulus S =
|A, Tr’ (E?’TU +5T) | obtained after a sample of 10* random functions §7. We com-
pare the histogram with the function C'Sexp(—S?) in red, i.e. the radial distri-

bution of a Gaussian function, obtained from the prediction of Theorem We
took n = 11, £ = 2.10°%, 7y = cos(2mx). We see a good agreement.

0 01 02 03 04 05 06 07 08 09 1
X

FIGURE 1. Graph of the expanding map E(z) in Eq.(2.1])
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FIGURE 2. In blue, the histogram of S = ‘AnTrb ( € 1046 )‘ for
sTO T

n = 11, £ = 2.10%, 79 = cos(27x) and the sample 10* random
functions 67. The histogram is well fitted by C'S exp(—S?) in red,
as predicted by Theorem [1.11

3. PROOF OF THEOREM [L.11

3.1. Definition of a Gaussian field satisfying theorem Let us define
the Gaussian field mentioned in step (3) of the sketch of proof. Let Kt € C°(R)

be a smooth function supported in [—%, %], with non negative Fourier transform,
satisfying E|
(3.1) Kinit(0) = 1.

Let k£ > 1 be the integer involved in theorem giving the regularity of the
field. let € > 0 be the constant appearing in Theorem[I.11]and define for any integer
j=1

(3.2) K,(z) = mKinit(Mjl‘).
Let
(33) Kolw) = 3" K; ().

Jj=1
The Fourier transform of K; is given by

e 1 —

(3.4) >0

K;(§) = WKinit(m) >

Thus, IA(O > 0. The functions Ky and Kj, for all j > 0, are supported in [f%, %]
and can then be seen as functions on the circle T by trivially periodizing them.
The Fourier coefficients are given by ¢,(Ky) = Ko(27p) > 0. Hence, by Bochner’s

theorem K is the covariance function of a stationary Gaussian field §7y on

ITo construct such a function, take a non zero even function g € C°(R). g has a real Fourier
transform. Then g* g € C2°(R) and its Fourier transform is g2 > 0. Moreover g* g(0) = [ §2 > 0.
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T. Similarly, each K; defines a stationary Gaussian field é7; on T, 079 = 3, 675
and (3.3)) signifies that the fields (67;); are pairwise independent.

Lemma 3.1. With the choice , the field 5tq is almost surely C*.

Proof. We have seen in Eq.(3.4) that

KJ (E) = M (2k+2+e) Kinit(W)'

Since Kijpuit is smooth, there exists a constant C' > 0 such that

— C
V€ € R, Kinit(§) < <§>2;€7+?

with the usual notation (€) = /1 + &2 > |£|. Thus, by equation 1) the variance
of the p-th Fourier coefficient of d7; is

—

O'Z’j = K;(2mp)
and therefore
7 = s Ko ()
C 1

= M5 |2mp|PRttsT
Consequently the p-th Fourier coefficient of d7p has variance
1
2

We can then apply lemma [I.7] to conclude.
O

3.2. New expression of Trb(ﬁgT). Let us rewrite the sum Trb(ﬁgT), where 7 =
To + 079 with a given 79 as in section We know from (|1.6)) that

eiE‘r;L

Trb( g"') = Z n\/
= (@) 1
ei&T;L

B Z edr —1°

En(z)=x

where J(x) = log(E’'(z)) > 0 and J? is the Birkhoff sum as defined in (1.4]). If
Pr, denotes the set of primitive periodic orbits of period n and if f stands for the
Birkhoff sum f} for any € O , let us write

eif‘rg

(3.5) T (LE,) =Y m > i

mln  O€EPn,
For O € Per(n) (set of non primitive periodic orbits of period n), we can write
76 = (6m0) + D (67)6 + (10)-
j#n
Since the covariance function K, is supported in [—ﬁ, ﬁ], we deduce from

Lemma [T.]] that the values taken by d7, at different periodic points of period di-
viding n, which have law N (0, K,,(0)) are independent random variables.
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Thus, for O € P, (07,)@ is a centered Gaussian random variable of variance
mK,,(0), and (67,)3 = 2 (7)) with variance (£)*mK,(0) = %an(O) and has
law N(0, 2 K, (0)).

We introduce the following Definition that will be used many times later.

Definition 3.2. We say that two families of real random variables (X3)n>1

O€Per(n)
and (Y3)n>1 satisfy condition (C) if
O€Per(n)
(1) X3 has law NV (0, 2K, (0)),
(2) for every O # O € Per(n) and every O” € Per(n), X is independent of

X& and Y.
Writing X¢ = (07,,)¢ and Y = 3, (07;)% + (70)5, we have obtained
Lemma 3.3. For each O € P,,, m|n,
(3.6) 6 =X56+YSH
with X3, Y5 satisfying condition (C) of Definition

In order to adapt the proofs of lemma and we want to show that for
large &, the random variables €¢(X6+YS) are close to be independent and uniform
on S'.

Remark 3.4. We have

(3.7) T (LF Z Z

O€cePm

et ( Xo+Yo)

Our aim is to approximate the characteristic function of Tr” (L) which is the
expectation of

(3.8) i (HRe(Tr (£ ))+vIm(Te (£7 ) _

H H e”"((g #* )COS(&<X8+YCT;))+<EJ3V71

m|n OEPm,

The right hand side of (3.8) can be written as

11 ( II so (eis<X3+Y3>)>m

m|n \OE€P,,

) sin(eCxs+v8))

with some continuous functions fo. In the next Lemma we first consider indicator
functions for fo.

Lemma 3.5. Let (X3)n>1 and (Y5 )n>1 be two families of real random
O€Per(n) O€Per(n) ]

variables satisfying satisfying condition (C) of Definition . Assume that n and

¢ satisfy . Then there is a constant C > 0 such that for every n € N and

every real numbers (ao)oeper(n), (B0)oeper(n) such that

YO € Per(n), 0 < o — ap < 2m,
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for every complex numbers ()\O)Oeper(n), if Ao denotes the portion of circle eileo.fol
and 1 4, is the characteristic function of Ao, we have

E|TL [ I Xola, (e€X61Y5))
m|n \O€Pnm cr
(3.9) s T
01 v (5ee) e/ D

m|n OEPm,

Remark 3.6. In this complicated expression, we have compared the law of the

family of random variables (eié(Xg+Y3)) OcPer(n) to the uniform law on the torus
of dimension #Per(n). Remark that the right hand side is small for £ large enough
and later this will lead us to the final formula (|1.13)). The proof of this lemma is

given in the next subsection.

3.3. A normal law of large variance on the circle is close to uniform. We
will need the following lemma, which evaluates how much the law N (0,1) mod %
differs from the uniform law on the circle R/(3Z) for large values of t.

Lemma 3.7. There exists a constant C > 0 such that for every real numbers «, 3,
such that 0 < B — a < 27 and every real number t > 1,

2 dx b —« C
1otokn o< B2k e 2z - < *(6 - a)~
/RkeZZ t <a< t \/ﬂ 27T t

0

o+
© ‘

B—«

FIGURE 3. As t goes to infinity, the red area converges to 55—

with speed 0(5770‘)
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Proof. For %2’” <z< B*‘ﬁ

)

_ 22 7;(a+2k7r)2 Oé+2k'71' _ w2
e T —e 2\t <|lzt——— sup  |ule” 7.
t ue[a+fkw 71]
By hypothesis
. o+ 2km < B—a.
t -t
Thus,
—a a4+ 2krw
r—1<zx-— B < +t
for t large enough and therefore
U2 11/2 11/2
sup |ule” 7T < sup  |uleT T < sup |ule” 7.
L?’”Sugz z— 5= <ulz u€lr—1,]

Hence, for ¢ large enough, we have an upper bound for the integrand
a+ 2km
<l - —

2 l(a+2k7r )2

t

z< 7ﬁ
ez —ez sup  |ule” 2

at2km
== <u<lz

— 2
< p sup |ule” 7.
t rz—1<ulx

This upper bound is an integrable function of x. In consequence, we can exchange
the sum and integral in the following expression

(3.10)

At =

Z]l _ 22 dx 1 —1(at2kmy2 dx
at2km o o B+2kn € 2 — E at2km oo o B+2kr € 2 t ——
Ry © o ¢ V2r  Jr voStET V2

B2k

8-« / _«2 dz
A < sup |ule” 2 ;
' t R u€lz—1,x] V2T

there is consequently a constant C' independent of «, 5 and ¢ such that
C
(3.11) VE>1,4A; < ?(B—a).

We notice that the term

B+2kmw

t «@ T
Bt — Z 67%( +t2k )2 dI
a+t2km \/
kez’ 2m

appearing in (3.10) is a Riemann sum up to a constant factor:

570[ 1 a42kmy\2
B, = e 257
‘ \/QWt%ZZ

We know that there exists a constant C’ such that

2k
7%(a+t )2

/eié dx _277726 -
R V2T t V2T

keZ

O/
7.




FLAT TRACE STATISTICS OF THE TRANSFER OPERATOR OF A RANDOM PARTIALLY EXPANDING MAIB

Thus,
(3.12) b R L PR
V2 t 27

Since

_z2 4T 1

e 2 =1,

R V2T

the combination of (3.11)) and (3.12)) furnishes the result. O

Proof of lemma[3.5, Let us denote by E the expectation

o [I1 (11 st (59))

m|n \O€Pn

If we write respectively Px, Py and Pxy the probability laws of the variables

(§XB)oeper(n)s (§YE)oeper(n) and (§X5)oeper(n) U(EYE ) 0cPer(n) Tespectively, then
condition (C) of Definition (3.2) implies

(3.13)  dPx y((x0)oePer(n), (Y0)oePer(n)) =

- ,;2 de
IT IT ¢ > ooz O By (wo)oepen)-
m|n OEP, e

with the variance 0%75 = EQ%ZKn (0). We have

(3.14) E= H (Z A6 Yoo +2km otakn((To + yo))

R2#Per(n) O€Per(n) \k€Z
dPX,Y(('TO)OEPer(n)v (yO)OEPer(n))-
Thus, writing up = Ux—o& for O € Py,

(3.15)
e [ TT L (] 00 o s o) 222
R#Per(n) ‘ oeP,, R kezZ = 7?5 = 7?5 [ 2T
dPy ((yo)oer,)-
Let us write for O € Per(n)
u? duo
IO— Amﬂ o y T Bo—y ™ (UO TO —
Rkez; o anO:Zk o U:;% [ ) o
Lemma [3.7] yields
Bo —
Io =23
© o ( 27r +€O
where
C _
30> 0, |eo] < —- P02
Onge 27

c Bo —ao

= &/nK,(0) 27
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We will develop the product
m __ m ﬁO — Qo
[1IT =TT 11 % (%5% +e0)
m|n OEPm m|n OEPn,

The notation {O1,---,04} C Per(n) will implicitly signify that Oq,---,0, are
distinct elements of Per(n).

[T IT - 11 11 26 (752)

m|n OEPm, m|n OEPm
#Per(n) q Bo — a0
=|IT 11 »|] X > oo 11 5
m|n OEPm g=1 {01, ,04}CPer(n)p=1 O€Per(n)\{O1,--,04}
#Per(n)
#Per(n))
<> T I w5175
= 2
g=1 q Sq TLK q/ m|n OEPm
From Lemma [I.1] we have #Per(n) < 1" thus
ITIT o~ T1 11 5 (7252
© 2m
m|n OEPm, m|n OEP,
C
(0 ) )T IT oo
1/2
( f(’I’LKn( ) / m|n OEP,

Using hypothesis (|1.13)) we can bound the prefactor:

m

C CM™k+t3+5) ’
<1 + ) -1 = 1+ — ] -1
£(nK,(0))1/2 2.6 E&v/n

Mn(k+l+£)
<exp(rEMITTTE

§vn
lnMn(k—‘r%-l-%)

<
§v/n
for some C’ > 0 since
n(k+3+%
(3.16) anM;\; D - G502 g
n (1.13))

O

3.4. Tr° (L2 £ ro1ér,) satisfies the convergence from theorem When can
now easily extend the lemma [3.5] from characteristic functions to step functions.

Corollary 3.8. Assume thatn and § satisfy (1.18). For any families (X3 )n>1

O€Per(n)

and (Y45 )n>1 of real random variables satisfying condition (C) of Definition
O€Per(n)

, there exists C' > 0 such that, if (fn,0)n>1 is a family of step functions
O€Per(n)
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St = R, then
317 [E] TI firoteo+ye)) / fmodLeb
m|n OEPy, m|n0€'Pm
lnMn(kJr +3)
<c——/——[[ 11 / | £ ldLeb.
m|n OEPm,
Proof. Let us write each f, o as
Pn,O
fn,O = Z )\n,O,q]lAn,o,qv
qg=1

where the A\, o, are complex numbers and the 4, 04,1 < ¢ < p,,0 are disjoint
intervals. We develop (3.17)), we use Lemma and factorize the result:

E=F H H f,TO(eig(X8+Yg))

m|n OEPm,

) Z £ H H >\" 0 ¢Io An,0,40 (eiﬁ(Xg+yg))

(go)e IT II {1, .,pn,0} Lm|n OEPm

m|n OEPm

Consequently,

E-1T TI /andLeb

m|n OEPm

: 2 ET] TI Moo lano., (€€FeYd))

(go)e IT II {L,;+.pn.o} m|n O€Py,
m|n OEPm

H H AzlvO#JoLeb(A%O,qo)

m|n OEPn,

I pntk+3+5)
<C———=— An "Leb(A,
= N Z H H |An,0,40] " Leb(An 0,40 )

(QO)E H ]._[ {1 '7pn,O}m‘nO€’P7n

min OEPm
from the previous lemma.

Hence,

nk++)

-11 1I /f;;jodLeb <M IT 11 /fn,o|mdLeb.

m|n OEPn, m|n OEPn,

O

We can use this result in order to estimate the characteristic function of Tr’ (EZT),
using remark (3.4]).
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Corollary 3.9. Assume thatn and § satisfy (1.13). Let (X3)n>1 and (Y3 )n>1
O€Per(n) ] O€Per(n)
be two families of real random variables satisfying condition (C) of Definition ,
There exists C > 0 such that for all (1o, v0)0eper(n) € R2#Per(n)

H H eimuo cos(§(X5+Y5))+imvo sin(§(X5+YEH))

m|n OE€EPm,

ZnMn(k—f—%—&-%)

d9
_ z(muo cos 0+mvo sin 0) <C ,
mi T

m|n OE€EPm,

Proof. Let C be the constant from corollary For O € Per(n), let fo be the
function defined on S! by

fo(eiﬁ) — ei(/,Lo cos 0+vo sin 0) )
Each fo is bounded by 1, we can consequently find for each O € Per(n) a family

(fj,0); of step functions unlformly bounded by 1 converging pointwise towards fo.
We have for n fixed, by dominated convergence

Ej — | H H f;jzo(eiﬁ(Xg+Y5)) —— E:=E H H fm(eig(X8+Yg))

J—00
m|n OEPm, m|n OEPm,

as well as
m o d9 e d0
b= [ motenge o =11 11 [ )
m|n O€Pm m|n O€P,,

It is thus possible to find an integer jy such that both

i antket3+5)
E-F |<——nw—ro
| .70| — é—\/ﬁ
and
et 3+5)
=TI € ——F—F=——
&v/n
hold.
From corollary we know that for all n € N
lnMn(k—i-%-‘rg)
|Ej0 - Ijo' < CT Suplfjo"

Thus,
|E_I| < |E_Ejo|+|Ejo _Ijo‘ + |I_Ijo|
lnMn(k-i-%-‘r%)

<(C+2) NG

We can know prove the final proposition :
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Proposition 3.10. Let (XJ)n>1 and (Y )n>1 be two families of real
O€Per(n) O€Per(

random variables satisfying condition (C) of Definition , If condition

is satisfied then we have the following convergence in law
CE(XB+YS

e —
m|n O€EPm md oo

with the amplitude A,, defined in (@ by

Nl=

(3.19) A= (S m2 3 <6J1_1)2

m|n O€EPp,

Proof. Let us fix two real numbers £; and & and let ¢,, be the characteristic function
of Tmft

A& o m MJrg Sm w
an(fl 52) =FE |e mln  O€Pm 76 1 min  O&Pm IO 1
, :

We compute the limit of ¢,,(£1,&2) as n goes to infinity. Corollary (3.9)) yields
(3.20)

j_mA cos 0+£€2 sin ) df l"M’ﬂ(kJr%Jr%)
¢7L 51752 H H / & 2 _07*)0

o7
m|n O€EPm, T 6\/5

under the assumption (|1.13).
Let

2 ] ) do
P(&1,62) :=/ ei(&1cosO+&asin6) 77
’ 0 27T

We have the following Taylor’s expansion in 0:

1
V(€ &) = 1= (& + &) + ol + &).
In order to apply this to equation ([3.20)), we need to check that
Lemma 3.11.

1
nA, sup —m— — 0.
O€Per(n) €70 — 1 n—oo

Proof. See appendix O
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We can now state that

H H / 'mAn (51c050+§2s1n9) d@ H H ’(/Jfl Jo ’52 :IITolA_nl)

m|n OEPm min OSP
_ & + £ (mA,)? (mA,)?
= Hlog ( (eo —1)2 +o( (edo — 1)2)

& +& (mAy)? (mA,)?
- n%;loezp: o (1— : 4 ) (e‘T]TOL—l)? +0((6L7IZ_1)2)>

2462 (mA, mA,)?
= exp Z Z §+§ O_)1)2+0((6(JO_)1)2)

m|n OEPm,

£2+¢32
— 6_%""0(1)

(RIES))
We deduce that
_6i+e3
¢n (513 52) — € 4
n—oo
which is the characteristic function of a Gaussian variable of law N¢(0,1). O

3.5. End of the proof. To end the proof of theorem [1.11} we use Bochner’s the-
orem [L.T0Ol

Proof of theorem [1.11] Let us first show that
Lemma 3.12. The covariance function Ky defined in satisfies as p — 00

1
cp(Ko) =0 (p2k+2+) )

where k is as usual the regularity parameter from theorem [1.11]
Proof. We know from formula ({3.4) that

s,

VEER, Ko(€) =) M MR (o

J<1
Now, since Kjpj is smooth,
YN € Ry, 3Cy > 0,V€ € R, Ko (€) < o
where the japanese bracket
(€ =vi+e.
Thus, for all N € Ry, there exists Cy > 0, such that for all p € Z,
21p
)

|CI)(K0)| = Z Mﬁj(2k+2+€)Kinit(m

J<1

Cn ;
MI(N—2k—2—¢)
< w2
(27p) j>1

The last sum is finite if, and only if N — 2k —2 — e < 0. (]
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Thus if a stationary Gaussian random field 67 has as in the statement of theorem
[I.11] a covariance function K, such that

c

aC > O,VP € Z, CP(K) 2 W

)

then
AC > 0,Vp € Z, cp(K) > Ccp(Ky),
thus one can write
K=CKy+K,

where K has non-negative Fourier coefficients. Thus, K is the covariance function
of a centered stationary Gaussian random process 67. We can consequently write
o7 as the sum of two independent stationary Gaussian random fields:

0T = 019 + OT.
Therefore, we can express the flat trace of the associated transfer operator as
e€(X5+Y5)
T ) o Yo Y
&, To+0T Jn )
mln  O€EPnm e )
where
X6 = X5 = (0m)6
and
Y = S (07)5 + (o) + 678
i#n
satisfy condition (C) of Definition (3.2). We can then conclude with proposition
3. 101 [

4. DISCUSSION

In this paper we have considered a model where the roof function 7 is ran-
dom. However, the numerical experiments suggest a far stronger result: for a fixed
function 7 and a semiclassical parameter £ chosen according to a uniform random
distribution in a small window at high frequencies, the result seems to remain true,

as shown in the following figures for 7(z) = sin(27z). We define C, by n = C, lﬁ)gg 520 .

APPENDIX A. PROOF OF LEMMA [L.1]

Proof. E is topologically conjugated to the linear expanding map of same degree
x +— lz mod 1, (see [KHI97], p.73). Thus E™ has ["—1 fixed points. Let E:R—R
be a lift of E, x # y be two fixed points of E™ and Z,§ € R be representatives of
and y respectively. Note that

d(z,y) = inf [Z — |

where the infimum is taken over all couples of representatives (Z, 7). Now,

| —g|M"™ >

/55 g(E")’(t)dt
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250

200

100

50

70,€
10* random values of & uniformly distributed in [£o, & + 10] with
& = 2.10% and n = 11 giving C, = 0.5. This is well fitted by
CS exp(—S?) in red.

FIGURE 4. Histogramm of S = ‘AnTrb (L" )’ for a sample of

250

200

150

100

50

FIGUure 5. Histogramm of S = ‘AnTrb (LZO7§)’ for a sample of

10* random values of & uniformly distributed in [£o, &y + 10] with
& = 2000 and n = 11 giving C, = 1.0. This is well fitted by
CS exp(—S?) in red.

Since E"(z) = x and E"(y) = y, E"(Z) — E™(j) is an integer, different from 0
because E™ is expanding, thus one-to-one. Finally,

|z —g|M"™ > 1.

Taking the infimum gives the result. [
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APPENDIX B. PROOF OF LEMMA ON THE LINK BETWEEN REGULARITY OF A

(GAUSSIAN FIELD AND VARIANCE OF THE FOURIER COEFFICIENTS
Let us recall the following classical estimate:

Lemma B.1. If (X,)pez is a family of independent centered Gaussian random
variables of variance 1, then, almost surely,

V6 > 0, X, = o(p°).
Proof. Let n € N. Let us use Borel-Cantelli lemma:

Vp € Z,B(1X,| > p¥) :/

Now, we have the upper bound

|z|>p™ Vor
2
1/+°° _e2 da </+°° _e2 dx e "z
e xe = .
P pr V2 T Jpw V2r V27
Thus,

Vp € 2", P(|X,| > pr) <

Consequently,

¥n > 1Y P(IX,| > pr) < 0
P
and by Borel-Cantelli, almost surely, for all n € N,

1
#{p € Z,|Xp| > pr} < oo.

With this in mind, we can see that if a real random function 7 has random
Fourier coefficients (c¢p)pez, pairwise independent (for non-negative values of p),
with variance

O

0_2

. 1
e

=E [|Cp|2] = O(

p2h+2+n ),
for some 1 > 0, then by the previous lemma, for all p, almost surely, for all § > 0,

)
and thus for § = 7,

As a consequence,

Z cp(2imp) kg2impx

P
converges normally and thus 7

is almost surely C*.
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APPENDIX C. RANDOM WALK ON C

Proposition C.1. If (Xi n)neno<k<n—1 5 a family of pairwise independent iden-
tically distributed real random variables such that eX*» is uniform on T and if the
crn are real coefficients such that

2
Supk Ck n
15— 0,
n 102 n—00
k=0 “k,n

then we have the following convergence in law :

n—1
1 .
72 - (E ck,ne’Xk="'> — Nc(0,1).
\/ 22k Ckn \k=0

Proof. Let (Xgn)nen,0<k<n—1 be a family of pairwise independent identically dis-
tributed real random variables such that e*X*n is uniform on T and (Ch,n)neN,0<k<n—1
be real coefficients such that

0.
Z”_l 2 n—oo

J=0 "j;n

Let
Sn = E ck:,nele "

0<k<n—1

and let us compute the characteristic function ¢,, of Zns_"l —:
k=0 Ck,n

On(&1,&2) =
6n(61,62) (Rt s i i)
1,82) — e =0 "3,n J J,n
0<k<n—1

by independence. Let us denote by (&1, &) the quantity
2m

/ ei(fl cos 0+&2 Siné)ie.

0 27T

By derivating under the integral, we have the following Taylor’s expansion in 0:

UE8) =1 1(E+ &) +ol& + &)

By hypothesis,
2
supy, ¢
k “k.n 0.

27_1 2 n—oo
Jj=0 ~j,n
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Thus,

ckn& Ckan
AL @75 ETRYON T I
1 7,6 + &3 \n

0<k<n—1 i=0 Cin j=0 Cjn

+ 2

0<k<n—1 j= 0 Gin

¢n(§17§2) =

Il
o
[}
e}

4 n—1 o n—1 o
0<k<n—1 >2i=0 Cim 225=0 im

= exp (_é?:f% + 0(1)) .

APPENDIX D. PROOF OF LEMMA [1.14]

Proof. Let X, X’,Y, and Y’ be as in the statement of the lemma real random
variables such that eiX,eiX/ are uniform on S! and so that X ad X’ are both
independent of all three other random variables. Let us write Pz the law of a
random variable Z. To show that e!X+Y) and (X' +Y") are independent and
uniform on S*, it suffices to show that for any continuous functions f,g: S' — R,

i (X +Y! oo 00, dO db’
B (1)) = [T [ et

E [ f(e/XF)g(e X )] = / (TG HN P (x vy (2" )
(shH*
By hypothesis,

dx dz’

- —dPry iy (. y).

dP(x,v,x vy (z,y, 2", y") =
Thus,

E [f(ei(X-&-Y)) (ei(X'-i-Y’))}

o (7 et s e 80 ey vy

21 2

2m 2m ) . do do’
= Pg(e' dP(Y,Y’
Ty /(51)2 ([ ] g s ) aew v

2m 2m ) ,do da/
_ 60 10
- / / Py 55

O
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ApPENDIX E. TOPOLOGICAL PRESSURE
E.1. Definition.
Definition E.1. Let ¢ : T — R be a continuous function. The limit
(E.1) Pr(¢) := lim 1 log Z ee
n—oo n
En(x)=x

exists and is called the topological pressure of ¢ (see [KH97] Proposition 20.3.3
p.630).

In other words

(E.2) T et = enPrl)+oln),
En(z)=x

The particular case ¢ = 0 gives the topological entropy Pr(0) = hyep.

E.2. Variational principle. Another definition of the pressure is given by the
variational principle. Let us denote by h(u) the entropy of a measure p invariant
under E (see [KH97] section 4.3 for a definition of entropy). For the next theorem,

see [KHOT], sections 20.2 and 20.3. The last sentence comes from Proposition
20.3.10.

Theorem E.2 (Variational principle). Let ¢ : T — R be a continuous function.

Pr(¢) =  sup (/ ¢du+h(u>>.

1 E—invariant

This supremum 1s moreover attained for a unique E-invariant measure u, called
equilibrium measure. In addition, if we note J = log|E|" and pg the equilibrium
measure of —3J, B pg is one-to-one.

Corollary E.3. The function

R — R
(E.3) F:{ E —  3Pr(=pJ)

is decreasing.

Proof. Let 8/ > 8 > 0. By the previous theorem, with the same notations,

[ =87 dua -+ nus) > [ =57 duty + iy

h(w' h(p
F(B):/—J d,ug—I—h(gﬂ) >/—J d,ufg+ (';B) 2/—J du}ﬂ— (Mﬁ) -
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E.3. Proof of lemma Let ¢ : T — R be a C! function. Let as before ¢” be
the Birkhoff sum (|1.4). By subadditivity of the sequence (inf et ¢7),, and Fekete’s
Lemma we can define the following quantity:

Definition E.4. Let us define
1
(E.4) Gmin := lim inf —¢7.

n—oo z€T N

Lemma E.5. The infimum in can be taken over periodic points:

1
(E.5) Omin = lim inf  —¢l.

n—oo g, E"(z)=x N

Proof. By lifting the expanding map to R, we easily see that F has at least a fixed
point z¢. This point has [ preimages by E™, defining {" — 1 intervals I}’ such that
foralll <k <i™-1

E" . I} — T\{zo}
is a diffeomorphism. Thus, there exists C' > 0 such that for all k, if z,y € @,
C

mn—J’

V0 < j < n,d(B (x), B9 (y) <

with m = inf|E’| > 1. Each I} contains moreover a periodic point yj, ,, of period n
given by E"™(ykn) = Yk.n + k. Hence let n € N, let 2, € T be such that

n — : f n
Pz, st Oz,
and suppose that z,, € IT? We have

n _n
Yk,n Tn

- i (B (20)) — ¢(E (yr.n))
j=0

1
/
S Cmax‘(ﬁ ‘ E W
k=0
is bounded independently of n. Consequently

1
li inf — " = Prin.
am il =9

Lemma E.6.

nﬂ En(z)=x
so that
F = lim F,,(3).
(B) EE (8)

Let € > 0. By definition of ¢y, for n large enough,
Va € Per(n), oL > n(dmin — €)



PEL.AT TRACE STATISTICS OF THE TRANSFER OPERATOR OF A RANDOM PARTIALLY EXPANDING MAP

and
Jz € Per(n), ¢y < n(dmin + €).
Thus,
e_ﬁn(d)min""e) S Z e—/—%Z S lne_ﬂn(d’min_f)
En(z)=z
and consequently
logl
_(rbmin — € S Fn(ﬂ) S 7 - ¢min + €.
Hence, letting € — 0, we get
log
7¢min S F(ﬂ) S 6 - ¢min~
When  goes to infinity, the result follows. O

Proof of lemma[3.11. Now we take ¢ = J = log(E’). By the definition of Juin
inf J5 = nJmin + o(n),

O€Per(n)
thus
1 o nlim F+o(n)
(E.G) sup - —e nJmin+o(n) —e oo .
O€Per(n) elo —1
‘We have
(E.7)
1 1
-1 1
1 1 1
— m g <A, = m? -
vn mZ OZ; (e76 —1)7 ' mZ 027; (8 —1)2
-4
1
< m . —
%;L o;m (€76 —1)
Since

1 _ nPr(—2J)+o(n)
Zm Z (ng_l)z_e )

m|n O€EPm,

Eq.(E.7) gives
1

7

engr(flf)Jro(n) S An S e7%Pr(72J)+o(n)

hence
nA, = e~ 2Pr(=20)+o(n) _ —nF(2)+o(n)

Finally,

1 n(lim F—
nA, sup — = SR FE@re)
O€Per(n) € °—1
from Corollary O

0
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