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On a class of optimization-based robust estimators
Laurent Bako

Abstract—We consider in this paper the problem of estimating a
parameter matrix from observations which are affected by two types of
noise components: (i) a sparse noise sequence which, whenever nonzero
can have arbitrarily large amplitude (ii) and a dense and bounded noise
sequence of "moderate" amount. This is termed a robust regression
problem. To tackle it, a quite general optimization-based framework
is proposed and analyzed. When only the sparse noise is present, a
sufficient bound is derived on the number of nonzero elementsin the
sparse noise sequence that can be accommodated by the estimator while
still returning the true parameter matrix. While almost all the restricted
isometry-based bounds from the literature are not verifiable, our bound
can be easily computed through solving a convex optimization problem.
Moreover, empirical evidence tends to suggest that it is generally tight.
If in addition to the sparse noise sequence, the training data are affected
by a bounded dense noise, we derive an upper bound on the estimation
error.

I. I NTRODUCTION

In many engineering fields such as control system design, signal
processing, machine learning or statistics, one is frequently con-
fronted with the problem of empirically uncovering a mathematical
relationship between a number of signals of interest. The usual
method to achieve this goal is to run an experiment during which
one measures (a finite number of) samples of the relevant signals
and proceed with fitting a certain model structure to the experimental
data samples. This process is known as system identification [11],
[19]. A issue of critical importance during this process is that the
experimental data samples might be contaminated by a measurement
noise of relatively high level due for example to intermittent sensor
failures or various communication disruptions. To cope with the
troublesome effects of the noise, the model estimation must be
designed with care.
In this paper we consider the situation where the data are corrupted
by two types of noise: a sparse noise sequence which shows up only
intermittently in time but can take on arbitrarily large values whenever
it is nonzero; and a more standard dense noise component of moderate
amount.

II. T HE ROBUST REGRESSION PROBLEM

Consider a system described by an equation of the form

yt = Aoxt + ft + et (1)

whereyt ∈ R
m and xt ∈ R

n are respectively the output and the
regressor vector at timet; Ao ∈ R

m×n is an unknown parameter
matrix; ft andet are some noise terms which are unobserved.

Problem. Given a finite collection{xt, yt}
N
t=1 of measurements

obeying the relation (1), the robust regression problem of interest
here is the one of finding an estimate of the parameter matrixAo

under the assumptions that{et} and{ft} are unknown but enjoy the
following (informal) properties:

• {et} is a dense noise sequence with bounded elements account-
ing for moderate model mismatches or measurement noise.

• {ft} is such that the majority of its elements are equal to zero
while the remaining nonzero elements can be of arbitrarily large
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magnitude. The nonzero elements of that sequence are usually
termed gross errors or outliers. They can account for possible
intermittent sensor faults. We will refer to{ft} as the sequence
of sparse noise.

For the time being, these are just informal descriptions of the
characteristics of the sequences{ft} and {et}. They will be made
more precise whenever necessary in the sequel for the need of stating
more formal results.
Let Y ∈ R

m×N and X ∈ R
n×N be data matrices formed

respectively withN output measurements and regressor vectors. Then
it follows from (1) that

Y = AoX + E + F, (2)

whereE ∈ R
m×N andF ∈ R

m×N are unknown noise components.
The matricesY andX can be structured or not, depending on whether
the system (1) is dynamic or not. For example, when the model
(1) is of MIMO FIR type,Y contains a finite collection of output
measurements whileX is a Hankel matrix containing lagged inputs
of the system. In this caseY andX take the form

Y =
[

y1 y2 · · · yN
]

,

X =











u1 u2 · · · uN

u0 u1 · · · uN−1

...
... · · ·

...
u1−nf

u2−nf
· · · uN−nf











.

where{ut} and{yt} stand respectively for the input and output of the
system and the maximum lagnf is called the order of the model.
In the sequel, the notations of the typeyt and xt with subindex
t ∈ I , {1, . . . , N} refer to the columns ofY andX respectively.

Relevant prior works. The so formulated regression problem is
called a robust regression problem in connection with the fact that
the error matrixF assume columns of (possibly) arbitrarily large
amplitude. It has applications in e.g., the identification of switched
linear systems [1], [15], [14], subspace clustering [2], etc. Existing
approaches for solving the robust regression problem can be roughly
divided into two groups: methods from the field of robust statistics
[17], [12], [9] which have been developed since the early 60s and
a class of more recent methods inspired by the compressed sensing
paradigm [3], [4], [18], [21], [13]. The first group comprises methods
such as the least absolute deviation (LAD) estimator [8], the least
median of squares [16], the least trimmed squares [17], the family
of M-estimators [9]. The latter group can be viewed essentially as
a refreshed look at the so-called least absolute deviation method.
There has been however a fundamental shift of philosophy in the
analysis. While in the framework of robust statistics, robustness
of an estimator is measured in terms of the breakdown point (the
asymptotic minimum proportion of points which cause the estimation
error induced by an estimator to be unbounded if they were to be
arbitrarily corrupted by gross errors), in the compressed-sensing-
inspired category of robust methods, the analysis aims generally at
characterizing properties of the data that favor exact recovery of the
true parameter matrixAo. In this latter group, the LAD estimator is
sometimes regarded as a convex relaxation of a combinatorial sparse
optimization problem.
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To the best of our knowledge, only the papers [18] provides an
explicit bound on the estimation error induced by the LAD estimator.
However that bound does not fully apply to the current setting since
the estimators although similar are of different natures. Indeed, the
LAD estimator stands only as a special case of the current framework.
Moreover the bound in [18] is not easily computable while ours is.
The references [4] and [13] provide some bounds for a noise-aware
version of the LAD estimator which are based respectively on the
Restricted Isometry Property (RIP) and a measure of subspace angles.
Unfortunately numerical evaluation of those bounds is a process of
exponential complexity, a price that is unaffordable in practice.

A related but different problem from the regression problem
considered here is that of sparse signal recovery studied in the field of
compressed sensing [5], [7]. This is about finding the sparsest solution
to an underdetermined set of linear equations. Various analysis
approaches have been devised which rely on the RIP constant, the
mutual coherence, the nullspace property, to name but a few. Again,
these analysis results either cannot be extended efficiently to the
robust regression problem or lead to bounds that are NP-hard to
compute [20], [10], [6].

Contributions. In this paper we propose and analyze a class of
optimization-based robust estimators. It is shown that the robust prop-
erties of the estimators are essentially inherited from a key property
of the to-be-optimized performance function (or loss function) called
column-wise summability. The proposed framework admits the LAD
estimator and its usual variants as special cases. Moreover it applies
to both SISO and MIMO systems. When the dense noise component
E in (2) is identically equal to zero, we derive bounds on the number
of gross errors (nonzero columns ofF ) that the estimator is able to
accommodate while still returning the true parameter matrixAo. In
comparison with the existing literature, the proposed bounds have the
important advantage that they are numerically computable through
convex optimization. When bothE andF are active, exact recovery
of the true parameter matrix is no longer possible. In this scenario, we
derive upper bounds on the parametric estimation error in function
of the amplitude ofE and the number of nonzero columns ofF .
Again, computable but (possibly) looser versions of those bounds
are obtainable.

The current paper can be viewed as a generalization of our
previous work reported in [3]. While [3] provides an analysis of
mostly a single estimator (namely the LAD estimator) relying on
nonsmooth optimization theory, we focus here on a much larger
class of optimization-based robust estimators by highlighting some
key robustness-inducing properties. Moreover, we provide, for the
considered class of estimators, stability results which permit the
estimation of parametric error bounds.

Outline. The rest of the paper is organized as follows. Section
III defines the optimization-based approach to the robust regression
problem. Section IV discusses the properties of the proposed esti-
mation framework. Section V provides further comments. Section
VI reports some numerical experiments. Lastly, Section VII contains
some concluding remarks.

Notations. R is the set of real numbers;R≥0 (respectivelyR>0)
is the set of nonnegative (respectively positive) real numbers ;R

N

is the space ofN -tuples (vectors) of real numbers. For any vector
x = [x1 · · · xN ]⊤ ∈ R

N , thep-norm ofx with p ∈ {1, . . . ,∞}

is defined by‖x‖p =
(
∑N

i=1 |xi|
p )1/p. A special case is the limit

casep = ∞ in which ‖x‖∞ = maxi=1,...,N |xi|. For any matrix
A = [a1 · · · aN ] with ai ∈ R

m, the inducedp-norm of A is
defined by‖A‖p = supx∈RN ,‖x‖p=1 ‖Ax‖p.
Cardinality of a finite set.Throughout the paper, wheneverS is a
finite set, the notation|S| will refer to the cardinality ofS. However,

for a real numberx, |x| will denote the absolute value ofx.
Submatrices and subvectors.Let X ∈ R

n×N and I = {1, . . . , N}
be the index set for the columns ofX. If I ⊂ I, the notationXI

denotes a matrix inRn×|I| formed with the columns ofX indexed
by I. We will use the convention thatXI = 0 ∈ R

n when the index
setI is empty.

III. A CLASS OF ROBUST ESTIMATORS

Let DN be the set ofN data points generated by system (1) for
any possible values of the noise sequences, i.e.,

DN =
{

(Y,X) ∈ R
m×N × R

n×N :

∃(E,F ) ∈ Ge
N × Gf

N , (2) holds
}

,

with Ge
N ⊂ R

m×N andGf
N ⊂ R

m×N denoting the set of dense and
sparse noise matrices respectively. The estimation problem aims at
determining the unknown parameter matrixAo given a point(Y,X)
in DN . Of course, this quest would not make much sense if the noises
E andF were completely arbitrary since in this case, we would have
DN = R

m×N×R
n×N hence losing any informativity concerning the

data-generating system. Therefore some minimum constraints need to
be put onE andF as informally described above.
With respect to the estimation problem just stated, an estimator is a
set-valued mapΨ : DN → P(Rm×n), (Y,X) 7→ Ψ(Y,X) which is
defined from the data spaceDN to the power setP(Rm×n) of the
parameter space. For(Y,X) generated by a system of the form (1),
one would like to design an estimator achieving, whenever possible,
the ideal property thatΨ(Y,X) = {Ao}. In default of that ideal
situation, a more pragmatic goal is to search for aΨ so thatAo ∈
Ψ(Y,X) and Ψ(Y,X) is of small size in some sense despite the
troublesome effects of the unknown noise componentsE and F .
The design of an optimal estimator requires specifying a performance
index (usually called a loss function) which is to be minimized.

In this paper, we study the properties of the estimator of the
parameter matrixAo in (2) defined by

Ψ(Y,X) = argmin
A∈Rm×n

ϕ(Y −AX) (3)

whereϕ : M (R) → R≥0 is a convex functiondefined on the set
M (R) of (all) real matrices. It is assumed thatϕ has the following
properties:

P1. For all B,C ∈ M (R) of compatible dimensions,

ϕ([B C]) = ϕ(B) + ϕ(C) (4)

with [B C] denoting the matrix formed by concatenating
column-wiseB andC.

P2. There exists a matrix normℓ : M (R) → R≥0 such that for all
B,C ∈ M (R), conformable for addition,

ϕ(B) ≤ ϕ(B − C) + ℓ(C) (5)

P3. There exists a constant real numberε ≥ 0 such that for all
B ∈ M (R) with n rows andN columns,

ℓ(B)− |Icε(B)| ε ≤ ϕ(B) ≤ ℓ(B) (6)

where
Icε(B) =

{

i ∈ {1, . . . , N} : ℓ(bi) > ε
}

and |Icε(B)| is the cardinality ofIcε(B) and bi ∈ R
n is the ith

column of the(n,N)-matrix B.

The property (4) will be called column-wise summability. Sinceϕ is
a function defined over the space of real matrices of any dimensions,
it is also defined forn-dimensional vectors of real numbers. Hence
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according to property (4), ifB = [b1 · · · bN ] with column
vectorsbi ∈ R

n, then

ϕ(B) =
N
∑

i=1

ϕ(bi).

The so-defined functionϕ is not necessarily a norm. For anyεo ≥ 0
and any vector normℓo, it can be verified that the functionϕ defined
by

ϕ(B) =
N
∑

i=1

max(0, ℓo(bi)− εo) (7)

is positive and convex and satisfies properties (4)-(6) but it is not
a norm for εo > 0 since in this case,ϕ(B) = 0 does not imply
that B = 0. But if εo = 0 in (7), thenϕ = ℓ by (6) so thatϕ
corresponds to the matrix norm defined byϕ(B) =

∑N
i=1 ℓ

o(bi).
We note in this latter case that (6) is trivial while (5) reduces to the
triangle inequality.

We will show in the sequel that the estimatorΨ in (3) enjoys
some impressive robustness properties with respect to the sparse noise
matrix F . The term sparse is used here to mean that a relatively
large proportion of the column vectors ofF are equal to zero. And
saying thatΨ is robust with respect toF means thatΨ(Y,X) does
not depend on (or is insensitive to) the magnitudes of the nonzero
columns of F under the sparsity condition. Therefore those few
columns which are nonzero can have arbitrarily large magnitude.
As will be shown in the sequel, the robustness properties ofΨ are
inherited from the properties P1-P3 of the objective functionϕ. In the
special case whereϕ is a norm, the properties P2-P3 are automatically
satisfied so that P1 becomes the only key property required. As to
the convexity ofϕ, it is intended just for computational reasons as
it eases the solving of the optimization problem in (3).

IV. PROPERTIES OF THE ROBUST ESTIMATORS

A. Exact recoverability

We first study the conditions under which the true parameter matrix
Ao in (1) can be exactly recovered. Theorem 1 and Theorem 2 stated
next show that if the number of nonzero columns in the matrixV ,

E + F is less than a certain threshold, thenΨ(Y,X) = {Ao}.

Theorem 1 (A necessary and sufficient condition). Let ϕ be a
function satisfying(4)-(6) with ε = 0 andΨ be defined as in(3). Let
d be an integer and assume thatrank(X) = n. For anyA ∈ R

m×n

and Y ∈ R
m×N , let Ic (Y −AX) = {t ∈ I : yt −Axt 6= 0}. Then

the following statements are equivalent.

(i)

∀A ∈ R
m×n, ∀Y ∈ R

m×N , |Ic (Y −AX)| ≤ d

⇒ Ψ(Y,X) =
{

A
} (8)

(ii)

max
Ic⊂I:
|Ic|=d

max
Λ∈R

m×n

Λ 6=0

[

ϕ(ΛXIc)

ϕ(ΛX)

]

<
1

2
(9)

Here and in the following, the notationI , {1, . . . , N} is used to
denote the index set for the columns of the data matrices.

Proof: We first note that the rank assumption onX is intended
to insure that (9) is well-defined since then, withϕ being a norm,
ϕ(ΛX) 6= 0 wheneverΛ 6= 0.
(i) ⇒ (ii): Assume that (i) holds.
Consider an arbitrary subsetIc of I such that|Ic| = d. Let Λ be
any matrix inR

m×n satisfyingΛ 6= 0. Finally, consider a matrix
Y ∈ R

m×N defined byYIc = 0 andYI0 = ΛXI0 whereI0 = I\Ic.
Then I

c(Y − ΛX) ⊂ Ic and so|Ic(Y − ΛX)| ≤ d. Hence by (i)

{Λ} = argminH ϕ(Y − HX) which means thatϕ(Y − ΛX) <
ϕ(Y −HX) for any H ∈ R

m×n, H 6= Λ. In particular, by taking
H = 0 we getϕ(Y − ΛX) < ϕ(Y ). It follows from the property
(4) that

ϕ(YIc − ΛXIc) + ϕ(YI0 − ΛXI0) < ϕ(YIc) + ϕ(YI0).

Using now the relationsYIc = 0 and YI0 = ΛXI0 yields
ϕ(ΛXIc) < ϕ(ΛXI0) or, equivalently,ϕ(ΛXIc) < 1/2ϕ(ΛX).
Eq. (9) then follows from the fact thatIc andΛ are arbitrary.
(ii) ⇒ (i): To begin with, note that if Eq. (9) holds for somed, then
it holds also for anyd0 ≤ d. As a result, the equality|Ic| = d
in (9) can be changed to|Ic| ≤ d. Assuming (ii), letA ∈ R

m×n

and Y ∈ R
m×N be matrices satisfying|Ic(Y −AX)| ≤ d. Set

Ic = I
c(Y − AX) and I0 = I \ Ic. Then for allΛ ∈ R

m×n such
thatΛ 6= 0,

2ϕ(ΛXIc) < ϕ(ΛX) = ϕ(ΛXIc) + ϕ(ΛXI0),

where the equality is obtained by the property (4) ofϕ. It follows
that

ϕ(ΛXIc) < ϕ(YI0 − (A+ Λ)XI0). (10)

On the other hand, we know by (5) that

ϕ(YIc −AXIc)−ϕ(YIc − (A+ Λ)XIc) ≤ ϕ(ΛXIc).

Combining with the inequality (10) yields

ϕ(Y −AX) < ϕ(Y − (A+ Λ)X).

SinceΛ is an arbitrary nonzero matrix, this inequality says thatA is
the unique minimizer ofV (H) = ϕ(Y −HX).
Consider a data pair(Y,X) generated by (1). By letting

πc
ϕ(X) = max

{

d : Eq. (9) holds
}

, (11)

and assuming thatπc
ϕ(X) > 0 we can see that whenever

|Ic(Y −AoX)| ≤ πc
ϕ(X), Ao can be exactly recovered by com-

puting Ψ(Y,X). Of course this is likely to hold only if the dense
noise componentE does not exist. So in the situation whereE = 0,
the theorem says thatAo can be uniquely obtained by convex
optimization provided that the number of outliers (nonzero columns
of F ) is less than or equal toπc

ϕ(X). For the condition of exact
recoverability to be checkable we must be able to computeπc

ϕ(X).
The bad news are that evaluating numerically such a number is likely
to be NP-hard in most cases.
In the sequel, we investigate sufficient conditions of exact recovery
which are more tractable from a numerical standpoint. For this
purpose let us introduce some definitions.

Definition 1. A matrixX = [x1 · · · xN ] ∈ R
n×N is said to be

self-decomposable ifrank(X) = n and for allk ∈ I, xk ∈ im(X 6=k)
whereX 6=k , XI\{k} is the matrix obtained fromX by removing
its k-th column andim(·) refers to range space.

For a matrix to be self-decomposable it is enough thatX 6=k be full
row rank for anyk ∈ I. Achieving this condition in practice seems
easy provided that the numberN of measurements is large enough
compared to the dimensionn of X.

Definition 2 (self-decomposability amplitude). Let X ∈ R
n×N be

a self-decomposable matrix. We callself-decomposability amplitude
of X, the numberξ(X) defined by

ξ(X) = max
k∈I

min
γk∈RN−1

{

‖γk‖∞ : xk = X 6=kγk
}

. (12)

The so-definedξ(X) constitutes a quantitative measure of richness
(or genericity) of the regressor matrixX. By richness it is meant
here how much, in a global sense, the columns ofX are linearly
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independent.ξ(X) is expected to be small if the columns ofX are
somehow strongly linearly independent.

Remark 1. If for somek the norm ofxk was to be considerably
large in comparison to the norm of the other columns ofX, then
ξ(X) would get large hence reducing recoverability capacity of the
considered class of estimators (see also Eq.(9)). Such situations can
be alleviated by normalizing each column ofX, i.e., for example by
replacing (yk, xk) by (ỹk, x̃k) , (yk/ ‖xk‖ , xk/ ‖xk‖) under the
assumption thatxk 6= 0 for all k ∈ I.

With the help of the device of self-decomposability amplitude (12),
we can state a condition for exact recovery of the parameter matrix
Ao by solving the optimization problem in (3). A similar result was
proven in [3] for the Least Absolute Deviation (LAD) estimator.

Theorem 2 (A sufficient condition for exact recovery). Let ϕ be a
function satisfying(4)-(6) with ε = 0 and Ψ be defined as in(3).
Assume thatX is self-decomposable. Then the following statement
is true:

∀A ∈ R
m×n, ∀Y ∈ R

m×N ,

|Ic(Y −AX)| < T
(

ξ(X)
)

⇒ Ψ(Y,X) =
{

A
}

.
(13)

whereT : R>0 → R>0 is the function defined byT (α) =
1

2

(

1+
1

α

)

.

Proof: The proof is completely parallel to that of Theorem 11
in [3]. From the assumptions, eachxk, k ∈ I, can be written as a
linear combination of the columns ofX 6=k. Let γk ∈ R

N−1 be any
vector satisfyingxk = X 6=kγk. It follows that for anyΛ ∈ R

m×n,

ϕ(Λxk) = ϕ
(

∑

t∈I\{k}

γk,tΛxt

)

with γk,t denoting the entry ofγk ∈ R
N−1 indexed byt. Under

the assumptions of the theorem,ϕ is a norm. So, it is positive and
satisfies the triangle inequality property. As a result we can write

ϕ(Λxk) ≤
∑

t 6=k

|γk,t|ϕ(Λxt) ≤ ‖γk‖∞ (ϕ(ΛX)− ϕ(Λxk))

where the rightmost term follows from the property (4) ofϕ. Since
this holds for anyγk such thatxk = X 6=kγk, it holds also for

γ⋆
k = argmin

γ∈RN−1

{

‖γ‖∞ : xk = X 6=kγ
}

.

Hence,

ϕ(Λxk) ≤ ξ(X) (ϕ(ΛX)− ϕ(Λxk)) ∀k ∈ I, ∀Λ ∈ R
m×n. (14)

or equivalently,

ϕ(Λxk) ≤
ξ(X)

1 + ξ(X)
ϕ(ΛX) ∀k ∈ I, ∀Λ ∈ R

m×n.

Let Ic be any subset ofI and pose|Ic| = d. Summing the previous
inequality over the setIc yields

max
Λ 6=0

ϕ(ΛXIc)

ϕ(ΛX)
≤

1

2T
(

ξ(X)
) |Ic| (15)

Note that the term on the right hand side is well-defined since by the
self-decomposability assumption,rank(X) = n which implies that
ϕ(ΛX) 6= 0 wheneverΛ 6= 0. Therefore (9) holds if|Ic| < T

(

ξ(X)
)

and the conclusion follows from Theorem 1.
It is worth noting that the thresholdT (ξ(X)) on the number of

correctable outliers does not depend onϕ. Hence this threshold is
valid when the estimator is defined from any matrix norm obeying
(4).

Remark 2. The statement of Theorem 2 still holds true if we replace

ξ(X) with theϕ-dependent numberδϕ(X) defined by

δϕ(X) = max
k∈I

sup
Λ 6=0

ϕ(Λxk)

ϕ(ΛX 6=k)
(16)

when it is assumed thatϕ is a norm andrank(X 6=k) = n for all k.
Doing so will give a less conservative condition for exact recovery.
Howeverδϕ(X) seems much harder to evaluate numerically than
ξ(X).

Remark 3 (A few useful properties ofξ(X)).

• For any nonsingular matrixR ∈ R
n×n, ξ(RX) = ξ(X). It

follows that the numberξ(X) depends only on the subspace
spanned by the rows of the regressor matrixX.

• For any self-decomposableX ∈ R
n×N , ξ(X) is lower-bounded

in the following sense

ξ(X) ≥
1

N − 1
,

This follows from the more general observation that

ξ(X) ≥ max
k∈I

‖xk‖
∑

t 6=k ‖xt‖

for any vector norm‖·‖. As a result,T (ξ(X) is upper-bounded
as follows

T (ξ(X)) ≤
N

2
.

Theorem 2 provides a sufficient condition for exact recovery in the
situation where the functionϕ is a norm. Next, another condition is
stated which holds in the general case.

Proposition 1. Consider a triplet(ϕ, ℓ, ε) satisfying (4)-(6). For
A ∈ R

m×n andY ∈ R
m×N , poseIc = I

c(Y −AX), I0 = I\Ic =
{t ∈ I : yt −Axt = 0} and Icε(ΛXI0) =

{

t ∈ I0 : ℓ(Λxt) > ε
}

.
ThenΨ(Y,X) = {A} if

|Icε(ΛXI0)| ε < ℓ(ΛXI0)− ℓ(ΛXIc) (17)

∀Λ ∈ R
m×n,Λ 6= 0.

Proof: Ψ(Y,X) = {A} is equivalent to

ϕ(Y −AX) < ϕ(Y − (A+ Λ)X)

for anyΛ ∈ R
m×n, Λ 6= 0. Using the definitions of the setsI0 and

Ic and applying property (4) ofϕ yields the equivalent relation

ϕ(YIc −AXIc)− ϕ(YIc − (A+ Λ)XIc) < ϕ(ΛXI0).

By (5), we can note thatϕ(YIc −AXIc)−ϕ(YIc − (A+Λ)XIc) ≤
ℓ(ΛXIc). It then follows that

ℓ(ΛXIc) < ϕ(ΛXI0)

is a sufficient condition forΨ(Y,X) = {A}. Finally, invoking (6)
allows us to observe thatℓ(ΛXI0) − |Icε(ΛXI0)| ε ≤ ϕ(ΛXI0)
which implies that ℓ(ΛXIc) < ℓ(ΛXI0) − |Icε(ΛXI0)| ε is a
sufficient condition forΨ(Y,X) = {A}. We have hence proved the
proposition.

B. Uncertainty set induced by dense noise

When bothE and F are nonzero in the data-generating system
(1), Ψ(Y,X) is likely to be a non-singleton subset ofP(Rm×n)
especially if we consider all possible realizations of the unknown
componentsE and F . In this case the desirable properties of the
estimator are in default of better (i) that it containsAo and (ii) that
its size with respect to some metric is as small as possible. In this
section we are interested in estimating the size ofΨ(Y,X) when both
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dense noiseE and sparse noiseF are active in the data-generating
system (1).

A notion of estimator gain. Similarly to the concept of system
gain in control [22], one could define the gain of an estimator, that
is, a quantitative measure of the sensitivity of the estimator with
respect to the perturbations affecting the measurements. Consider a
data pair(Y,X) generated by a system of the form (1) withAo

being the parameter matrix sought for. Let us fix the sparse noise
matrix F or view it somehow as part of the data-generating system.
This consideration proceeds from the fact thatΨ can be insensitive
to F (when acting alone) under, for example, the condition derived
in Theorem 2. LetE be bounded in the sense thatℓ(E) is finite
with ℓ being the norm appearing in (6). Then we can define a gain
of the estimator with respect to the dense noise componentE. More
specifically, an(ℓ, q)-gain of the estimatorΨ with respect to the dense
noiseE may be defined by

gℓ,q(Y,X) = sup
A⋆∈Ψ(Y,X)
0<ℓ(E)<∞
F sparse

‖A⋆ −Ao‖q
ℓ(E)

. (18)

Here‖·‖q denotes matrixq-norm. The so-defined numbergℓ,q(Y,X)
provides an upper bound on the distance from the setΨ(Y,X) to
Ao in function of the amount of dense noise. The following theorem
and its corollaries show that if the number of nonzero columns in
F is no larger than a certain threshold, thengℓ,q(Y,X) exists and is
finite.

Theorem 3. Let (Y,X) be the data generated by system(1) subject
to the noise componentsE and F . Consider a triplet (ϕ, ℓ, ε)
satisfying(4)-(6). Let S0 ⊂ I be a set such thatFS0 = 0 and let
Sc = I \ S0. Assume that the matrixX and the partition(S0, Sc)
are such that there existsα > 0 such that

ℓ(ΛXS0)− ℓ(ΛXSc) ≥ α ‖Λ‖q ∀Λ ∈ R
m×n, (19)

with ‖·‖q denoting some matrixq-norm.
Then for anyA⋆ ∈ Ψ(Y,X), it holds that

‖A⋆ −Ao‖q ≤
1

γℓ,q(X,Sc)

[

2ℓ(ES0) + |Icε | ε
]

(20)

with1 Icε = Icε(YS0 −A⋆XS0) =
{

t ∈ S0 : ℓ(yt −A⋆xt) > ε
}

and

γℓ,q(X,Sc) = inf
Λ∈R

m×n

Λ 6=0

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
(21)

where‖·‖q refers to matrixq-norm.

Proof: By definition ofΨ(Y,X) in (3),

ϕ(Y −A⋆X) ≤ ϕ(Y −AX) ∀A ∈ R
m×n

By letting Λ = A − Ao, Λ⋆ = A⋆ − Ao and applying (2), the last
inequality takes the form

ϕ(F + E − Λ⋆X) ≤ ϕ(F + E − ΛX) ∀Λ ∈ R
m×n.

In particular, forΛ = 0, we getϕ(F + E − Λ⋆X) ≤ ϕ(F + E)
which, thanks to property (4) ofϕ, takes the form

ϕ(FSc + ESc − Λ⋆XSc)+ϕ(ES0 − Λ⋆XS0)

≤ ϕ(FSc + ESc) + ϕ(ES0).

Now applying property (5) to the first member of the left hand side
and rearranging yields

ϕ(ES0 − Λ⋆XS0)− ℓ(Λ⋆XSc) ≤ ϕ(ES0).

1The notationIcε is used for simplicity reasons.

Using (6) gives

ℓ(ES0 − Λ⋆XS0)− |Icε | ε− ℓ(Λ⋆XSc) ≤ ϕ(ES0) ≤ ℓ(ES0).

Here we used the fact thatIcε(ES0 −Λ⋆XS0) is equal to the setIcε
defined in the statement of the theorem.
Applying the triangle inequality property ofℓ, it can be seen that
ℓ(Λ⋆XS0) − ℓ(ES0) ≤ ℓ(ES0 − Λ⋆XS0). Combining with the
previous inequality yields

ℓ(Λ⋆XS0)− ℓ(Λ⋆XSc) ≤ 2ℓ(ES0) + |Icε | ε.

Finally, it follows from the definition ofγℓ,q(X,Sc) in (21) that

γℓ,q(X,Sc) ‖Λ⋆‖q ≤
[

2ℓ(ES0) + |Icε | ε
]

.

The condition (19) guarantees thatγℓ,q(X,Sc) is well-defined and
is positive. Hence the statement of the theorem is established.

Theorem 3 constitutes an interesting stability result in that it
provides a finite upper bound on the distance fromAo to the set
Ψ(Y,X) as a function of the amplitude of the dense noise matrix
E. It applies to any estimatorΨ defined as in (3) withϕ a function
obeying (4)-(6). In particular, in the situation whereϕ is a norm (in
which caseε can be taken equal to zero in (6)), the inequality in (20)
simplifies to

‖A⋆ −Ao‖q ≤
2

γℓ,q(X,Sc)
ℓ(ES0). (22)

If ϕ is defined as in (7) (which, recall, is not a norm) and if the
dense noise matrixE is such thatℓo(et) ≤ εo for all t ∈ I, then
by taking ε = εo the setIcε defined in the statement of Theorem 3
corresponds to the empty set so that (22) holds as well in this case.
In connection with the concept of estimator gain discussed earlier,
one can interpret the factor2/γℓ,q(X,Sc) as an estimate of the gain
(of the estimatorΨ) with respect to dense noise.

Lastly, it is interesting to see that whenϕ is a norm, ifE = 0
then the result of Theorem 3 implies thatΨ(Y,X) = {Ao} provided
(19) is true.

V. D ISCUSSIONS ON SOME SPECIAL CASES

For the purpose of illustrating the extent of the results above, let
us discuss further the situation whereϕ reduces to a norm.

A. Scenario when the loss function is a norm

Corollary 1. Let (Y,X) be the data generated by system(1) subject
to the noise componentsE and F . Let S0 and Sc be defined as in
the statement of Theorem 3. Assume thatϕ is a norm i.e., it satisfies
(4)-(6) with ε = 0.
If X is self-decomposable and|Sc| < T

(

ξ(X)
)

, then for anyA⋆ ∈
Ψ(Y,X),

‖A⋆ −Ao‖q ≤ Bϕ,q(|S
0|, X)ϕ(ES0) (23)

where

Bϕ,q(r,X) =
2

σϕ,q(X)
[

1−
N − r

T (ξ(X))

]

, (24)

σϕ,q(X) = inf
Λ 6=0

ϕ(ΛX)

‖Λ‖q
(25)

Proof: The principle of the proof is to show thatγℓ,q(X,Sc) is
well-defined and then find a positive underestimate of it. Using the
property (4) ofϕ and the fact thatϕ = ℓ, we can write

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q
=

2ϕ(ΛX)

‖Λ‖q

[

1

2
−

ϕ(ΛXSc)

ϕ(ΛX)

]

.



6

On the other hand we know from the proof of Theorem 2 (see Eq.
(15)) that

ϕ(ΛXSc)

ϕ(ΛX)
≤

1

2T (ξ(X))
|Sc|

so that
[

1−
|Sc|

T (ξ(X))

]

ϕ(ΛX)

‖Λ‖q
≤

ℓ(ΛXS0)− ℓ(ΛXSc)

‖Λ‖q

Taking now the infimum on both sides of the inequality symbol over
all nonzero matricesΛ ∈ R

m×n yields

σϕ,q(X)

[

1−
|Sc|

T (ξ(X))

]

≤ γℓ,q(X,Sc).

It follows from the rank condition imposed onX (by the self-
decomposability assumption) thatσϕ,q(X) > 0. This shows that
γℓ,q(X,Sc) is well defined and is strictly positive. Finally, since
ϕ = ℓ, invoking (22) gives the result.
Two important comments can be made at this stage.

• First it is interesting to note that the boundBϕ,q(r,X) is an
increasing function ofξ(X). Therefore it is all the smaller as
ξ(X) is small. That is, the error bound will be small if the data
matrix X is rich enough.

• Second,Bϕ,q(r,X) is a decreasing function ofr. This means
that the upper bound on the estimation error decreases when the
number of gross error columns inF decreases. In the extreme
case where

∣

∣S0
∣

∣ = N (no gross error),Bϕ,q(|S
0|, X) in (23)

reduces to2/σϕ,q(X).

Beyond these observations it should be noted that a key assumption of
Corollary 1 is that|Sc| < T

(

ξ(X)
)

with Sc being the index set of the
nonzero columns inF . Realizing this condition requires on the one
hand that the number of nonzero columns in the sparse noise matrix
F be small and on the other hand thatξ(X) be small2 (which means
that the data must be generic). Indeed this condition is not necessarily
as strong as it might appear to be at first sight. For example, it can
be relaxed as follows. Observe that the sumE + F is not uniquely
defined from model (2). Taking advantage of this, one can always
absorb inE all nonzero columns ofF whose magnitude does not
exceed a certain level. To see this, letI = {t ∈ Sc : ℓ(et + ft) ≤ εo}
whereεo = maxt∈I ℓ(et). Then we can definẽE and F̃ such that
E+F = Ẽ+F̃ andF̃S0∪I = 0 that is, we set̃et = ft+et andf̃t = 0
for any t ∈ I and (ẽt, f̃t) = (et, ft) otherwise. As a consequence,
E andF in Corollary 1 can be replaced bỹE and F̃ respectively
so that|S| and |Sc| are replaced by|S| + |I| and |Sc| − |I|. The
condition of the corollary then becomes|Sc|−|I| < T

(

ξ(X)
)

, which
is potentially easier to fulfill.

Remark 4 (sum of p-norms). Evaluating numerically the bound
Bϕ(r,X) might prove to be a hard problem due to the potential
difficulty in computing the termσϕ,q(X) in (25). A particular
case of interest is whenϕ consists of a sum ofp-norms of the
column vectors, i.e. when it is defined byϕ(B) =

∑N
i=1 ‖bi‖p for

B = [b1 · · · bN ]. In this case if we takeq = 2 in (23) and (25),
it is easy to see thatλ1/2

min(XX⊤) ≤ σϕ,2(X) with λ
1/2
min(·) denoting

the square root of the minimum eigenvalue. Replacingσϕ,2(X) with
λ
1/2
min(XX⊤) in (24) yields an overestimate ofBϕ(r,X) which is

computable.

Remark 5. Corollary 1 still holds true if one replacesT (ξ(X)) with
πc
ϕ(X) defined in(11). As shown in [18], the numberπc

ϕ(X) in (11)
is computable although at the price of a combinatorial complexity.
However if then-dimension ofX is small enough the complexity of

2Recall thatT is a decreasing function hence implying thatT (ξ(X)) is
large whenξ(X) is small.

the algorithm proposed there can be affordable. Then by using our
formula (24) and Remark 4 above, it is possible therefore to obtain
a smaller bound on the estimation error.

B. Single output case:ℓ1 norm

In this section, we discuss for an illustrative purpose, the appli-
cability of Theorem 3 to the case of single-output systems. This is
an interesting case to highlight since it represents the most classical
situation. Consider the single-output system defined by

yt = (θo)⊤xt + ft + et (26)

whereyt, et, ft are scalars andxt andθo aren-dimensional vectors.
By letting Y = [y1 · · · yN ] ∈ R

1×N and definingE and F
similarly, we obtain

Y = (θo)⊤X + F + E. (27)

This last equation corresponds indeed to (2) where the matrixAo

reduces to the row vector(θo)⊤. In this case, if we letϕ(B) =
∑N

i=1 ‖bi‖2 then for anyθ ∈ R
n, the columns of (the row vector)

Y −AX are scalars so that

ϕ(Y − θ⊤X) =
N
∑

t=1

∥

∥yt − θ⊤xt

∥

∥

2
=

N
∑

t=1

∣

∣yt − θ⊤xt

∣

∣. (28)

As a result,Ψ coincides in this case with the Least Absolute
Deviation (LAD) estimator. The following corollary specializes the
result of Theorem 3 to the LAD estimator.

Corollary 2. Let (Y,X) ∈ R
1×N × R

n×N be generated by model
(26). Let Sc =

{

t ∈ I : ft 6= 0
}

, S0 = I \ Sc. Assume that
X is self-decomposable and|Sc| < T

(

ξ(X)
)

. Then for anyθ⋆ ∈

argmin
θ∈Rn

∥

∥Y − θ⊤X
∥

∥

1
,

‖θ⋆ − θo‖2 ≤ B1,2

(

|S0|, X
)

‖ES0‖1

where
B1,2(r,X) =

2

σ1,2(X)
[

1−
N − r

T (ξ(X))

]

,

σ1,2(X) = inf
η 6=0

∥

∥X⊤η
∥

∥

1

‖η‖2
.

Again here the boundB1,2(r,X) can be numerically overesti-
mated by following the idea of Remark 4.

VI. N UMERICAL ILLUSTRATIONS

The performance of the estimatorΨ has been extensively tested in
some existing papers in the special case of the LAD (see e.g., [3]) .
We therefore concentrate here on evaluating numerically an estimate
of the gain of the estimator based on Corollary 1 and Remark 4. The
estimation is carried out for the case whereϕ consists in the sum of
2-norms andq = 2. Four different cases are studied:
(a) Static data:X ∈ R

2×200 is sampled from aGaussian distribu-
tion N (0, I2) with zero-mean and identity-covariance.

(b) Dynamic data generated by aswitched linear system: X ∈
R

2×200 is formed with the regressors(yt−1, ut−1) generated
by a switched linear system composed of 3 subsystems of
order 1. This is a switched ARX system defined byyt =
aσ(t)yt−1+bσ(t)ut−1 with the switching signalσ(t) ∈ {1, 2, 3}
generated from a uniform distribution and inputut being a white
noise with Gaussian distribution;(a1, b1) = (−0.40,−0.15),
(a2, b2) = (1.55,−2.10) and (a3, b3) = (1,−0.65).

(c) Dynamic data generated by alinear ARX systemdefined by
yt = a1yt−1 + b1ut−1 with the (a1, b1) defined above in case
(b).
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(a) static system:ξ(X) = 0.0083
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(b) switched system:ξ(X) = 0.0127
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(c) linear system:ξ(X) = 0.0188
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(d) nonlinear system:ξ(X) = 0.0107

Fig. 1: An overestimate ofBϕ using respectivelyπc
ϕ(X) and T (ξ(X)) for a data matrixX ∈ R

2×200: (a) static data sampled from a
Gaussian distribution; (b) data generated by a switched system; (c) data generated by a linear dynamic system ; (d) data generated by a
dynamic nonlinear system. In each case, the x-axis is limited to the range ofnonzero gross errors proportions which statisfy the stability
condition |Sc| /N < T

(

ξ(X)
)

/N (see e.g., Corollary 1).

(d) Dynamic data generated by anonlinear NARX systemdefined
by yt = (yt−1 + 2.5)/(1 + y2

t−1) + ut−1.

Following Remark 1, the columns of all data matricesX have been
normalized to unit2-norm before being processed.
Figure 1 plots the obtained estimate of the estimator gain against the
proportion of correctable outliers. As remarked in Section V, the gain
estimate increases as the proportion of outliers gets larger. But the
growth rate of the gain estimate depends on the genericity of the data
matrix X. The more generic the columns ofX are, the smaller the
growth rate of the estimation error is when regarded as a function of
the proportion of outliers. The experiment confirms also the intuition
according to which static data tend to be more generic than data
generated by a dynamic system. Among the three cases of dynamic
systems, the linear system appears to be the one generating the least
generic data.

VII. C ONCLUSIONS

In this paper we have discussed a somewhat general framework for
designing a robust estimator. Given the training data, the estimator
is defined as the minimizing set of a certain performance index
applying to the data. We have shown that if the performance function
possesses some key properties, then the so-defined estimator will
inherit robustness properties. Considering a data set generated by
a linear model subject to both sparse and dense noises, we showed
that the estimator is insensitive to the sparse noise when this latter is
acting alone and provided that the number of its nonzero components
is no larger than a certain (computable) threshold. Conditions are
proposed for the exact recovery of the true parameter matrix when
only the sparse noise is active. When both types of noises affect

the measurements we propose computable bounds on the parametric
estimation error. By assuming stochasticity of the dense noise se-
quence, the obtained bounds are probably improvable by exploiting
appropriately the statistics of the dense noise. This is a matter than
can be investigated in future research.
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