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On a class of optimization-based robust estimators

Laurent Bako

Abstract—We consider in this paper the problem of estimating a
parameter matrix from observations which are affected by two types of
noise components: (i) a sparse noise sequence which, whezremonzero
can have arbitrarily large amplitude (ii) and a dense and bounded noise
sequence of "moderate” amount. This is termed a robust regrssion
problem. To tackle it, a quite general optimization-based famework
is proposed and analyzed. When only the sparse noise is presea
sufficient bound is derived on the number of nonzero elementin the
sparse noise sequence that can be accommodated by the estionavhile
still returning the true parameter matrix. While almost all the restricted
isometry-based bounds from the literature are not verifiabe, our bound
can be easily computed through solving a convex optimizatioproblem.
Moreover, empirical evidence tends to suggest that it is genaly tight.
If in addition to the sparse noise sequence, the training dat are affected
by a bounded dense noise, we derive an upper bound on the esttion
error.

I. INTRODUCTION

magnitude. The nonzero elements of that sequence are usually
termed gross errors or outliers. They can account for possible
intermittent sensor faults. We will refer tof; } as the sequence

of sparse noise.

For the time being, these are just informal descriptions of the
characteristics of the sequencgf} and {e:}. They will be made
more precise whenever necessary in the sequel for the need of stating
more formal results.

Let Y € R™¥" and X € R™"Y be data matrices formed
respectively withV output measurements and regressor vectors. Then

it follows from (1) that
Y =A°X +E+F, (2)

whereE € R™*Y andF € R™*" are unknown noise components.
The matriced” and X can be structured or not, depending on whether

In many engineering fields such as control system design, sigHaf System (1) is dynamic or not. For example, when the model
processing, machine learning or statistics, one is frequently cdd) is of MIMO FIR type,}” contains a finite collection of output
fronted with the problem of empirically uncovering a mathematican€asurements whil&' is a Hankel matrix containing lagged inputs
relationship between a number of signals of interest. The us@§ithe system. In this casg and X' take the form

method to achieve this goal is to run an experiment during which

one measures (a finite number of) samples of the relevant signals
and proceed with fitting a certain model structure to the experimental
data samples. This process is known as system identification [11],

[19]. A issue of critical importance during this process is that the

experimental data samples might be contaminated by a measurement
noise of relatively high level due for example to intermittent sensor,
failures or various communication disruptions. To cope with the
troublesome effects of the noise, the model estimation must

designed with care.

In this paper we consider the situation where the data are corrup
by two types of noise: a sparse noise sequence which shows up dRélevant prior works.

Y=[yn v yn] .
U1 u2 UnN
Uuo U1 UN -1
X =
ul_nf UQ—nf uN—nf

where{u.} and{y: } stand respectively for the input and output of the
stem and the maximum lag; is called the order of the model.
n the sequel, the notations of the type and z; with subindex
le 12 {1,...,N} refer to the columns o¥ and X respectively.

The so formulated regression problem is

intermittently in time but can take on arbitrarily large values whenevealled a robust regression problem in connection with the fact that
it is nonzero; and a more standard dense noise component of te@dettge error matrix ' assume columns of (possibly) arbitrarily large

amount.

Il. THE ROBUST REGRESSION PROBLEM
Consider a system described by an equation of the form

yr = A%xe + fr + e 1)

wherey, € R™ andz; € R" are respectively the output and th
regressor vector at timg A° € R™*™ is an unknown parameter

matrix; f; ande; are some noise terms which are unobserved.

Problem. Given a finite collection{z;, .}, , of measurements

amplitude. It has applications in e.g., the identification of switched
linear systems [1], [15], [14], subspace clustering [2], etc. Existing
approaches for solving the robust regression problem can belyough
divided into two groups: methods from the field of robust statistics
[17], [12], [9] which have been developed since the early 60s and
a class of more recent methods inspired by the compressed sensing
gharadigm [3], [4], [18], [21], [13]. The first group comprisegthods
such as the least absolute deviation (LAD) estimator [8], the least
median of squares [16], the least trimmed squares [17], the family
of M-estimators [9]. The latter group can be viewed essentially as
a refreshed look at the so-called least absolute deviation method.

obeying the relation (1), the robust regression problem of intereISII1ere has been however a fundamental shift of philosophy in the

here is the one of finding an estimate of the parameter matfix
under the assumptions thgt, } and{ f:} are unknown but enjoy the

following (informal) properties:

analysis. While in the framework of robust statistics, robustness
of an estimator is measured in terms of the breakdown point (the
asymptotic minimum proportion of points which cause the estimation

« {e:} is a dense noise sequence with bounded elements accofor induced by an estimator to be unbounded if they were to be
ing for moderate model mismatches or measurement noise. arpjitrarily corrupted by gross errors), in the compressed-sensing-
« {/:} is such that the majority of its elements are equal to zefaspired category of robust methods, the analysis aims generally at
while the remaining nonzero elements can be of arbitrarily largéaracterizing properties of the data that favor exact recovery of the
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true parameter matri¥l°. In this latter group, the LAD estimator is
sometimes regarded as a convex relaxation of a combinatorial sparse
optimization problem.



To the best of our knowledge, only the papers [18] provides dar a real number, |z| will denote the absolute value of.
explicit bound on the estimation error induced by the LAD estimato®ubmatrices and subvectoiset X € R™*Y andI = {1,...,N}
However that bound does not fully apply to the current setting sinbe the index set for the columns &f. If I C I, the notationX
the estimators although similar are of different natures. Indeed, ttienotes a matrix ifR™*!!! formed with the columns of{ indexed
LAD estimator stands only as a special case of the current framewdoly. 7. We will use the convention that; = 0 € R™ when the index
Moreover the bound in [18] is not easily computable while ours iset] is empty.
The references [4] and [13] provide some bounds for a noiseeawa
version of the LAD estimator which are based respectively on the
Restricted Isometry Property (RIP) and a measure of subspacesangle
Unfortunately numerical evaluation of those bounds is a process of-et D be the set ofV data points generated by system (1) for
exponential complexity, a price that is unaffordable in practice. ~a@ny possible values of the noise sequences, i.e.,

A related but different problem from the regression problem _ mxN nxN
considered here is that of sparse signal recovery studied in the field of Dy = {(Y’ X)eR xR ’
compressed sensing [5], [7]. This is about finding the sparsesi@olu (B, F) € G% x gl{“ 2) holds} ,
to an underdetermined set of linear equations. Various analysis
approaches have been devised which rely on the RIP constant, wigh G5, ¢ R™*Y and ngv c R™*N denoting the set of dense and
mutual coherence, the nullspace property, to name but a few. Agaparse noise matrices respectively. The estimation problem aims at
these analysis results either cannot be extended efficiently to thetermining the unknown parameter matrf given a point(Y, X)
robust regression problem or lead to bounds that are NP-hardindDy. Of course, this quest would not make much sense if the noises
compute [20], [10], [6]. E and F were completely arbitrary since in this case, we would have

Contributions. In this paper we propose and analyze a class &~ = R™"" xR"*™ hence losing any informativity concerning the
optimization-based robust estimators. It is shown that the robust préfgta-generating system. Therefore some minimum constraints need to
erties of the estimators are essentially inherited from a key propeR§ put onE and F' as informally described above.

of the to-be-optimized performance function (or loss function) calle@/ith respect to the estimation problem just stated, an estimator is a
column-wise summability. The proposed framework admits the LABEt-valued mag : Dy — Z(R™*"), (Y, X) — ¥(Y, X) which is
estimator and its usual variants as special cases. Moreover it appfigfined from the data spadey to the power set”’(R™*") of the

to both SISO and MIMO systems. When the dense noise componBAfameter space. F¢¥’, X) generated by a system of the form (1),

E in (2) is identically equal to zero, we derive bounds on the numb@Re would like to design an estimator achieving, whenever possible,
of gross errors (nonzero columns BY that the estimator is able to the ideal property tha (Y, X) = {A°}. In default of that ideal
accommodate while still returning the true parameter matfix In  Situation, a more pragmatic goal is to search fob &o thatA? €
comparison with the existing literature, the proposed bounds have tHheY, X) and ¥(Y, X) is of small size in some sense despite the
important advantage that they are numerically computable througjublesome effects of the unknown noise componditand F'.
convex optimization. When botE and F are active, exact recovery The design of an optimal estimator requires specifying a performance
of the true parameter matrix is no longer possible. In this scenario, #ilex (usually called a loss function) which is to be minimized.
derive upper bounds on the parametric estimation error in function!n this paper, we study the properties of the estimator of the
of the amplitude ofE and the number of nonzero columns Bf Parameter matribA® in (2) defined by

Again, cpmputable but (possibly) looser versions of those bounds U(Y, X) = argmin (Y — AX) 3)

are obtainable. AERmXn

The current paper can be viewed as a generalization of Where , : M (R) — R, is aconvex functiordefined on the set
previous work reported in [3]. While [3] provides an analysis of n

. . i A M (R) of (all) real matrices. It is assumed thathas the following
mostly a single estimator (namely the LAD estimator) relying OBropertieS'
nonsmooth optimization theory, we focus here on a much larger )

class of optimization-based robust estimators by highlighting sorhe- For allB,¢ e M

Ill. A CLASS OF ROBUST ESTIMATORS

(R) of compatible dimensions,

key robustness-inducing.properties. Mpreover, we p.rovide, fqr the o([B C]) = p(B)+ ¢(C) 4
considered class of estimators, stability results which permit the ) ) )
estimation of parametric error bounds. with [B C] denoting the matrix formed by concatenating

Outline. The rest of the paper is organized as follows. Sectio, column-wise3 and C'.
' pap g ' 2. There exists a matrix norfi: M (R) — R> such that for all

Il defines the_optlmlza_ltlon-based approach to the robust regression B,C € M (R), conformable for addition,
problem. Section IV discusses the properties of the proposed esti-
mation framework. Section V provides further comments. Section p(B) < p(B-C)+¢C) (5)
VI reports some numerical experiments. Lastly, Section VI contairg3

. . i >
some concluding remarks. There exists a constant real numher> 0 such that for all

. . . B € M (R) with n rows andN columns,
Notations. R is the set of real number®>, (respectivelyR~o)

is the set of nonnegative (respectively positive) real numbé$'; UB) — |IZ(B)|e < ¢(B) < ¢(B) (6)
is the space ofV-tuples (vectors) of real numbers. For any vector where

is defined byl||z|, = (X, |xi|p)1/p. A special case is the limit

casep = oo in which |[z|| . = max,—1,~ |z|. For any matrix and |I¢(B)| is the cardina_lity off¢(B) andb; € R" is theith
A=[ar -+ ap]with a; € R™, the inducedp-norm of A is column of the(n, N')-matrix B.
defined by|[Al[, = SUD, RN o], =1 | Az, The property (4) will be called column-wise summability. Sincés

Cardinality of a finite setThroughout the paper, whenev8ris a a function defined over the space of real matrices of any dimensions,
finite set, the notatiofS| will refer to the cardinality ofS. However, it is also defined fom-dimensional vectors of real numbers. Hence



according to property (4), ifB
vectorsb; € R", then

bn] with column

The so-defined functiop is not necessarily a norm. For aay > 0
and any vector nornd’, it can be verified that the functiop defined

by

¢(B) = Zmax(o,é"(bi) ) 7)

{A} = argming ¢(Y — HX) which means thatp(Y — AX) <
o(Y — HX) for any H € R™*™, H # A. In particular, by taking
H =0 we getp(Y — AX) < o(Y). It follows from the property
(4) that

e(Yie — AXpe) + (Yo — AXj0) < (Yie) + ¢(Yo).

Using now the relationsY;e = 0 and Yo = AX;o yields
©(AXr1e) < o(AX;0) or, equivalently,p(AXre) < 1/2p(AX).
Eq. (9) then follows from the fact thdt® and A are arbitrary.

(ii) = (i): To begin with, note that if Eq. (9) holds for sornag then
it holds also for anydy < d. As a result, the equality/°| = d

is positive and convex and satisfies properties (4)-(6) but it is niot (9) can be changed tg¢| < d. Assuming (ii), letA € R™*"

a norm fore® > 0 since in this casep(B) = 0 does not imply
that B = 0. But if > = 0 in (7), thenp = £ by (6) so thaty
corresponds to the matrix norm defined pyB) = S ¢°(b;).

We note in this latter case that (6) is trivial while (5) reduces to the

triangle inequality.
We will show in the sequel that the estimatdr in (3) enjoys

andY € R™*Y be matrices satisfyingl°(Y — AX)| < d. Set
I° =T°(Y — AX) andI° = I\ I°. Then for allA € R™*" such
that A 0,

20(AXre) < p(AX) = p(AXie) + p(AX o),
where the equality is obtained by the property (4)oflt follows

some impressive robustness properties with respect to the sparse nbist

matrix F'. The term sparse is used here to mean that a relatively
large proportion of the column vectors &f are equal to zero. And

saying that¥ is robust with respect t¢" means that? (Y, X) does

P(AXre) <@(Yio — (A+A)X o).
On the other hand, we know by (5) that

(10

not depend on (or is insensitivz_e to) the_ magnitudes of the nonzero  (vre — AX e)—p(Yie — (A + A)Xre) < o(AXfe).
columns of ' under the sparsity condition. Therefore those few . . _ . .
columns which are nonzero can have arbitrarily large magnitude®mbining with the inequality (10) yields

As will be shown in the sequel, the robustness propertie¥ afre
inherited from the properties P1-P3 of the objective functioin the

oY — AX) < o(Y — (A+ A)X).

special case whergis a norm, the properties P2-P3 are automaticallinceA is an arbitrary nonzero matrix, this inequality says tHas
satisfied so that P1 becomes the only key property required. AstRg unique minimizer oV’ (H) = ¢(Y — HX). _ u
the convexity ofy, it is intended just for computational reasons a§onsider a data paifY, X) generated by (1). By letting

it eases the solving of the optimization problem in (3).

IV. PROPERTIES OF THE ROBUST ESTIMATORS
A. Exact recoverability

7, (X) = max {d : Eq. (9) holdg,

v (11)
and assuming thatr;,(X) > 0 we can see that whenever
[I°(Y — A°X)| < 7 (X), A° can be exactly recovered by com-

puting ¥ (Y, X). Of course this is likely to hold only if the dense

We first study the conditions under which the true parameter matii%ise component does not exist. So in the situation whefte= 0,
A?in (1) can be exactly recovered. Theorem 1 and Theorem 2 sta{gd theorem says thatt® can be uniquely obtained by convex

next show that if the number of nonzero columns in the matfig
E + F is less than a certain threshold, thédY, X') = {A°}.

Theorem 1 (A necessary and sufficient conditionket ¢ be a
function satisfying4)-(6) with e = 0 and ¥ be defined as if3). Let
d be an integer and assume thaink(X) = n. For any A € R™*"
andY € R™N letl° (Y — AX) = {t € 1 : ¢, — Az # 0}. Then
the following statements are equivalent.
0]
VA e R™", VY e R™N |I°(Y — AX)| < d

8
= YUY, X)={A} (®)
(ii)
[ [ p(AXpe)] 1
mac mox |Z0E <@
[1¢]=d " "A#0
Here and in the following, the notatioch= {1,..., N} is used to

denote the index set for the columns of the data matrices.

Proof: We first note that the rank assumption &nis intended
to insure that (9) is well-defined since then, withbeing a norm,
»(AX) # 0 wheneverA # 0.

(i) = (ii): Assume that (i) holds.

Consider an arbitrary subsét of I such that|/°| = d. Let A be
any matrix inR™*™ satisfying A # 0. Finally, consider a matrix
Y € R™*Y defined byY;e = 0 andY;o = AX ;0 wherel® =T\ I°.
ThenI®(Y — AX) C I° and so|I°(Y — AX)| < d. Hence by (i)

optimization provided that the number of outliers (nonzero columns
of F) is less than or equal ta(X). For the condition of exact
recoverability to be checkable we must be able to compiiteX).

The bad news are that evaluating numerically such a number is likely
to be NP-hard in most cases.

In the sequel, we investigate sufficient conditions of exact recovery
which are more tractable from a numerical standpoint. For this
purpose let us introduce some definitions.

Definition 1. A matrix X = [z1 rn] € R™*Y is said to be
self-decomposableifink(X) = n and for allk € I, z, € im(X k)
where X, £ Xy (1} is the matrix obtained fronX by removing
its k-th column andim(-) refers to range space.

For a matrix to be self-decomposable it is enough Kay, be full
row rank for anyk € I. Achieving this condition in practice seems
easy provided that the numbé&f of measurements is large enough
compared to the dimensiam of X.

Definition 2 (self-decomposability amplitude)Let X € R™*¥ be
a self-decomposable matrix. We ca#lf-decomposability amplitude
of X, the number(X) defined by

&(X) =max min { el - 26 = X;,gkwc}. 12)

k€l ~peRN-1

The so-defined (X)) constitutes a quantitative measure of richness
(or genericity) of the regressor matriX. By richness it is meant
here how much, in a global sense, the columnsXofare linearly



independent((X) is expected to be small if the columns &f are  £(X) with the p-dependent numbef, (X) defined by

somehow strongly linearly independent.
0o (X) = max supM
Remark 1. If for somek the norm ofz;, was to be considerably v kel azo p(AXxy)

large in comparison to the norm qf the other cp_lumnsX),f_then when it is assumed that is a norm andrank(X ) = n for all k.
€(X) would get large hence reducing recoverability capacity of thg,ing 5o will give a less conservative condition for exact recovery.

considered class of estimators (see also @9). Such situations can However §,,(X) seems much harder to evaluate numerically than
be alleviated by normalizing each column Xf i.e., for example by £(X).

replacing (yx, xx) by (g, @x) = (yx/ ||zl , 2%/ ||zx]) under the

assumption that:, # 0 for all k£ € 1. Remark 3 (A few useful properties of(X)).

) For any nonsingular matrixk € R"*", {(RX) = £(X). It

follows that the numbeg(X) depends only on the subspace

spanned by the rows of the regressor matkix

« For any self-decomposabl¥ € R™*V, ¢(X) is lower-bounded
in the following sense

(16)

With the help of the device of self-decomposability amplitude (12
we can state a condition for exact recovery of the parameter matrix
A° by solving the optimization problem in (3). A similar result was
proven in [3] for the Least Absolute Deviation (LAD) estimator.

Theorem 2 (A sufficient condition for exact recovery)l et ¢ be a 1
function satisfying(4)-(6) with e = 0 and ¥ be defined as in3). §(X) > N_T’
Assume thatX is self-decomposable. Then the following statement . .
is true: This follows from the more general observation that
VA € R™", VY € R™Y, X) > max el
: 13) Rt S P
(Y — AX)| < T(&(X)) = (Y, X)={A}. >
1 1 for any vector nornj|-||. As a result,T'(¢(X) is upper-bounded
whereT : R~o — R is the function defined b (a) = 5(14—&). as follows
N

Proof: The proof is completely parallel to that of Theorem 11 T(E(X) = 9

in [3]. From the assumptions, eaaf, k € [, can beNv!ritten as &  Theorem 2 provides a sufficient condition for exact recovery in the
linear combination of the columns of .;. Letyx € R™™" be any  sjtyation where the functiop is a norm. Next, another condition is

vector satisfyingr, = X, It follows that for anyA € R™*™, stated which holds in the general case.
e(Azk) =o( > i) Proposition 1. Consider a triplet(y, £, ¢) satisfying (4)-(6). For
ten{k} AeR™™andY € R™*N posel® =T¢(Y — AX), I° =T\ I° =

with ... denoting the entry ofy, € RV~! indexed byt. Under 1t €1:y:— Az =0} and I£(AXp0) = {t€1°: {(Axy) > e}
the assumptions of the theorer,is a norm. So, it is positive and Then¥ (Y, X) = {A} if

satisfies the triangle inequality property. As a result we can write IT(AX )| e < L(AX o) — L(AXe) 17)
e(Az) <3 kel p(Aze) < il (P(AX) — p(Azy)) VA € R™X™ A £ 0.
t#£k
where the rightmost term follows from the property (4).af Since Proof: (Y, X) = {4} is equivalent to
this holds for anyy, such thatr, = Xk, it holds also for p(Y —AX) < oY — (A+ AN)X)
Nt = arg min{ [ Xiw}. for any A € R™*", A # 0. Using the definitions of the se#® and
YyERN 1 I¢ and applying property (4) op yields the equivalent relation
Hence, (Vi — AX1e) = p(Vie — (A+ A)X1e) < p(AX o).
mXn
o(Azk) < E(X) (p(AX) — o(Azk)) VE e LVAER . (14) By (5), we can note thap(Vie — AX1e) — o(Vie — (A+A)X7e) <
or equivalently, £(AXre). It then follows that
f(X) mxn E(AX[C) < @(AX 0)
Azgp) < ————p(AX) Vkel, VAeR . I
p(Azy) < 1+£(X)@( )

) ) is a sufficient condition forl(Y, X) = {A}. Finally, invoking (6)
Let I° be any subset of and posg/°| = d. Summing the previous ajlows us to observe that(AX ;o) — |IS(AX 0)|e < p(AX o)
inequality over the sef® yields which implies that¢(AX;e) < €(AX0) — [IS(AX 0)|e is a
o(AXe) 1 . sufficient condition for¥ (Y, X) = {A}. We have hence proved the
max < |19 (15) iti
220 o(AX) 27 (¢(X)) proposition. [ ]

Note that the term on the right hand side is well-defined since by the

self-decomposability assumptiomnk(X) = n which implies that B. Uncertainty set induced by dense noise
©(AX) # 0 whenever\ # 0. Therefore (9) holds if/°| < T'(£(X)) _ .
and the conclusion follows from Theorem 1. When both.E find F are nonzero in the data—generatlngxsnystem
It is worth noting that the threshol@(£(X)) on the number of @), ‘1/.(Y’X.) is likely .to be a non-.smgleton Sl.JbSEt oP(R )
correctable outliers does not depend pnHence this threshold is especially if we consider "’_1” possible reall_zatlons of the_ unknown
valid when the estimator is defined from any matrix norm Obeyinéor_nponentsE_and £.In this case the d_eswablg propertl_gs of the
). ¢ st|n_1ator are in default of better (|)_ that it contaiA$ and (!I) that _
its size with respect to some metric is as small as possible. In this
Remark 2. The statement of Theorem 2 still holds true if we replacgection we are interested in estimating the siz& (¥, X') when both




dense noiseZ and sparse nois€’ are active in the data-generatingUsing (6) gives

system (1). UEgo — A" Xgo) — |If] € — 6(A* Xs¢) < 9(Ego) < £(Esgo).

A notion of estimator gain. Similarly to the concept of system

gain in control [22], one could define the gain of an estimator, thilere we used the fact thdf (Eso — A" Xg0) is equal to the sef:
is, a quantitative measure of the sensitivity of the estimator wiiefined in the statement of the theorem.

respect to the perturbations affecting the measurements. Considé¥PRIYing the triangle inequality property of, it can be seen that
data pair(Y, X) generated by a system of the form (1) wittf £(A"Xs0) — £(Eso) < £(Eso — A"Xg0). Combining with the
being the parameter matrix sought for. Let us fix the sparse nofgVious inequality yields

ma_ltrix F or vievy it somehow as part of the data-gener_ating s_)_/stem. U(A* X g0) — L(A* Xge) < 20(Ego) + | IS .

This consideration proceeds from the fact tdatan be insensitive

to F (when acting alone) under, for example, the condition derivdédnally, it follows from the definition ofy,,q(X, S¢) in (21) that

in Theorem 2. LetE be bounded in the sense thtF) is finite c x c

with ¢ being the norm appearing in (6). Then weh?an)define a gain 7ea(X, S 17, < [20(Eso0) + L] ]

of the estimator with respect to the dense noise compoReiMore The condition (19) guarantees that (X, S¢) is well-defined and
specifically, an(¢, ¢)-gain of the estimato® with respect to the dense is positive. Hence the statement of the theorem is established

noise E may be defined by Theorem 3 constitutes an interesting stability result in that it
A" — A provides a finite upper bound on the distance freifh to the set

9e,q(Y,X)=  sup T)q (18) ¥(Y,X) as a function of the amplitude of the dense noise matrix
g;z‘l’E()ifo) E. It applies to any estimatob defined as in (3) withp a function
F sparse obeying (4)-(6). In particular, in the situation wheteis a norm (in

Here||-||, denotes matrix-norm. The so-defined numbegr,, (Y, X) gm;:f;f}:i can be taken equal to zero in (6)), the inequality in (20)

provides an upper bound on the distance from thels@t, X) to

A? in function of the amount of dense noise. The following theorem * o 2
. . . . A= A% < —————¥(Eqo). 22

and its corollaries show that if the number of nonzero columns in | ”q T qe,q4(X, S°) (Eso) (22)

[ is no larger than a certain threshold, then, (Y, X) exists and is |t , js defined as in (7) (which, recall, is not a norm) and if the

finite. dense noise matri¥ is such thatt°(e;) < ¢° for all ¢ € T, then

Theorem 3. Let (Y, X) be the data generated by systéh) subject PY takinge = ° the set/: defined in the statement of Theorem 3

to the noise component& and F. Consider a triplet (¢, ¢,c) Ccorresponds to the empty set so that (22) holds as well in this case.

satisfying (4)-(6). Let S° C I be a set such thaFgo = 0 and let N connection with the concept of estimator gain discussed earlier,

$° =T\ S°. Assume that the matriX and the partition(s°, §°) ~©One can interpret the factar/ye,q(X, S%) as an estimate of the gain

are such that there exists > 0 such that (of the estimatonl) with respect to dense noise.
e Lastly, it is interesting to see that whenis a norm, if E = 0
((AXg0) = €(AXse) > a|[All, VA € R™7, (19)  then the result of Theorem 3 implies thi{Y, X) = {A°} provided

with [|-||,, denoting some matrig-norm. (19) is true.

Then for anyA* € ¥ (Y, X), it holds that

N o 1 . V. DISCUSSIONS ON SOME SPECIAL CASES
A" =A%, < W[zewso) +IEle]  (20) _ _
Teq( Ry For the purpose of illustrating the extent of the results above, let

with' I¢ = I¢(Yso — A*Xgo) = {t € S : £(ys — A*z;) > ¢} and us discuss further the situation whepereduces to a norm.
U(AXg0) —£(AXse)

X,8% = inf 21 . L
Yea(X, ) AcRm X Al 1) A. Scenario when the loss function is a norm
A#0
. Corollary 1. Let (Y, X) be the data generated by systéty subject
where||-||, refers to matrixg-norm. to the noise componeni® and F. Let S° and S¢ be defined as in
Proof: By definition of ¥(Y, X)) in (3), the statement of Theorem 3. Assume thaés a norm i.e., it satisfies
. mxn (4)-(6) with e = 0.
p(Y —A'X) < oY -~ AX) VA €R If X is self-decomposable arjd“| < T'(¢(X)), then for anyA* €
By letting A = A — A°, A* = A* — A° and applying (2), the last ¥ (Y, X), X .
inequality takes the form |A" = A%[|, < B (IS7], X)p(Eso) (23)
O(F+E—-ANX)<p(F+E—AX)VA € R™*™, where
2
In particular, forA = 0, we getp(F + E — A*X) < o(F + E) Bpq(r, X) = N7 (24)
i X))l — —=
which, thanks to property (4) ap, takes the form Tp.q( )[ T(f(X))]
Fse + Ese — A" Xge)+¢(Ego — A" X
@(Fse + Es s¢)+o(Ego 50) 0o g(X) = inf o(AX) 25)
< @(Fse + Ese) + ¢(Ego). AZo A,
Now applying property (5) to the first member of the left hand side  Proof: The principle of the proof is to show that (X, S¢) is
and rearranging yields well-defined and then find a positive underestimate of it. Using the

property (4) ofey and the fact thatp = ¢, we can write

((AXg0) = €(AXse) _ 2p(AX) [1  p(AXse)
1The notationI¢ is used for simplicity reasons. A, N Al '

@(Ego — A* Xg0) — (A" Xsc) < p(Eg0).

2 p(AX)



On the other hand we know from the proof of Theorem 2 (see Eilpe algorithm proposed there can be affordable. Then by using our

(15)) that formula (24) and Remark 4 above, it is possible therefore to obtain
p(AXse) 1 15| a smaller bound on the estimation error.
p(AX) ~ 2T(E(X))
50 that B. Single output case’; nhorm
15| O(AX) _ 6(AXg0) — £(AXse) In this section, we discuss for an illustrative purpose, the appli-
1- < = bility of Theorem 3 to th f single-output systems. This i
TEX) | AT A cability of Theore o the case of single-output systems s is
q q

an interesting case to highlight since it represents the most classical

Taking now the infimum on both sides of the inequality symbol ovejituation. Consider the single-output system defined by
all nonzero matricegs € R™*" yields

15°] ye = (0°) "z + fi + e (26)
Te,q(X) {1 B T(g(X))] < ye,q(X, 5. wherey,, e, f: are scalars and, and#’ aren-dimensional vectors.
By letting Y = [y1 --- yn] € R™Y and definingE and F

It follows from the rank condition imposed oX (by the self-
decomposability assumption) that, ,(X) > 0. This shows that
ve,¢(X,S¢) is well defined and is strictly positive. Finally, since Y =(0°)' X+ F+E. (27)
» = £, invoking (22) gives the result.

Two important comments can be made at this stage.

similarly, we obtain

This last equation corresponds indeed to (2) where the matfix
reduces to the row vectai®) . In this case, if we letp(B) =

« First it is interesting to note that the bound, ,(r, X) is an SN 1t then for anyd € R™, the columns of (the row vector)
increasing function of(.X). Therefore it is all the smaller as y- fAX are scalars so that

&(X) is small. That is, the error bound will be small if the data
matrix X is rich enough.
« Second, %, 4(r, X) is a decreasing function of. This means
that the upper bound on the estimation error decreases when'&he
number of gross error columns ifi decreases. In the extreme S
case wherdS°| = N (no gross error) %, 4(|S°[, X) in (23)
reduces t@/o, 4(X).
Beyond these observations it should be noted that a key assumptiof@follary 2. Let (Y, X) € R"*Y x R"*" be generated by model
Corollary L is thatS°| < T'(¢(X)) with S° being the index set of the (26). Let S° = {t € T : f, # 0}, S° = I\ S°. Assume that
nonzero columns irf". Realizing this condition requires on the oneX is self-decomposable and“| < T'(£(X)). Then for anyd* e
hand that the number of nonzero columns in the sparse noise maig min ||Y — 67 X|| ,
F be small and on the other hand ti§&tX) be smaft (which means <"

N N
e(V =0TX)=> lye =0T, =D |y — 07| (28)
t=1 t=1

a result, U coincides in this case with the Least Absolute
Deviation (LAD) estimator. The following corollary specializes the
result of Theorem 3 to the LAD estimator.

that the data must be generic). Indeed this condition is not necessarily 16 —0°|, < ,%’1,2(\SO|, X) | Esoll,
as strong as it might appear to be at first sight. For example, it ca?|

be relaxed as follows. Observe that the séimt F' is not uniquely where 2

defined from model (2). Taking advantage of this, one can always Br2(r, X) = N—r 7’
absorb inE all nonzero columns o' whose magnitude does not 71,2(X) [1 - m]
exceed a certain level. To see this,let {t € S°: {(e; + fi) <e°} ”XTnH

wheree® = max:er £(e:). Then we can definds and F' such that o12(X) = inf ———L.

E+F = E+F andFgo,,; = Othatis, we seé, = fi+e; andf; = 0 20l

for anyt € I and (&, f:) = (e:, f:) otherwise. As a consequence, Again here the bound#, »(r, X) can be numerically overesti-
E and F in Corollary 1 can be replaced bl and F' respectively mated by following the idea of Remark 4.
so that|S| and|S¢| are replaced byS| + |I| and |[S¢| — |I|. The
condition of the corollary then becomg&’|—|1| < T'(£(X)), which _ _ _
is potentially easier to fulfill. The performance of the estimatdrhas been extensively tested in

) ) some existing papers in the special case of the LAD (see e.g., [3]) .
Remark 4 (sum of p-norms) Evaluating numerically the bound e therefore concentrate here on evaluating numerically an estimate
%, (r, X) might prove to be a hard problem due to the potentialt the gain of the estimator based on Corollary 1 and Remark 4. The
difficulty in computing the ternv,,(X) in (25). A particular  egtimation is carried out for the case whereonsists in the sum of
case of interest is whep consists of a sum op-norms of the o norms andy = 2. Four different cases are studied:

column vectors, i.e. when it is defined pyB) = 37, ||bi]], for (a) Static dataX € R2*2% is sampled from aSaussian distribu-

VI. NUMERICAL ILLUSTRATIONS

B=1by --- by] Inthis case if we takg = 2 in (23) and (25), tion \V'(0, I>) with zero-mean and identity-covariance.

itis easy to see that,/2 (XX ) < o,2(X) with A/ (-) denoting  (b) Dynamic data generated by switched linear systemX ¢

the square root of the minimum eigenvalue. Replaeipg (X ) with R?*200 s formed with the regressorg:_1,u:—1) generated
Al (XXT) in (24) yields an overestimate o, (r, X) which is by a switched linear system composed of 3 subsystems of
computable. order 1. This is a switched ARX system defined by =

Remark 5. Corollary 1 still holds true if one replaceE (¢(X)) with Qo (1) Yt—1Fbo @)Ut —1 .With th? syvitqhing sig.nadr(t) € {1,2, 3.}
¢ (X) defined in(11). As shown in [18], the number®, (X) in (11) geperatgd from a l.mn‘or.m qhstrybuﬂon and inpytbeing a white
is computable although at the price of a combinatorial complexity. ~ "°ise With Gaussian distributior{u1,b1) = (-0.40, ~0.15),

However if then-dimension ofX is small enough the complexity of (a27b2)_: (1.55, —2.10) and (a_3’b3) = (1, -0.65). .
(c) Dynamic data generated by lmear ARX systendefined by

2Recall thatT is a decreasing function hence implying tH&(¢ (X)) is Yt = a1ys—1 + brug—1 with the (a1, b1) defined above in case
large when¢(X) is small. (b).
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Fig. 1: An overestimate of3,, using respectivelyr(X) and T(£(X)) for a data matrixX € R***°°: (a) static data sampled from a
Gaussian distribution; (b) data generated by a switched system; (c) elatmated by a linear dynamic system ; (d) data generated by a
dynamic nonlinear system. In each case, the x-axis is limited to the rangenakro gross errors proportions which statisfy the stability
condition|S¢| /N < T'(¢£(X))/N (see e.g., Corollary 1).

(d) Dynamic data generated byrmnlinear NARX systerdefined the measurements we propose computable bounds on the parametric

by vi = (ye—1 +2.5)/(1 4+ 97 1) + ui—1. estimation error. By assuming stochasticity of the dense noise se-
Following Remark 1, the columns of all data matricEshave been duence, the obtained bounds are probably improvable by exploiting
normalized to uni2-norm before being processed. appropriately the statistics of the dense noise. This is a matter than

Figure 1 plots the obtained estimate of the estimator gain against @® be investigated in future research.

proportion of correctable outliers. As remarked in Section V, the gain

estimate increases as the proportion of outliers gets larger. But the ACKNOWLEDGEMENT
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