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Abstract

This paper considers the recently introduced family of reference models dedi-

cated to non-ordered alternatives. The link function of reference models is that

of the multinomial logit model (MNL) replacing the logistic cumulative distri-

bution function (cdf) by other cdfs (e.g., Gumbel, Student). We determine all

usual economic outputs (willingness-to-pay, elasticities,...). We also show that

the IIA property generally does not hold for this family of models, because of

their noninvariance to the alternative chosen as a reference. We estimate and

compare five reference models to the MNL on a travel mode-choice survey: ac-

cording to the chosen cdf, reference models lead to a better fit and retrieve

consistent economic outputs estimations even when there is a high unobserved

heterogeneity.

Keywords: Discrete choice model, Generalized linear model, Link function,

Individual choice behavior
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1. Introduction

Discrete choice models (DCMs) are a valuable tool for both understand-

ing how choices are made and deriving behavioral outputs for economic analysis
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and valuation. DCMs have been applied in a variety of fields (transportation,

energy, food consumption, marketing, and so on) with varied objectives (prefer-5

ences analysis, value elicitation, estimation of demand elasticities, market share

prediction, and so on). They are mainly applied to model consumer choice be-

havior but also applied to industrial economics. For example, [1] use DCM to

analyze product differentiation and agents selection within an organization.

Some DCMs are derived from the random utility maximization (RUM)10

principle such as the family of generalized extreme value (GEV) models in-

troduced by [2], which includes the MNL. However, the family of DCMs is

principally composed of generalized linear models (GLMs) for discrete response

variable, also including the MNL. A non-exhaustive overview of DCMs is pre-

sented in Figure 1. Discrete response variables can be differentiated into count15

and qualitative responses. On the one hand, Poisson regression models are

classically used for count data [3]. On the other hand, different models are

used for qualitative choices according to the ordering assumption among the

alternatives. Regression models appropriate for ordered alternatives include the

cumulative [4], sequential [5] and adjacent [6] logit model. They have been used,20

for instance, to explore the dynamic of credit rating matrices [7], to explain em-

ployment stability [8] or for partial credit scoring [9]. For these three kinds of

ordered logit models some extensions have been introduced using a cumulative

distribution function (cdf) other than the logistic one [10, 11]. The best known

of them is the ordered probit model, which is an extension of the cumulative25

logit model, defined with the normal cdf [12].
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In the case of non-ordered alternatives, such extensions have only re-

cently been proposed for the MNL leading to the family of reference models [14].

It should be noted that the multinomial probit model is not such an extension,

despite its name. It is defined as a RUM model with multivariate Gaussian30

residual distribution whereas the cumulative, sequential1 and adjacent models

do not strictly satisfy the RUM principle [15] and are viewed as GLMs. Oth-

erwise, reference models take advantage of the GLM framework. The simple

Newton-Raphson or Fisher scoring algorithm can be used, implying a fast esti-

mation procedure compared to the complex estimation of the multinomial probit35

model; see [14] for details. In the GLM framework, the link function relates the

probabilities of alternatives to the linear predictors (depending on individual

and alternative-specific variables). The link function of reference models is the

multinomial logit link function, except that the logistic cdf is replaced by other

cdfs F , such as the normal, the Gompertz or the Student cdfs. Adjusting the40

tail-weight and asymmetry of distributions and relaxing assumptions of the MNL

(for example, the IIA) model may markedly improve the model fit [14] and may

have behavioral and economic implications. The MNL has been widely used to

perform economic analysis [16], design public policies or adapt marketing strate-

gies [17] in a variety of fields (transportation, energy, food consumption, and so45

on). The use of reference models for discrete choice modeling may therefore have

strong implications if they provide results that are contrasted with the MNL in

terms of data fit, preferences analysis, value elicitation or demand elasticities.

The aim of this article is to derive economic outputs (preferences structure,

marginal effects, willingness-to-pay, and elasticities) from the reference models50

and to empirically compare these new qualitative choice models with the MNL.

To evaluate the added value that reference models offer, in terms of statistical,

behavioral and economic results, the empirical application uses a recent stated

preferences (SP) survey that explores the determinants of travel mode choice.

1The sequential logit model can be viewed as a RUM model under specific assumptions

[13].
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Mode choice is particularly appropriate for such an application since it is a well55

documented decision process [see 18, for a literature review] which has already

been the support for the development of DCMs.

The paper is organized as follows. Section 2 presents the family of

reference models in the context of DCM and derives economic outputs. Section

3 presents the data, the design and specification of the models and discusses the60

results. Section 4 concludes.

2. Generalized linear models for non-ordered choices

2.1. Logit models

Let π
{n}
j denote the probability that individual n chooses the alterna-

tive j among the alternatives 1, . . . , J . Let x{n} and ω{n} =
(
ω
{n}
j

)
j=1,...,J

respectively denote the vector of individual and alternative-specific variables as-

sociated with the individual n. For the sake of simplicity, the individual index

n will be suppressed in the following without loss of generality. The logit model

is summarized by the J − 1 equations

πj =
exp(ηj)

1 +
∑J−1
k=1 exp(ηk)

, (1)

for j = 1, . . . , J − 1. Depending on the form of the linear predictors ηj , we

obtain different logit models:65

• η(1)j = αj + xT δj . Individual variables x are used with J − 1 different

slopes δj .

• η(2)j = αj + ω̃Tj γ where ω̃j = ωj −ωJ . Alternative-specific variables ωj are

used with common slope γ. This is the conditional logit model introduced

by [19].70

• η(3)j = αj + xT δj + ω̃Tj γ. This is a combination of the two previous pa-

rameterizations leading to the widely used MNL.
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2.2. Reference models

All the classical regression models for categorical responses described

by [20] and [21] share the generic equations [14]:

rj(π) = F (ηj) (2)

for j = 1, . . . , J − 1, where r is a diffeomorphism 2 from the simplex (corner

of hypercube) to an open subset of the hypercube, π is the vector of probabil-

ities (π1, . . . , πJ−1)T and F is a continuous and strictly increasing cdf. In this

framework, the equations (1) of the logit models are equivalent to

πj
πj + πJ

=
exp(ηj)

1 + exp(ηj)
,

for j = 1, . . . , J−1. We recognize the logistic cdf (on the right) and the recently

introduced reference ratio (on the left). The alternative J is considered as the

reference alternative and thus πJ = 1 − ∑J−1
j=1 πj . Moreover, the vector of

predictors η = (η1, . . . , ηJ−1)T can be expressed as the product of the design

matrix Z and the vector of parameters. The three previous parameterizations of

linear predictors can thus be summarized by the three following design matrices:

Z(1) =


1 xT

. . .
. . .

1 xT

 ,

Z(2) =


1 ω̃T1

. . .
...

1 ω̃TJ−1

 ,

Z(3) =


1 xT ω̃T1

. . .
. . .

...

1 xT ω̃TJ−1

 .

2Recall that a differentiable map is a diffeomorphism if it is a bijection and its inverse is

differentiable. The inverse differentiability is required for Fisher’s scoring algorithm.
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Finally, the three logit models are fully specified by the (reference, logistic, Z(i))

triplets with i = 1, 2, 3.75

Other models can be derived from equation (2) by choosing alterna-

tive ratios (rj)j 6=J and/or alternative cdfs F . So far, four ratios have been

highlighted: the reference, adjacent, cumulative and sequential ratios. The last

three are appropriate for ordered alternatives, since the models generated are

generally not invariant under a permutation of alternatives. On the contrary,80

the reference models are invariant under all permutations that fix the refer-

ence alternative and are thus appropriate for non-ordered alternatives; see [14]

for details about invariance properties. Although the reference ratio is manda-

tory for non-ordered choices, the logistic cdf is not. The cdf F only needs to

be strictly increasing for the interpretation of parameters and differentiable for85

their estimation. The set of such cdfs is denoted by F. In application, this set

will be restricted to the logistic, normal, Laplace, Cauchy, Gumbel, Gompertz

and Student cdfs (i.e., all the most usual distributions of F) and will be denoted

by F0. The characteristics of these distributions are summarized in Table 1.

Moreover, F∗ (respectively F0,∗) will denote the same set, excluding the logis-90

tic cdf. Cdfs differ in their symmetry (symmetric or asymmetric distributions)

and in their tails (heavy or thin tails), each allowing a different fit of observed

probabilities according to the predictor values. For example, heavy-tailed distri-

butions, such as the Cauchy or Student cdfs, permit an abrupt transition of the

response behavior around a threshold value of the predictor. The asymmetry of95

the Gumbel and Gompertz distributions allows an asymmetry in the response

behavior around the switching point. The selection of the appropriated cdf F

may markedly improve the model fit and the accuracy of the estimated economic

outputs. Finally, we propose to use the family of reference models specified by

the triplets (reference, F , Z(i))F∈F0 with i = 1, 2, 3, containing the usual logit100

models when F is the logistic cdf.
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Table 1: Characteristics of the cumulative distribution functions F ∈ F0

Name F (x) Shape Symmetric (m,s) such that

parameter Fm,s ∈ Fq0.95

logistic
exp(x)

1 + exp(x)
No Yes m = 0 s = 1

normal
1
√

2π

∫ x

−∞
exp

(
−
t2

2

)
dt No Yes m = 0 s = 1.79

Laplace


1
2

exp(x) if x < 0

1− 1
2

exp(−x) if x ≥ 0
No Yes m = 0 s = 1.279

Cauchy
1

2
+

1

π
arctan(x) No Yes m = 0 s = 0.466

Gumbel exp{− exp(−x)} No No m = −0.414 s = 1.131

Gompertz 1− exp{− exp(x)} No No m = 0.737 s = 2.012

Student
1

2
+ xΓ

(
1 + ν

2

)
2F1

(
1
2
, 1+ν

2
, 3
2
,−x

2

ν

)
√
πνΓ

(
ν
2

) ν (df) Yes m = 0 s = 0.0123

(ν = 0.35)

2.3. Normalization of parameter estimates via the cdf F

As noted by [5], “distribution functions generate the same model if they

are connected by a linear transformation”. If the connection is made through a

location parameterm and a scale parameter s such that Fm,s(z) = F{(z−m)/s},
we have

Fm,s(η
′
j) = F

(
η′j −m
s

)
= F

{
α′j −m

s
+ xT

δ′j
s

+ (ωj − ωJ)T
γ′

s

}
,

8



for j = 1, . . . , J − 1. An equivalent model is obtained using the reparametriza-

tion α′j = sαj + m, δ′j = sδj and γ′ = sγ. Therefore, for each distribution,

only one representative element Fm0,s0 has to be chosen among the class of cdfs105

(Fm,s)m,s>0. In the context of binary regression, [20] proposed the transforma-

tion of F so that the mean and the variance according to different distributions

are the same, using the logistic cdf as the reference (mean and variance of the

logistic cdf are 0 and π2/3). However, this method cannot be used with the

Cauchy cdf since the mean and variance do not exist. More generally, the mean110

and variance of the Student distribution do not exist when ν < 1 and ν < 2

respectively. Therefore, we propose to normalize the different reference models

via the location and scale parameters of the cdf F . To do this, two real points

a and b are chosen such that all cdfs in F have the same values F (a) and F (b).

The logistic cdf is naturally proposed as the reference cdf since it corresponds115

to the canonical GLM; see Appendix A for details about the normalization of

parameters.

2.4. The case of the Student distribution

We have seen that a change in location and/or scale parameters does

not impact the loglikelihood of a reference model. Therefore, only one repre-120

sentative element Fm0,s0 is chosen for each distribution: the logistic, normal,

Laplace, Cauchy, Gumbel and Gompertz distributions. It is quite different for

the Student distribution because of its additional parameter: the degree of free-

dom (df). Indeed, Student distributions with different degrees of freedom are

not connected by a linear transformation and thus lead to different loglikelihood125

maxima. Since the df has to be estimated, we are interested in the concavity of

the loglikelihood according to the parameter ν ∈ (0,∞). This concavity is not

theoretically demonstrated but is empirically verified; see Appendix B for more

details. It should be recalled that the Cauchy and Student with ν = 1 are the

same distribution. Therefore, the (reference, Studentν̂ , Z) model will always130

obtain a higher loglikelihood than the (reference, Cauchy, Z) model. However,

this latter model will be used because it is more parsimonious.
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2.5. Independence of irrelevant alternatives

Unlike the logit models, the (reference, F , Z)F∈F∗ are not invariant

under the transposition of the reference alternative. Thus, the choice of the

reference alternative will impact the parameter estimation and also the different

economic outputs, such as the elasticities for instance. This dependence on the

reference alternative allows us to partially relax the IIA property. The IIA

property holds for the J − 1 ratios of probabilities πj/πJ since

πj
πJ

=
F

1− F (ηj)

for all j 6= J . However, for two non-reference alternatives j 6= J and k 6= J , we

have
πj
πk

=
F

1− F (ηj)
1− F
F

(ηk).

With designs Z(2) or Z(3), the predictors ηj and ηk are dependent on alternative-

specific variables ωJ of the reference alternative. This dependence disappears135

only if F is the logistic cdf noting that F/(1−F ) = exp and using the exponential

property exp(ηj)/ exp(ηk) = exp(ηj − ηk). If F is not the logistic cdf, then the

IIA property holds for the J − 1 ratios of probabilities πj/πJ and does not hold

for the
(
J−1
2

)
ratios of probabilities πj/πk.

2.6. Economic outputs of reference models140

Reference models can be used to discuss behavioral hypotheses and

elicit economic outputs. To set the theoretical framework, we first discuss the

interpretation of the parameter estimates before computing willingness to pay,

marginal effects and elasticities formulas. The parameter estimates of reference

models can be easily interpreted since

πj
πJ

=
F

1− F (ηj)

is strictly increasing with respect to ηj when F ∈ F. For instance, if the slope

parameter of the alternatives cost is significantly negative, then the probabil-

ity of choosing alternative j over alternative J is decreasing when its cost is

increasing.

10



Willingness to pay145

For a RUM model, the willingness to pay (WTP) for a continuous alter-

native specific variable ω (e.g., the time) is the change in cost that keep utilities

(deterministic part) unchanged after increasing the ωj0 value by one unit (for

a given alternative j0). It can be shown that no change in utilities implies no

change in choice probabilities. The WTP can therefore be defined as the change150

in cost that keeps the choice probabilities unchanged after increasing ω by one

unit.

Property 1. Assume that there is no interaction between the alternative spe-

cific variable ω and the other variables. Then for a reference model the WTP is

given by

WTP = − γω

γcost
.

In the same way, the value of time (VoT) is defined as the change in cost that

keeps the choice probabilities unchanged after increasing the time by one unit.

Additionally, the time equivalent comfort (TEC) is the amount of time ∆tj0 for155

a given alternative j0, necessary to compensate a transition from guarantee of

a seating position (comf = 1) to no guarantee (comf = 0).

Property 2. Assume that there is an interaction between time and comfort.

Then for a reference model the VoT and TEC are given by

VoT = −γ
time + γtime×comf1comf=1

γcost
,

TEC = −γ
comf + γtime×comftj0

γtime
.

Note that the WTP, VoT and TEC formula obtained for reference models are

the same as for the MNL. Proofs of properties 1 and 2 are given in Appendix

C.160

Marginal effects and elasticities

Marginal effects measure the extent to which probabilities change in

response to a change in the variable value. The marginal effect on the probability

11



of choosing the alternative i in the continuous alternative-specific variable ωj

(viewed as a scalar, i.e., only the time value for instance) of alternative j is165

defined by ∂πi/∂ωj and denoted by mei(ωj).

Property 3. For a reference model the marginal effects are given by

mei(ωj) = γπi



dj(1− πj) , i = j, j 6= J,

−djπj , i 6= j, j 6= J,∑
k 6=J dkπk , i = j, j = J,∑
k 6=J dkπk − di , i 6= J, j = J,

where di = f(ηi)/[F (ηi){1 − F (ηi)}] for i = 1, . . . , J − 1 and f = F ′ is the

probability density function associated with the cdf F .

The proof is given in Appendix D. Elasticities are an alternative measure of the

response of probabilities to a change in the variable value. Their advantage is

that they are normalized for the variables´ units and are easily computed since

ei(ωj) =
∂ lnπi
∂ lnωj

=
ωj
πi

mei(ωj), (3)

for all i, j ∈ {1, . . . , J}. The elasticities are thus given by

ei(ωj) = γωj



dj(1− πj) , i = j, j 6= J,

−djπj , i 6= j, j 6= J,∑
k 6=J dkπk , i = j, j = J,∑
k 6=J dkπk − di , i 6= J, j = J.

If i = j then ei(ωj) is an own-elasticity, whereas if i 6= j then ei(ωj) is a cross-

elasticity. It can be seen that two cross-elasticities ei(ωj) and ei′(ωj) are equal170

when j 6= J but are different when j = J . This is a consequence of the IIA

property that does not hold for all pairs of alternatives. The change of value in

ωJ does not impact the probability of choosing other alternatives in the same

way.

Recall that marginal effects and elasticities computation have been pre-

sented only for one individual. The aggregated elasticities are computed as

12



follow

ei(ωj) =
1

N

N∑
n=1

e
{n}
i (ωj),

where n denotes the individual index and N the number of individuals. Owing

to the IIA property, cross-elasticities have little behavioral value. To get around

this issue, [22] discussed the method of sample enumeration to compute the

weighted elasticities

wei(ωj) =
1∑N

n=1 π
{n}
i

N∑
n=1

π
{n}
i e

{n}
i (ωj).

It should be noted that that the estimation of VoT, TEC, probabilities, marginal175

effects and elasticities are invariant under the normalization of parameters; see

Appendix D.

3. Reference models: an application to mode choice

3.1. Travel stated preferences survey

In this section, we propose an empirical application of the reference180

models to assess their added-value compared to the MNL model.3 For this pur-

pose, we use a recent choice experiment on transport mode choice. 1,774 inhab-

itants4 of the Rhône-Alpes region had to choose between three travel modes5:

coach (j = 1), car (j = 2) and train (j = 3). Modes vary according to travel

time, travel cost and comfort (see Figure .1 in Supplementary Material). Travel185

time is defined from origin to destination (including access time, egress time,

waiting time and in-vehicle time). Travel cost includes public transport ticket

or pass, gasoline, parking cost and toll. Comfort is defined as the guarantee

of seating availability. It is therefore always equal to one for coach and car

alternatives but sometimes equal to zero for the train alternative, if a seat is190

3For further details on this application, including the survey, further interpretation of

results and comparison with the literature, see [23, Chapter 8].
4 Only respondents aged 18 or over, having a car and a driving license and whose trip was

made or could have been made by train or coach were asked to answer the choice questions.
5Levels of the attributes were pivoted around the values collected for a reference journey.
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not guaranteed. In this case, the train user may have to stand during all or

part of the journey. A pivot Bayesian efficient design was implemented [24]. A

priori weights of attributes were taken from the literature and adjusted during

the pilot tests. The percentage of respondents who chose the train alterna-

tive was 29.6%, while 21% chose the coach alternative and 49.4% chose the car195

alternative. Respondents had to answer to four choice questions leading to a

database with 6,373 observations since a few respondents did not answer all four

questions.

Eventually, the alternative-specific variables (ωj)j=1,2,3 are the travel

time, travel cost and comfort as well as the cross-variable Time × Comfort,200

which is equal to travel time when a seat is guaranteed and equal to zero oth-

erwise. The individual variables x are related to socio-economic characteristics

(age and income), spatial characteristics (% of the origin and destination mu-

nicipalities in a high density area), journey characteristics (train, coach or car

user for the reference trip, frequency of the trip, and so on) and general mobility205

indicators (access to a car and frequency of use of alternative modes to the car).

Table 2 displays descriptive statistics for all variables used in the models.

3.2. Specification and design of the reference models

To apply reference models, the first step is to choose the reference alter-

native. Train is chosen because analyzing train use was the primary objective of210

the survey. It is therefore the first alternative displayed in the choice questions

and may be used as a reference by a majority of respondents. Without a priori

information about the reference alternative, the modeler could also refer to the

goodness-of-fit indicators. For information, the ranking of the models, for each

reference alternative, is presented in Supplementary Material; see Table .2.6215

6The Supplementary Material extends the work carried out in Section 3.3.1 with the al-

ternative train as a reference. It appears that the ranking of cdfs is only marginally modified

by the reference alternative. The conclusions of the paper on the performance of the Student

cdf and the interest of the reference models compared to the MNL are not questioned.
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Table 2: Descriptive statistics

Variable definition Label Mean S.D. Min Max

Alternative-specific variables (n = 6373)

Travel cost by train (in euros) Cost Train 8.88 7.56 1 62

Travel cost by coach (in euros) Cost Coach 8.90 7.80 1 78

Travel cost by car (in euros) Cost Car 9 .99 8.64 1 62

Travel time by train (in minutes) Time Train 69.89 51.86 7 325

Travel time by coach (in minutes) Time Coach 70.22 53 .23 7 325

Travel time by car (in minutes) Time Car 57.24 36.89 4 330

Comfort in train (1 if seating position guaranteed) Comfort 0.50

Individual variables (n = 1774)

Age (in years) age 47.57 15.76 19 90

Number of cars available per person in the household access car 0.76 0.38 0.12 4.00

% of the origin municipality in high density area Orig dens 74.21 39.58 0 100

% of the destination municipality in high density area Dest dens 86.15 29.93 0 100

Monthly income above 4,000 euros (1 is yes, 0 otherwise) Income h 0.28

User of coach for the reference trip (1 is yes, 0 otherwise) Type coach 0.03

User of car for the reference trip (1 is yes, 0 otherwise) Type car 0.54

Makes the reference trip on a regular basis (1 is yes, 0 other-

wise)
Regular 0.28

Imperative schedule at destination (1 is yes, 0 otherwise) Imperative 0.45

Car user who had already used public transport to make the

reference trip (1 is yes, 0 otherwise)
Alt pt 0.15

Train or coach user who had already used car to make the

reference trip (1 is yes, 0 otherwise)
Alt car 0.26

Frequent use of modes other than car (1 is yes, 0 otherwise) Freq alt 0.41

Reference models are estimated for the three designs Z(1), Z(2) and

Z(3). The individual variables were chosen using stepwise selection and doing

numerous tests to choose their specification. Using the downgraded designs Z(1)

or Z(2) instead of the full design Z(3) implies higher unobserved heterogeneity

due to omitted variables. Such models with omitted variables, even if exagger-220

ated for emphasis, allow us to identify the cdfs that are less sensitive to the

omission of variables and that retrieve the most consistent economic outputs.
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For each design Z(i), the degree of freedom ν is first estimated for the

(reference, Studentν , Z(i)) model and then the five other models (using logis-

tic, normal, Laplace, Cauchy and Gumbel cdfs7) are estimated. To facilitate225

comparisons, each triplet (reference, F [r], Z) indicates the rank r of the model

according to the ρ̄2 value. For each cdf, the normalized space Fq0.95 has been

retained. Indeed, in comparison to the other normalized spaces, it improves the

readability of results, the parameter’s estimates being less dispersed; see Table

1 for the corresponding values of m0 and s0 satisfying equations (.1).230

For each design Z(i), the six (reference, F , Z(i))F∈F0 models are com-

pared in terms of goodness-of-fit indicators: loglikelihood, ρ̄2 as defined in [26],

AIC and BIC,8 regarding absolute values as well as ranking. Note that all cdfs

have the same number of parameters except the Student distribution, which

requires the estimation of only one additional parameter: the degree of freedom235

ν.

3.3. Interpretation of the results

3.3.1. Goodness-of-fit indicators

The degrees of freedom that maximize the likelihood obtained with

(reference, Studentν , Z(i))i=1,2,3 models are respectively ν̂ = 1.35, ν̂ = 0.35 and240

ν̂ = 1.9; see Appendix B for details about the estimation of ν. With design

Z(1) (only individual characteristics), the three best models are the (reference,

F [1] = Laplace, Z(1)), (reference, F [2] = Student1.35, Z(1)) and (reference, F [3] =

Cauchy, Z(1)) models; see Table 3. According to the Ben-Akiva and Swait test

[26], these three models are not significantly different from one another at the245

5% level; see Table .1 in Supplementary Material. However, they outperform the

7 The (reference, Gompertz, Z(i)) models have also been estimated, however results are

not presented here because of convergence problems; see [25, Chapter 5] for theoretical expla-

nations.
8The AIC is usually preferred to select a model for prediction whereas the BIC is preferred

regarding explanation purposes. Both are retained since both objectives are pursued and they

offer similar results.

16



other three models and the (reference, F [5] = Gumbel, Z(1)) is not significantly

different from the (reference, F [6] = normal, Z(1)) model. With design Z(2)

(only alternative attributes), the (reference, F [1] = Student0.35, Z(2)) model is

the best and (reference, F [2] = Cauchy, Z(2)) model follows. All models are250

significantly different from one another at the 5% level.

Table 3: Goodness-of-fit indicators of (reference, F , Z(i)) models for F ∈ F0 with i = 1, 2, 3

(reference, F, Z(1)) logistic normal Laplace Cauchy Gumbel Student1.35

Indicator value

LL -5,363 -5,367 -5,356 -5,358 -5,366 -5,357

ρ̄2 0.230 0.230 0.231 0.231 0.230 0.231

AIC 10,778 10,785 10,765 10,767 10,784 10,767

BIC 10,954 10,961 10,941 10,943 10,959 10,950

Rank
LL/ρ̄2/AIC 4 6 1 3 5 2

BIC 4 6 1 2 5 3

(reference, F, Z(2)) logistic normal Laplace Cauchy Gumbel Student0.35

Indicator value

LL -6,083 -6,115 -6,028 -5,966 -6,073 -5,908

ρ̄2 0.130 0.126 0.138 0.147 0.132 0.155

AIC 12,178 12,242 12,068 11,945 12,157 11,830

BIC 12,219 12,282 12,109 11,985 12,198 11,877

Rank LL/ρ̄2/AIC/BIC 5 6 3 2 4 1

(reference, F, Z(3)) logistic normal Laplace Cauchy Gumbel Student1.9

Indicator value

LL -4,803 -4,823 -4,791 -4,797 -4,782 -4,789

ρ̄2 0.310 0.310 0.311 0.311 0.313 0.312

AIC 9,665 9,705 9,642 9,654 9,624 9,639

BIC 9,868 9,908 9,845 9,856 9,826 9,849

Rank
LL/ρ̄2/AIC 5 6 3 4 1 2

BIC 5 6 2 4 1 3

Notes: LL stands for Loglikelihood

With design Z(3) (full model), the (reference, F [1] = Gumbel, Z(3))

model is the best and (reference, F [2] = Student1.9, Z(3)) and (reference, F [3] =255

Laplace, Z(3)) models follow. As with design Z(2), all models are significantly

different from one another at the 5% level.
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Z(2) design assumes generic parameters for the alternatives attributes,

whereas Z(1) assumes a more flexible form with more parameters associated to

individual characteristics. Z(2) models present worse fit than Z(1) models. As260

expected, Z(3) models show the best fits, as they include all types of variables

(individual and alternative-specific).

Overall, the logistic and normal cdfs perform badly whereas the Student

cdf performs well (it is ranked either first or second). Thinner tails’ cdfs, like

Student or Gumbel seem to fit best with more informative data. With better265

information, steeper cdf can be better tool to model the change in behavior and

can be more precise to estimate switching point.

3.3.2. Interpretation and comparison of parameter estimates

The (reference, F , Z(3)) models provide parameter estimates consistent

with the theory; see Table 6. For the six models, the time and cost parameters270

are significant and negative, as expected. The comfort parameter is significant

and positive. The crossed effect of time and comfort is positive and significant,

indicating the propensity to accept longer travel time in comfortable condition.

When significant, the alternative-specific constants indicate that the coach and

car alternatives are associated with a smaller baseline probability than the train275

alternative. Even if the scales of parameters are partly normalized to provide

comparable estimations, the direct comparison of parameter estimates is pre-

cluded. The focus is therefore only on the structure, sign and significance of the

parameter estimates. First, following [27, 28, 29], the structure of estimated

preferences is analyzed. For each design, the order of parameter estimates280

is generally respected across models, with relatively stable patterns. Second,

when significant, parameter estimates have the same signs across the cdfs for

a given design. However, depending on the cdf, parameters differ in their sig-

nificance level; see Tables 4, 5 and 6. The choice of the cdf therefore impacts

the variables selection. For instance, with design Z(2), the cross-variable Time285

× Comfort is positive but not significant with the two best performing cdfs

(F [1] = Student0.35, F [2] = Cauchy), negative but not significant with the two
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middle cdfs (F [3] = Laplace, F [4] = Gumbel), and significant and negative with

the two worst performing cdfs (F [5] = logistic and F [6] = normal), which raises

a particular concern. The negative sign of the cross-variable Time × Comfort290

may be due to not capturing the anchoring bias, since the individual reference

mode is omitted.

3.3.3. Value of time

Because of the introduction of the cross-variable Time ×Comfort, VoT

depends on the guarantee of having a seat; see Property 2. For the (reference, F,295

Z(3)) models, VoT is consistently lower when a seat is guaranteed, since travel

time can be used to rest or to work; see Table 7. Depending on the cdf, VoT

is comprised between 11.5 and 12.7 e/hour when a seat is guaranteed whereas

it ranges from 12.5 to 14.6 e/hour when a seat is not guaranteed. The ranges

of VoT elicited with design Z(3) are in line with literature, which proved to be300

very heterogeneous depending on mode, travel purpose, type of survey, and so

on [30, 31].

The VoT elicited with the (reference, F [1] = Gumbel, Z(3)) model and

(reference, F [5] = logistic, Z(3)) models are relatively similar. However, and

despite overall consistency of results with design Z(3), some disparities are ob-305

served across (reference, F, Z(3)) models. They are not due to scale effects since

VoT is calculated as a ratio of coefficients. These results highlight the impact

of choosing a specific cdf on the estimation of economic outputs, with higher

confidence in the results elicited with the best performing cdf.

Whereas the (reference, F, Z(3)) models provide consistent results, VoT310

elicited with the (reference, F, Z(2)) models are lower and some cdfs provide

inconsistent values; see Table 7. Because of the negative coefficient of the cross-

variable Time × Comfort, the VoT is inconsistently lower when a seat is not

guaranteed than when a seat is guaranteed, except for the two best models

(reference, F [1] = Student0.35, Z(2)) and (reference, F [2] = Cauchy, Z(2)). These315

two models are also the one that elicit the VoT that are the closer to their

Z(3) counterparts: (reference, F [2] = Student1.9, Z(3)) and (reference, F [4] =
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Table 4: Parameter estimates of (reference, Fm,s, Z(1)) models for Fm,s ∈ F0
q0.95

logistic normal Laplace Cauchy Gumbel Student1.35

Alternative-specific

constants

Coach -0.635 * -0.674 * -0.492 * -0.303 ** -0.555 ** -0.412 **

Car -0.765 ** -0.791 ** -0.611 ** -0.375 ** -0.554 ** -0.525 **

Individual

variables

Coach

Age 0.059 0.052 0.063 * 0.036 * 0.048 . 0.047 *

Income h 0.302 *** 0.322 *** 0.258 *** 0.125 *** 0.218 *** 0.178 ***

Orig dens 0.024 0.027 -0.005 -0.008 -0.021 0.001

Dest dens -0.404 ** -0.418 ** -0.358 *** -0.174 *** -0.278 ** -0.243 ***

Type coach 2.07 *** 2.232 *** 1.736 *** 0.979 *** 1.8 *** 1.291 ***

Type car 1.075 *** 1.193 *** 0.771 *** 0.414 *** 0.867 *** 0.592 ***

Regular -0.128 -0.13 -0.111 -0.056 -0.09 -0.081 .

Imperative -0.072 -0.09 -0.027 0.01 -0.037 -0.005

Alt pt 0.021 0.009 0.038 0.05 0.127 0.053

Alt car 0.014 0.008 0.012 0.023 0.05 0.026

Freq alt -0.129 -0.138 -0.122 . -0.044 -0.055 -0.066

Access car 0.23 . 0.232 . 0.201 * 0.096 . 0.191 * 0.138 *

Car

Age 0.082 * 0.067 . 0.09 ** 0.062 ** 0.069 * 0.081 **

Income h 0.221 ** 0.207 * 0.237 ** 0.165 ** 0.18 ** 0.204 **

Orig dens 0.145 0.138 0.118 0.069 0.02 0.107

Dest dens -0.286 * -0.253 * -0.315 * -0.219 ** -0.206 * -0.266 *

Type coach 1.789 *** 1.947 *** 1.496 *** 0.842 *** 1.454 *** 1.102 ***

Type car 2.796 *** 2.956 *** 2.499 *** 1.605 *** 2.405 *** 1.988 ***

Regular -0.662 *** -0.647 *** -0.688 *** -0.522 *** -0.519 *** -0.598 ***

Imperative -0.321 *** -0.326 *** -0.292 *** -0.167 *** -0.244 *** -0.224 ***

Alt pt -0.533 *** -0.548 *** -0.516 *** -0.323 *** -0.214 * -0.394 ***

Alt car 0.17 0.158 0.193 * 0.142 ** 0.098 0.168 *

Freq alt -0.544 *** -0.557 *** -0.522 *** -0.293 *** -0.387 *** -0.38 ***

Access car 0.415 *** 0.386 ** 0.394 *** 0.247 *** 0.405 *** 0.329 ***

*** = significant at the 0.1 % level; ** = significant at the 1 % level; * = significant at the 5 % level; . =

significant at the 10 % level
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Table 5: Parameter estimates of (reference, Fm,s, Z(2)) models for Fm,s ∈ F0
q0.95

logistic normal Laplace Cauchy Gumbel Student0.35

Alternative-specific

constants

Coach -0.67 *** -0.739 *** -0.515 *** -0.284 *** -0.562 *** -0.015 ***

Car 0.176 *** 0.185 *** 0.138 *** 0.081 *** 0.185 *** 0.004 ***

Alternative-specific

variables

Time -0.012 *** -0.011 *** -0.013 *** -0.01 *** -0.012 *** -0.001 ***

Cost -0.147 *** -0.141 *** -0.135 *** -0.091 *** -0.112 *** -0.006 ***

Comfort 0.796 *** 0.915 *** 0.554 *** 0.283 *** 0.554 *** 0.013 ***

Time×Comfort -0.003 ** -0.004 *** -0.0008 0.0001 -0.0001 0.00003

*** = significant at the 0.1 % level; ** = significant at the 1 % level; * = significant at the 5 % level; . =

significant at the 10 % level

Cauchy, Z(3)). The Student and Cauchy cdfs therefore seem to be more robust

to unobserved heterogeneity than the other cdfs. Overall, the heterogeneity

across cdfs is greater with design Z(2) than with design Z(3). VoT range from320

4.6 to 7.4 e/hour if a seat is not guaranteed and from 6.0 and 7.1 e/hour if a

seating position is guaranteed. In particular, the best ranking model (reference,

F [1] = Student0.35, Z(2)) elicits VoT equal to 7.1 and 7.4 e/h, whereas the

VoT elicited with the (reference, F [5] = logistic, Z(2)) model are lower and

respectively equal to 4.9 and 5.9 e/hour.325

3.3.4. Time equivalent of comfort

Comfort is converted into minutes to obtain a time equivalent using

Property 2; see Table 7. TEC is calculated for three travel times: 30 minutes,

which is the first quartile of the sample; 60 minutes, the median, and 90 minutes,

the last quartile of the sample. For (reference, F, Z(3)) models, TEC increases330

when travel time increases, as expected. Depending on the cdf, TEC is com-

prised between 14.5 to 20.1 minutes of travel time for short travel time, 17.1

to 23.2 minutes for medium travel time and 19.6 to 26.3 minutes of travel time

for long travel time, which is consistent with literature [32, 33]. As for VoT,

TEC are very close between the (reference, F [1] = Gumbel, Z(3)) and (reference,335
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Table 6: Parameter estimates of (reference, Fm,s, Z(3)) models for Fm,s ∈ F0
q0.95

logistic normal Laplace Cauchy Gumbel Student1.9

Alternative-specific

constants

Coach -0.54 * -0.77 ** -0.325 -0.193 . -0.538 ** -0.325 .

Car -1.137 *** -1.363 *** -0.682 ** -0.162 -0.652 *** -0.597 **

Alternative-specific

variables

Time -0.03 *** -0.029 *** -0.028 *** -0.019 *** -0.024 *** -0.027 ***

Cost -0.127 *** -0.123 *** -0.125 *** -0.092 *** -0.098 *** -0.122 ***

Comfort 0.46 *** 0.492 *** 0.408 *** 0.23 *** 0.294 *** 0.36 ***

Time×Comfort 0.003 ** 0.003 ** 0.003 ** 0.002 ** 0.003 *** 0.003 **

Individual

variables

Coach

Age -0.009 ** -0.009 ** -0.008 *** -0.004 ** -0.006 ** -0.007 ***

Income h 0.371 *** 0.361 *** 0.316 *** 0.178 *** 0.25 *** 0.297 ***

Orig dens -0.035 0.005 -0.035 -0.031 -0.109 -0.051

Dest dens -0.273 * -0.181 -0.281 * -0.166 ** -0.16 -0.265 *

Type coach 2.38 *** 2.295 *** 2.237 *** 1.637 *** 2.089 *** 2.225 ***

Type car 1.289 *** 1.417 *** 0.97 *** 0.495 *** 1.037 *** 0.911 ***

Regular -0.028 0.001 -0.054 -0.037 0.007 -0.044

Imperative -0.04 -0.042 -0.01 0.011 -0.021 -0.013

Alt pt 0.026 0.011 0.038 0.073 0.137 . 0.061

Alt car -0.01 -0.035 0.006 0.013 0.051 0.01

Freq alt -0.213 * -0.228 * -0.183 * -0.061 -0.112 -0.134 .

Access car 0.138 0.184 0.072 0.006 0.112 0.06

Car

Age -0.018 *** -0.017 *** -0.02 *** -0.016 *** -0.014 *** -0.019 ***

Income h 0.346 *** 0.31 *** 0.38 *** 0.325 *** 0.257 *** 0.377 ***

Orig dens 0.15 0.141 0.161 0.116 -0.053 0.146

Dest dens -0.057 0.037 -0.183 -0.261 ** 0.019 -0.213

Type coach 2.34 *** 2.43 *** 2.186 *** 1.531 *** 1.768 *** 2.084 ***

Type car 3.701 *** 3.813 *** 3.35 *** 2.181 *** 2.97 *** 3.135 ***

Regular -0.469 *** -0.408 *** -0.569 *** -0.528 *** -0.37 *** -0.564 ***

Imperative -0.248 ** -0.241 ** -0.235 ** -0.162 ** -0.173 ** -0.238 **

Alt pt -0.276 * -0.263 * -0.299 ** -0.193 * -0.103 -0.272 *

Alt car 0.231 . 0.254 * 0.191 . 0.102 0.141 . 0.163

Freq alt -0.599 *** -0.605 *** -0.586 *** -0.33 *** -0.424 *** -0.494 ***

Access car 0.442 *** 0.443 *** 0.413 *** 0.28 *** 0.415 *** 0.402 ***

*** = significant at the 0.1 % level; ** = significant at the 1 % level; * = significant at the 5 % level; . =

significant at the 10 % level
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Table 7: Value of time (VoT; in e/h.) and time equivalent of comfort (TEC; in minutes) for

(reference, F , Z(i)) models for F ∈ F0 with i = 2, 3.

(reference, F, Z(2)) logistic normal Laplace Cauchy Gumbel Student0.35

VoT (comfort = 0) 4.89 4.56 5.82 6.4 6.26 7.42

VoT (comfort = 1) 5.95 6.13 6.16 6.32 6.32 7.10

TEC (time = 30 min.) 60.14 75.25 40.51 29.45 47.15 19.03

TEC (time = 60 min.) 53.64 64.93 38.76 29.82 46.85 20.32

TEC (time = 90 min.) 47.13 54.61 37 30.19 46.54 21.60

(reference, F, Z(3)) logistic normal Laplace Cauchy Gumbel Student1.9

VoT (comfort = 0) 14.1 14.12 13.56 12.53 14.57 13.39

VoT (comfort = 1) 12.57 12.66 12.24 11.47 12.55 11.98

TEC(time = 30 min.) 18.63 20.07 17.37 14.51 16.45 16.37

TEC (time = 60 min.) 21.87 23.17 20.28 17.05 20.6 19.53

TEC (time = 90 min.) 25.12 26.27 23.18 19.58 24.74 22.68

F [5] = logistic, Z(3)) models, although this does not prevent disparities across

(reference, F, Z(3)) models.

As expected, the TEC elicited with the (reference, F, Z(2)) models

are overall inconsistent and range from 19.0 to 75.3 minutes for short travel

time, 20.3 to 65 minutes for medium travel time, and 21.6 to 54.6 minutes340

for long travel time. Moreover, TEC inconsistently decrease as travel time

increase except for the two best models. The best ranking model is also the

only one which elicits TEC in the expected range of value. Indeed, depending

on travel time, TEC elicited with the (reference, F [1] = Student0.35, Z(2)) model

are comprised between 19.0 and 21.6 minutes, whereas the (reference, F [5] =345

logistic, Z(2)) model elicits values between 47.1 and 60.1 minutes. As for VoT,

choosing the Studentν∗ distribution over the logistic distribution is therefore,

with our data, a means of retrieving consistent outputs.

3.3.5. Elasticities

For own-elasticities, we record only weighted elasticities (Table 8 and350

Figure .5 in Supplementary Material). For cross-elasticities, unweighted elastic-
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ities are recorded to discuss in depth the IIA property and substitution patterns

(Table 9). Weighted elasticities are displayed (Table .3) and discussed in Sup-

plementary Material.

Own-elasticities. With design Z(3), the estimated own-elasticities are consistent355

with those from previous studies that take into account comfort variables [e.g.,

34]. Also consistent with the literature, the probability of choosing the train

or the coach is more sensitive to its own cost and time than the probability of

choosing the car [e.g., 35]. Moreover, a variation of 10% in travel cost has a

lower impact on choice probabilities than the same variation in travel time [see360

36, for similar results].

With design Z(3), the comparison between models offers the same re-

sults as for VoT and TEC: own-elasticities are similar between the (reference,

F [1] = Student1.9, Z(3)) and (reference, F [5] = logistic, Z(3)) models, but that

does not prevent some disparities between models. With design Z(2), the own-365

cost elasticities are higher than the own-time elasticities, which seems incon-

sistent with previous literature [36]. The (reference, F [1] = Student0.35, Z(2))

models elicit the own-cost and own-time elasticities closest to each other, and

therefore reduce the effect of the misspecification.

Cross-elasticities. Any ratio of probabilities of two alternatives i and i′ depends370

on the reference specific-alternative variables ωJ when F is not the logistic cdf.

It implies that elasticities ei(ωJ) and ei′(ωJ) are different. For instance, with the

(reference, F [1] = Gumbel, Z(3)) model, when the travel time of train increases

by 10%, then the probability of choosing the coach increases by 12.01% and the

probability of choosing the car increases by 17.83%. Conversely, a 10% increase375

in coach travel time induces a 4.2% increase in the probability of choosing the

train and coach modes. This higher substitution between the train and car

alternatives than between the train and coach alternatives, also verified with

the (reference, F [6] = normal, Z(3)) model, is contrary to expectations. For

the other (reference, F, Z(3)) models, as well as the (reference, F, Z(2)) models,380
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Table 8: Own-time and own-cost elasticities for (reference, F , Z(i)) models for F ∈ F0 with

i = 2, 3.

(reference, F, Z(2)) logistic normal Laplace Cauchy Gumbel Student0.35

Own-time elasticities

Train -0.535 -0.446 -0.696 -0.875 -0.631 -0.979

Coach -0.601 -0.494 -0.82 -1.062 -0.79 -1.295

Car -0.281 -0.24 -0.323 -0.424 -0.323 -0.462

Own-cost elasticities

Train -0.787 -0.708 -0.854 -0.97 -0.721 -0.948

Coach -0.875 -0.777 -0.996 -1.169 -0.91 -1.253

Car -0.583 -0.537 -0.612 -0.653 -0.531 -0.598

(reference, F, Z(3)) logistic normal Laplace Cauchy Gumbel Student1.9

Own-time elasticities

Train -1.06 -0.998 -1.107 -1.172 -1.128 -1.139

Coach -1.37 -1.267 -1.47 -1.634 -1.468 -1.534

Car -0.488 -0.486 -0.465 -0.398 -0.465 -0.453

Own-cost elasticities

Train -0.516 -0.488 -0.553 -0.619 -0.507 -0.573

Coach -0.731 -0.67 -0.821 -0.989 -0.729 -0.866

Car -0.364 -0.362 -0.355 -0.335 -0.339 -0.357
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we consistently observe a higher substitution between public transport modes,

except for the worst ranking (reference, F [6] = normal, Z(2)) model.

3.3.6. Discussion

Testing a variety of models generates more flexibility in the modeling

process and allows the modeler to point out the model that best fits the data.385

Our results show that the appropriate choice of a cdf and a reference alternative

is important to retrieve consistent results, in particular, when the data contain

high unobserved heterogeneity since some cdfs are more robust than others. The

choice of a distribution and a reference alternative can be guided by a priori

information and/or goodness-of-fit indicators. The estimation of the model with390

different cdfs indicates the Student cdf is one of the two best cdfs for all three

designs9 and is the more robust to unobserved heterogeneity. Evaluation of sev-

eral cdfs for our data indicates that the Student cdf is one of the two best cdfs

for all three designs and with all three reference alternatives and is the more

robust to unobserved heterogeneity. An explanation is that the flexibility in the395

degrees of freedom makes it possible to adapt the heaviness of the distribution

tails to the data. It seems that the higher the unobserved heterogeneity, the

lower the degrees of freedom selected. Indeed, design Z(3) contains the lowest

unobserved heterogeneity, and we expect design Z(2) to contain the highest un-

observed heterogeneity due to the lack of the individual variables on the type400

of user (“type car” and “type coach”). An interpretation is that thinner tails

are needed when data are more informative about behavior. When unobserved

heterogeneity is high, the predictor contains little information about the deci-

sion maker and the predictor is a poor basis for the detection of changes in

choice probability. Distribution tails therefore need to be heavier because the405

predictor only captures a raw, a gross mean behavior and fails to capture the

heterogeneity in behaviors. With heavy-tailed distributions, probabilities are

fairly insensitive to changes in predictor values, except around a threshold value

9This result is valid regardless of the reference alternative; see Supplementary Material
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Table 9: Unweighted cross-elasticities for (reference, Fm,s, Z(i)) models for Fm,s ∈ Fq0.95

with i = 2, 3.

(reference, F, Z(2)) logistic normal Laplace Cauchy Gumbel Student0.35

Cross-time elasticities

Train
Coach 0,252 0,191 0,393 0,589 0,487 0,845

Car 0,252 0,221 0,28 0,291 0,393 0,198

Coach
Train 0,174 0,139 0,251 0,34 0,218 0,447

Car 0,174 0,139 0,251 0,34 0,218 0,447

Car
Train 0,31 0,266 0,378 0,446 0,34 0,431

Coach 0,31 0,266 0,378 0,446 0,34 0,431

Cross-cost elasticities

Train
Coach 0,355 0,272 0,488 0,69 0,584 0,892

Car 0,355 0,33 0,343 0,342 0,341 0,212

Coach
Train 0,248 0,215 0,296 0,361 0,245 0,417

Car 0,248 0,215 0,296 0,361 0,245 0,417

Car
Train 0,637 0,589 0,647 0,679 0,552 0,552

Coach 0,637 0,589 0,647 0,679 0,552 0,552

(reference, F, Z(3)) logistic normal Laplace Cauchy Gumbel Student1.9

Cross-time elasticities

Train
Coach 0,671 0,455 0,873 1,287 1,201 1,028

Car 0,671 0,75 0,529 0,26 1,783 0,465

Coach
Train 0,427 0,382 0,474 0,558 0,42 0,502

Car 0,427 0,382 0,474 0,558 0,42 0,502

Car
Train 0,746 0,801 0,663 0,497 0,631 0,613

Coach 0,746 0,801 0,663 0,497 0,631 0,613

Cross-cost elasticities

Train
Coach 0,293 0,158 0,465 0,83 0,553 0,57

Car 0,293 0,32 0,242 0,139 0,578 0,223

Coach
Train 0,224 0,2 0,257 0,324 0,205 0,275

Car 0,224 0,2 0,257 0,324 0,205 0,275

Car
Train 0,559 0,605 0,517 0,416 0,46 0,48

Coach 0,559 0,605 0,517 0,416 0,46 0,48
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around which the slope of the probability function is steep. The Student dis-

tribution with low degrees of freedom is able to capture the threshold value at410

which probability changes are abrupt but cannot capture the more subtle change

in probabilities. When unobserved heterogeneity is controlled, a model with an

asymmetric distribution stands out. Indeed, with design Z(3), the Gumbel cdf

provides good results probably because of its asymmetric shape.

Conclusion415

Usual economic outputs (VoT, TEC, marginal effects and elasticities)

have been theoretically described for the family of reference models. Reference

models allow the analyst to derive economic outputs with formulas generalizing

those derived with the MNL. For the particular case of the reference model

using the logistic cdf, the formulas are those described in the literature; see420

Appendices C and D.

Estimations of references models on a real dataset describing travel

mode choices show that the MNL is outperformed by other reference models.

The choice of an appropriate cdf, in particular when the data contain high

unobserved heterogeneity.425

The heterogeneous results observed between cdfs, and in particular the

differences in results between the MNL and the best performing reference mod-

els, have operational impacts. First, depending on the chosen cdf, practitioners

will not retain the same variables as leverage of public policies. Second, eco-

nomic outputs, like willingness-to-pay indicators or elasticities, are routinely430

used in economic models such as cost-benefit analyses or demand forecasting

models, which are, in turn, used to derive public policies.

A first avenue for future research is to select the best cdf. On our

dataset, the Student cdf is one of the two best cdfs for all three designs and

is the more robust to unobserved heterogeneity. Using both individual and435

alternative specific variables, the Gumbel cdf provides good results because of

its asymmetric shape. It would therefore be interesting to test the non-central
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Student distribution, defined with two parameters: one for the heavy/thin tails

and the other for the asymmetry. In order to propose a better comparison of

the different reference models, a large simulation study would be appropriate,440

using cross-validation to select the best cdf. More generally, future research

should test reference models on SP, RP and Montecarlo simulated datasets to

investigate the performance of the models in different contexts.

A second avenue concerns the choice of the reference alternative. A

change of the reference alternative would impact the model fit. Modeler has445

to test combinations of cdfs and reference alternatives to find the best model

fit. Invariance properties under permutations of response categories are stud-

ied in [14]. Furthermore, evidence from the economic literature shows that the

alternatives chosen as a reference by the decision-makers are certainly not ho-

mogeneous across the population [37]. It would thus be relevant to use a model450

in which different groups of people would have different reference alternatives.

One could consider a mixture model with J components corresponding to the

J alternatives (in other words, a latent class model). Each individual would

be affected to one component, i.e. having one specific alternative as reference.

Such an extension is described in [23], Chapter 8 (Section 8.3.3, p. 279).455

Finally, the usual extensions of the MNL, such as the mixed logit model

or the nested logit model, can also be developed for reference models. The first

extension is straightforward using the GLM framework. The second extension

is described by [38] for the case of nested alternatives, but economic outputs

should still be studied.460

Appendix A. Normalization of parameters via the cdf F

The first condition F (0) = 1/2, which states that the median is null, is

necessary to keep the alternative-specific constant αj interpretable. Assume that

variables x and ω have the same effect on alternative j with respect to the refer-

ence alternative J , i.e., δj = 0 and ωj = ωJ . Therefore, the ratio of probabilities465

only depends on the alternative-specific constant πj/πJ = F (αj)/{1 − F (αj)}
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and the null hypothesis H0 : αj = 0 is thus equivalent to the equality be-

tween probabilities πj and πJ . Testing the significance of the alternative-specific

constant αj is therefore equivalent to testing the significance of the difference

between the probabilities πj and πJ . Note that the condition F (0) = 1/2470

is already satisfied for symmetric distributions (e.g., logistic, normal, Laplace,

Cauchy) and has to be imposed for non-symmetric distributions (e.g., Gumbel

and Gompertz).

For the second condition, F (b) = eb/(1 + eb), the choice of b is more

debatable. Using b = 1 seems natural but other values could be used to calibrate

the different cdfs F , such as the quantile of the logistic distribution b = qp

for some probability p 6= 1/2. For each probability p 6= 1/2, we obtain the

normalized space Fqp = {F ∈ F : F (0) = 1/2, F (qp) = p}. The logistic, normal,

Laplace, Cauchy, Gumbel and Gompertz cdfs F ∈ Fqp are represented in Figure

.2 for the three cases q0.73 = 1, q0.95 ' 2.94 and q0.99 ' 4.6. In terms of location

and scale parameters, we have Fm0,s0 ∈ Fqp if
m0 = − F−1(1/2) · qp

F−1(p)− F−1(1/2)
,

s0 =
qp

F−1(p)− F−1(1/2)
.

(.1)

After transformation, the new parameters are α′j = (αj − m0)/s0,

δ′j = δj/s0 for j = 1, . . . , J − 1 and γ′ = γ/s0. The location m0 implies a475

translation only of alternative-specific parameters whereas the scale s0 impacts

all the parameters. It should therefore be borne in mind that, even if the pa-

rameters are more interpretable after normalization, the best way to compare

results obtained with different models is to compare ratios of slopes which stay

the same for all normalizations (e.g., γ′time/γ
′
cost = γtime/γcost). Moreover, if480

the distribution F is symmetric, then m0 = 0 for all normalizations
(
Fqp
)
p 6=1/2

and thus the ratios of alternative-specific constants also stay the same (i.e.,

α′j/α
′
k = αj/αk for different alternatives j and k).
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Figure .2: Normalized cdf F ∈ Fqp with scales (A) q0.73 = 1, (B) q0.95 = 2.94 and (C)

q0.99 = 4.6 using the logistic (black), normal (blue), Laplace (green), Gumbel (cyan), Gom-

pertz (magenta), Cauchy (red), Studentν=0.5 (dashed red line) and Studentν=0.05 (dotted red

line) cdfs.
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Appendix B. The case of Student distribution

The proposed method is to estimate the (reference, Studentν , Z) mod-485

els among a grid of df values and to choose the value ν̂ that maximizes the

loglikelihood. We propose to use the following grid: ν = 0.05∗ i for i = 1, . . . , 40

(small value between 0 and 2) and ν = 3, . . . , 20. The results clearly favor the

assumption of loglikelihood concavity; see Figure .3. Knowing that the Student

distribution converges towards the Normal distribution when ν → ∞, we note490

that the maximum loglikelihood value obtained with the (reference, Studentν ,

Z(i)) model converges towards those obtained with the (reference, Normal, Z(i))

model when ν →∞. It could also be noted that the closer ν̂ is to 0, the higher

the gain in loglikelihood obtained with the Studentν̂ distribution in comparison

to the normal and logistic distributions; see Figure .3B and .3C to compare495

the case ν̂ = 0.35 and ν̂ = 1.9. Normal and logistic distribution are unable to

capture the abrupt change in probability obtained thanks to the heavy tails of

the Studentν distribution for small values of ν.

Appendix C. Willingness to pay

Proof of Property 1500

The WTP is the value ∆cj0 such that π′j = πj for all alternatives

j = 1, . . . , J after the transformation ω′j0 = ωj0 +1 for the specific alternative j0

(the cost is transformed as c′j0 = cj0 + ∆cj0). As the link function of a reference

model is a surjective map from the simplex to RJ−1, for any cdf F ∈ F, the

equalities between the J probabilities π′j = πj is equivalent to the equalities505

between the J − 1 predictors η′j = ηj . The two cases j0 6= J and j0 = J

are presented. If j0 6= J , only the predictor η′j0 is impacted by the change

ω′j0 = ωj0 + 1 and we have

η′j0 = ηj0

⇔ γωω′j0 + γcostc′j0 = γωωj0 + γcostcj0

⇔ γω + γcost∆cj0 = 0
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Figure .3: Loglikelihood of (reference, Studentν , Z(i)) models for ν ∈ (0, 20] (blue points),

(reference, normal, Z(i)) model (blue horizontal line) and (reference, logistic, Z(i)) model

(dark horizontal line) on the real dataset with (A) i = 1, (B) i=2 and (C) i = 3.
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If j0 = J all the J−1 predictors are identically impacted by the change ω′j0 and

we obtain the same result. Finally, the WTP is given by

WTP = − γω

γcost
.

Proof of Property 2510

The VoT is the value ∆cj0 such that π′j = πj for all alternatives

j = 1, . . . , J after the transformation of the time t′j0 = tj0 + 1 for the spe-

cific alternative j0 (the cost is transformed as c′j0 = cj0 + ∆cj0). As previously,

the two cases j0 6= J and j0 = J are presented. If j0 6= J , only the predictor

η′j0 is impacted by the change t′j0 = tj0 + 1 and we have (the linear predictor515

contains the interaction between time and comfort)

η′j0 = ηj0

⇔ γtimet′j0 + γtime×comft′j01comf=1 + γcostc′j0 = γtimetj0 + γtime×comftj01comf=1 + γcostcj0

⇔ γtime + γtime×comf1comf=1 + γcost∆cj0 = 0

If j0 = J all the J − 1 predictors are identically impacted by the change t′j0 and

we obtain the same result. Finally, the VoT is given by

VoT = −γ
time + γtime×comf1comf=1

γcost
.

The TEC is obtained using a similar calculation.

Appendix D. Marginal effects calculation520

Proof of Property 3

For the sake of simplicity, we denote by ωj the value of only one

alternative-specific variable, such as the time for instance. The marginal ef-

fect of a change in ωj on the probability of choosing the alternative i is given
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by

mei(ωj) =
∂πi
∂ωj

,

=
∂η

∂ωj

∂πi
∂η

,

mei(ωj) =
∑
k 6=J

∂ηk
∂ωj

∂πi
∂ηk

, (.2)

for all i ∈ {1, . . . , J}. On one hand, we have ηk = αk + xT δk + (ωk − ωJ)γ for

k 6= J and thus
∂ηk
∂ωj

= γ
{
1(j=k) − 1(j=J)

}
,

for k 6= J and all j = 1, . . . , J . On the other hand, recall that for i 6= J and

j 6= J

∂πi
∂ηj

= djCov(Yi, Yj),

∂πi
∂ηj

= djπi
{
1(i=j) − πj

}
, (.3)

where dj = f(ηj)/[F (ηj){1−F (ηj)}] and Yj is the indicator variables (equal to

1 if j is the chosen alternative and 0 otherwise) for j 6= J ; see Supplementary

Material of [14] for further details. Because of the constraint πJ = 1−∑i 6=J πi,

it follows that for j 6= J

∂πJ
∂ηj

= −
∑
i 6=J

∂πi
∂ηj

,

= −dj

πj − πj∑
i 6=J

πi

 ,

= −dj {πj − πj(1− πJ)} ,
∂πJ
∂ηj

= −djπjπJ ,
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which means that equation (.3) holds for j 6= J and all i = 1, . . . , J . Finally,

the equality (.2) becomes

mei(ωj) = γ

1(j 6=J)
∂πi
∂ηj
− 1(j=J)

∑
k 6=J

∂πi
∂ηk


mei(ωj) = γπi

1(j 6=J)dj
{
1(i=j) − πj

}
− 1(j=J)

1(i6=j)di −
∑
k 6=J

dkπk




for all i = 1, . . . , J and all j = 1, . . . , J and thus the desired result is proved.

The special case of the logistic cdf

The special case of the logistic cdf F (η) = eη/(1+eη) is here presented.

It should be noted that f = F (1−F ) in this case and thus dj = 1 for all j 6= J .

For alternative-specific variables, we obtain

mei(ωj) = γπi
[
1(j 6=J)

{
1(i=j) − πj

}
− 1(j=J)

{
1(i 6=j) − 1 + πJ

}]
,

and thus mei(ωj) = γπi
{
1(i=j) − πj

}
which is the usual result obtained for

the conditional and multinomial logit models [see 39, p. 723]. The elasticities525

are given by ei(ωj) = γωj
{
1(i=j) − πj

}
. The equality between cross elasticities

ei(ωj) and ei′(ωj) is here true for all j = 1, . . . , J , as expected.

Invariance of economic outputs under normalization

The VoT, TEC are clearly invariant a normalization of the cdf since

they are calculated as ratios of parameters that are only rescaled γ′ = sγ.

Otherwise, the probabilities πj stay unchanged since Fm,s(η
′
j) = F (ηj) for j 6= J

by definition. Now, let us show that marginal effects are not impacted by a

normalization even if they are depending on the d1, . . . , dJ−1 quantities; see

Property 3. First let us remark that

fm,s(z) =
∂

∂z
Fm,s(z)

=
∂

∂z
F (
z −m
s

)

fm,s(z) =
1

s
f(
z −m
s

)
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and thus fm,s(η
′
j) = f(ηj)/s, which implies that d′j = dj/s for j 6= J . After

normalization the marginal effects become:

me′i(ωj) = γ′πi

1(j 6=J)d
′
j

{
1(i=j) − πj

}
− 1(j=J)

1(i 6=j)d
′
i −

∑
k 6=J

d′kπk


 ,

=
γ′

s
πi

1(j 6=J)dj
{
1(i=j) − πj

}
− 1(j=J)

1(i 6=j)di −
∑
k 6=J

dkπk


 ,

me′i(ωj) = mei(ωj),

since γ′ = sγ, and thus the desired result.

Supplementary material530

Supplementary material available at ... online includes an example of

choice question from the stated preferences survey; a non-exhaustive overview

of DCMs; the results of the test defined by [26]; simulated value of time and

time equivalent of comfort; a figure with the own-time elasticities; the weighted

cross-elasticities.535
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[38] J. Peyhardi, C. Trottier, Y. Guédon, Partitioned conditional generalized630

linear models for categorical responses, Statistical Modelling 16 (4) (2016)

297–321.

[39] W. H. Greene, Econometric Analysis, 5th Edition, Pearson Education, New

York, 2003.

[40] I. Krinsky, A. L. Robb, On approximating the statistical properties of elas-635

ticities, The Review of Economics and Statistics (1986) 715–719.

41




