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Abstract

In this paper we formulate a solution of the robust linear regression problem in a general framework of correntropy maximization.
Our formulation yields a unified class of estimators which includes the Gaussian and Laplacian kernel-based correntropy
estimators as special cases. An analysis of the robustness properties is then provided. The analysis includes a quantitative
characterization of the informativity degree of the regression which is appropriate for studying the stability of the estimator.
Using this tool, a sufficient condition is expressed under which the parametric estimation error is shown to be bounded. Explicit
expression of the bound is given and discussion on its numerical computation is supplied. For illustration purpose, two special
cases are numerically studied.
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1 Introduction

Given a set of empirical observations generated by a sys-
tem along with a class of parameterized candidate mod-
els, a parameter estimator is a function which maps the
available data to the parameter space associated with
the model class. A very desirable property for an esti-
mator is that of robustness which characterizes a rela-
tive insensitivity of the estimator to deviations of the
observed data from the assumed model. More specif-
ically, this property is central in situations where the
data are prone to non Gaussian noise or disturbances
of possibly arbitrarily large amplitude (often called out-
liers). The quest for robust estimators has led to the
development of many estimators such as the Least Ab-
solute Deviation (LAD) [17,14,4,2], the least median of
squares [16], the least trimmed squares [17], the class of
M-estimators [11]. Evaluating formally to what extent a
given estimator is robust requires setting a quantitative
measure of robustness. Incidentally such a measure can
serve as comparison criterion between different robust
estimators. Generally, the robustness is assessed in term
of the maximum proportion of outliers in the total data
set that the estimator can handle while remaining stable
(see for example the concept of breakdown point [17]).
More recently the maximum correntropy [18,12,15] has
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emerged as an information-theoretic estimation frame-
work which induces some robustness properties with re-
spect to outliers. Although maximum correntropy esti-
mation is closely related to M-estimation, its discovery
has broadened the horizon of possibilities for designing
robust identification schemes. As a matter of fact, it has
been successfully applied to a variety of estimation prob-
lems such as linear/nonlinear regression, filtering, face
recognition in computer vision [9,7,10].

Contribution. Although the maximum correntropy
based estimators have been gaining an increasing suc-
cess, the formal analysis of its robustness properties is
still a largely open research question. In this paper we
propose such an analysis for a class of maximum cor-
rentropy based estimators applying to linear regression
problems. More precisely, the contribution of the cur-
rent paper is articulated around the following three ques-
tions:

• To what extent the maximum correntropy estimation
framework is robust to outliers? By robustness, it is
meant here a certain insensitivity of the estimator to
large errors of possibly arbitrarily large magnitude.
To address this question, we derive parametric estima-
tion error bounds induced by the estimator in function
of both the degree of richness of the regression data
and on the fraction of outliers. In summary, we show
that if the regression data enjoy some richness proper-
ties and if the number of outliers is reasonably small,
then the parametric estimation error remains stable.
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Indeed the proportion of outliers that the estimator is
capable to correct depends on how rich the regressor
matrix is. Moreover, the estimation error appears to
be a decreasing function of the richness measure.

• How does richness of the training data set influence
the robustness of the estimator and how to character-
ize it? We provide an appropriate characterization of
the richness in terms of the cardinality of the regres-
sor vectors which are strongly correlated to any vector
of the regression space. As such however, this quan-
titative measure of richness is not computable at an
affordable price. To alleviate this difficulty the paper
proposes some estimates of this measure thus allowing
for the approximation of the parametric estimation
error bounds.

• Does the maximum correntropy estimator (MCE) pos-
sess the exact recovery property? We show that un-
like the LAD estimator, the MCE is not able to return
exactly the true parameter vector once the measure-
ment is affected by a single arbitrary nonzero error.
The proof is given for the Gaussian kernel based esti-
mator.

We note that an analysis of robustness of the maximum
correntropy has been presented recently in [5,6]. How-
ever the analysis there is limited to the Gaussian kernel
based correntropy and to a single parameter estimation
problem. Moreover these works do not make clear how
the properties of the data contribute to the robustness
of the estimator.

Outline. The rest of this paper is organized as fol-
lows. Section 2 presents the robust regression problem
and define the class of maximum correntropy estimators
whose properties are to be studied in the paper. It also
introduces the general setting of the paper. The main
analysis results are developed in Section 3. In Section 4
we run numerical experiments to illustrate the richness
measure and the evolution of the derived error bounds
with respect to the amount of noise. Finally, Section 5
contains concluding remarks concerning this work.

Notations. R is the set of real numbers; R+ is the
set of real nonnegative numbers; N is the set of natural
integers; C denotes the set of complex numbers. N will
denote the number of data points and I = {1, . . . , N}
the associated index set. For any finite set S, |S|
refers to the cardinality of S. However, whenever x
is a real (respectively complex) number, |x| will refer
to the absolute value (respectively modulus) of x. For

x = [x1 · · · xn]
⊤ ∈ R

n, ‖x‖p will denote the p-norm

of x defined by ‖x‖p = (|x1|p + · · · + |xn|p)1/p, for

p ∈ {1, 2}, ‖x‖∞ = maxi=1,...,n |xi|. The exponential of
a real number z will be denoted exp(z) or ez according
to visual convenience; ln(z) is the natural logarithm
function. For a square and positive semi-definite ma-
trix A, λmin(A) and λmax(A) denote respectively the
minimal and maximal eigenvalues of A.

2 Robust regression problem

2.1 The data-generating system

Let {xt}t∈N
and {yt}t∈N

be some stochastic processes
taking values respectively in R

n and R. They are as-
sumed to be related by an equation of the form

yt = x⊤
t θ

o + vt, (1)

where {vt}t∈N
represent an unobserved error sequence;

θo ∈ R
n is an unknown parameter vector. Eq. (1) may

describe a static (memoryless) system or a dynamic one.
In the latter case, we will conveniently assume that the
so-called regressor (or explanatory vector) xt has the

following structure xt = [ut ut−1 · · · ut−(n−1)]
⊤, i.e.,

(1) is an FIR-type (Finite Impulse Response) system,
with ut then denoting its input signal at time t.

Assumption 1 The joint stochastic process {(xt, vt)}t∈N

is independently and identically distributed.

While this assumption can hold naturally for a static
system, it might not be satisfied in some practical situ-
ations. For example, if (1) is a dynamic system (for in-
stance, of FIR-type), this assumption is not satisfied 2 .
But as will be seen, its only role is to highlight the cor-
rentropic origin of the estimation framework considered
in this paper.

Assumption 2 The noise sequence {vt} satisfies the
following: there is ε ≥ 0 such that if we define the index
sets I0ε = {t : |vt| ≤ ε} and Icε = {t : |vt| > ε}, then the
cardinality of

∣∣I0ε
∣∣ is "much larger" than that of |Icε |.

We will formalize latter in the paper what "much larger"
can mean. Similarly as in [2], we can assume that vt is
of the form vt = ft + et where {ft} is a sparse noise
sequence in the sense that only a few elements of it are
different from zero. However its nonzero elements are
allowed to take on arbitrarily large values (called in this
case, outliers). As to {et}, it is assumed to be a bounded
and dense (i.e., not necessarily sparse) noise sequence of
rather moderate amplitude.

Problem. Given a finite collection ZN = {(xt, yt)}Nt=1
of measurements obeying the system equation (1), the
robust regression problem of interest here is the one of
finding a reliable estimate of the parameter vector θo

despite the effect of arbitrarily large errors.

Let θ denote a candidate parameter vector (PV) which
we would like, ideally, to coincide with the true PV θo.
Given xt and θ, the prediction we can make of yt is

2 Indeed this assumption can be relaxed to an appropriate
notion of stationarity and ergodicity for the joint process
{(xt, vt)}
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ŷt(θ) = x⊤
t θ. It is then the goal of the estimation method

to select θ such that yt and ŷt(θ) are close in some sense
for any t. Closeness will be be measured in term of the
so-called maximum correntropy between the measured
output yt and the predicted value ŷt(θ).

2.2 Maximum correntropy estimation

The correntropy is an information-theoretic measure
of similarity between two arbitrary random variables
[18,12]. More specifically, consider two random variables

Y and Ŷ defined on the same probability space, and tak-
ing values in R. Let φℓ : R×R → R be a positive-definite
kernel function on R (see e.g., [19, Chap. 2, p. 30] for a

definition). The correntropy Vφℓ
(Y, Ŷ ) between Y and

Ŷ with respect to a kernel function φℓ, is defined by

Vφℓ
(Y, Ŷ ) = EY,Ŷ

[
φℓ(Y, Ŷ )

]
,

where EY,Ŷ [·] refers to the expected value with respect

to the joint distribution of (Y, Ŷ ). In a more explicit
form, we have

Vφℓ
(Y, Ŷ ) =

∫

R

∫

R

φℓ(y, ŷ)pY,Ŷ (y, ŷ)dydŷ (2)

with pY,Ŷ being the joint probability density function of

(Y, Ŷ ). The correntropy constitutes a similarity measure

between Y and Ŷ through the kernel φℓ. Although the
original definition of correntropy in [18] fixes φℓ to be
the Gaussian kernel, it is indeed possible to extend it to
any positive definite kernel function.

We consider in this paper a kernel function of the form

φℓ(y, ŷ) = exp(−γℓ(y − ŷ)), (3)

where γ > 0 is a user-specified parameter and ℓ : R →
R+ is a function which satisfies the following properties:

P1. ℓ is positive-definite: ℓ(a) ≥ 0 ∀a and ℓ(a) = 0 if
and only if a = 0.

P2. ℓ is symmetric: ℓ(−a) = ℓ(a).
P3. ℓ is nondecreasing on R+: ℓ(a) ≤ ℓ(b) whenever

|a| ≤ |b|.
P4. There exists αℓ > 0 such that

ℓ(a− b) ≥ αℓℓ(a)− ℓ(b) ∀(a, b) ∈ R
2.

Property P4 can be interpreted as a relaxed version of the
triangle inequality property for ℓ. We can characterize a
family of functions ℓ satisfying P1-P4 as follows.

Lemma 3 (Examples of functions obeying P1-P4)
For any real number p ≥ 1, the function ℓp : R → R+

defined by ℓp(x) = |x|p satisfies the properties P1-P4. In
particular, P4 is satisfied with αℓ = 1/2p−1.

PROOF. That ℓp satisfies P1-P3 is an obvious fact.
As to Property P4, it follows from convexity. In effect
the convexity of ℓp implies that for all (a, b) ∈ R

2,
|a+ b|p /2p = ℓp((a+ b)/2) ≤ 1/2ℓp(a)+ 1/2ℓp(b). Mul-
tiplying by 2 gives 1/2p−1ℓp(a+b) ≤ ℓp(a)+ℓp(b), which
by replacing a with a − b can be seen to be equivalent
to P4 with αℓ = 1/2p−1. ✷

The correntropy maximization is an estimation frame-
work where one tries to maximize the correntropy. In
the regression problem stated above, we aim to find the
parameter vector θ that maximizes 3 Vφℓ

(yt, ŷt(θ)), the
correntropy between yt and ŷt(θ) with respect to the
kernel φℓ. In practice however the distribution 4 pxt,yt

is
generally unknown so that one cannot evaluate the ex-
act correntropy. As a consequence of this difficulty one
would be content in practice with maximizing a sample
estimate of the correntropy. Assume that we are given a

set ZN = {(xt, yt)}Nt=1 of data points sampled indepen-
dently from the joint distribution pxt,yt

. Then in virtue
of Assumption 1, an estimate of the correntropy is given
by

V̂φℓ
(yt, ŷt(θ)) =

1

N

N∑

k=1

φℓ(yk, ŷk(θ))

=
1

N

N∑

k=1

exp
[
−γℓ(yk − x⊤

k θ)
]

(4)

for all t ∈ I , {1, . . . , N}. Hence the maximum cor-
rentropy estimator (MCE) studied in this paper is the
possibly set-valued map Ψmce : (R

n ×R)N → R
n which

maps the data to a parameter space,

Ψmce(Z
N ) = argmax

θ∈Rn

V̂φℓ
(yt, ŷt(θ)). (5)

In the form (4)-(5) the MCE can be viewed as a
particular instance of the prediction error estimation
scheme [13, Chap. 7] with prediction error measured by
exp

[
−γℓ(yk − x⊤

k θ)
]
. Also, the performance index (4)

is reminiscent of the risk-sensitive estimation cost which
is used in control, adaptive filtering and parameter es-
timation [3,8]. But this latter approach, which roughly
consists in the minimization of a sum of exponential
of positive error terms, is not suitable for handling the
effects of impulsive noise such as outliers.
Although the focus of this paper is the analysis of the
properties of the estimator (5), let us mention in passing
that the underlying optimization problem in (5) is non
convex. This implies that solving (5) numerically can be

3 By Assumption 1, Vφℓ
(yt, ŷt(θ)) is indeed constant i.e.,

independent of t. Hence t refers here to an arbitrary time
index.
4 To be precise, the interest is in pyt,ŷt(θ) but this follows
from pxt,yt .
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challenging. However it can be interpreted iteratively
as a weighted least squares problem in the case for ex-
ample where φℓ is taken to be the Gaussian kernel. We
will get back to this in Section 4.

3 Robustness properties of the MCE

As discussed in the introduction, an estimator of the
form (5) is intuitively thought (and empirically shown)
to be endowed with some robustness properties. By this,
we mean that it is able to keep behaving reasonably well
when a certain fraction of the available data points are
affected by noise components vt of possibly arbitrarily
large magnitude. The question of main interest in this
paper is to characterize quantitatively up to what extent
the estimator defined in (5) can be insensitive to outliers.

3.1 Data informativity

As will be seen, the robustness property is inherited from
both the structure of the estimator and the richness of
the regression data. We are therefore interested in for-
malizing as well that richness and how it contributes to
the robustness properties of the estimator.

To proceed with the analysis, let us introduce some no-
tations. For convenience we make the following assump-
tion.

Assumption 4 The regressor sequence {xt} satisfies:
xt 6= 0 for all t ∈ I.

Note that Assumption 4 is without loss of generality.
Under this assumption, let us pose

rx = min
t∈I

‖xt‖2 > 0, (6)

with ‖·‖2 denoting Euclidean norm. Upon dividing the
system equation (1) by ‖xt‖2, we can even assume that
rx = 1. Let α ∈ [0, 1] be a real number. For any η ∈ R

n,
define the index set

Iα(X, η) =
{
t ∈ I : |x⊤

t η| ≥ α ‖xt‖2 ‖η‖2
}

(7)

with X = [x1 · · · xN ] ∈ R
n×N a matrix formed with all

the regressors. Finally, let ρα(X) be the ratio between
the minimum cardinality that Iα(X, η) can attain over
all possible values of η, and the number N of columns in
X, i.e.,

ρα(X) = inf
η∈Rn

1

N
|Iα(X, η)| . (8)

The number ρα(X) measures somehow the richness (or
informativity/genericity) of the regression data. Intu-
itively, ρα(X) reflects a dense spanning of all directions
of the vector space R

n by the vectors {xt}. For a given
α > 0, it is desired that ρα(X) be as large as possible.

We will refer to it as the correlation measure of the ma-
trix X at the level α.

It appears intuitively that ρα(X) is a decreasing func-
tion of α. Clearly, we get ρα(X) = 0 for α = 1 for finite
N while ρα(X) = 1 for α = 0. For a given matrix, it
would be interesting to be able to evaluate numerically
the quantitative measure ρα(X) of richness. Indeed, this
value will be required for numerical assessment of the
error bound to be derived in Section 3.2. However com-
puting exactly the value of ρα(X) is a hard combinato-
rial problem.

We therefore discuss how to reach estimates of ρα(X) at

an affordable cost. To this end, let X̃ = [x̃1 · · · x̃N ] ∈
R

n×N be the matrix obtained from X by normalizing
its columns to unit 2-norm, i.e., x̃t = xt/ ‖xt‖2 for all t.
Then introduce the number

σ(X) = min
η∈Rn

{∥∥X̃⊤η
∥∥
∞

s. t. ‖η‖2 = 1
}

(9)

which is solely a function of the matrix X, hence the
notation. Note that the so-defined σ(X) lies necessarily
in the real interval [0, 1]. Moreover, it can be usefully

observed that σ(X) ≥ λ
1/2
min(X̃X̃⊤)/

√
N , with λ

1/2
min(·)

referring to the square root of the minimum eigenvalue.
Now for any t ∈ I consider the following index set

Jt,α(X) =
{
k ∈ I : |x̃⊤

k x̃t| ≥
√

1− δ2
}

(10)

where δ =
√
1− α2 −

√
1− σ(X)2. It is assumed in the

definition (10) that σ(X) ≥ α so that δ ≥ 0. For a given
t, Jt,α(X) collects the indices of the regressors which are
the most correlated to x̃t in the sense that the cosine
of the angle they form with x̃t is larger than

√
1− δ2.

Finally, let

vα(X) =
1

N
inf
t∈I

|Jt,α(X)| (11)

be the ratio between the minimum cardinality of the
finite set Jt,α(X) over all t living in I and the number N
of columns in X. Then we can estimate ρα(X) as follows.

Proposition 5 Let X ∈ R
n×N be a real matrix. Then,

for all α ∈ ]0, 1] with α ≤ σ(X),

vα(X) ≤ ρα(X) ≤ min
(
1,

λmin(X̃X̃⊤)

Nα2

)
(12)

with λmin(X̃X̃⊤) denoting the minimum eigenvalue of

the matrix X̃X̃⊤.

The proof of this proposition uses the following lemma.

Lemma 6 [20, Thm 5.14] Let x, y, z ∈ C
n be such that
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x∗x = y∗y = z∗z = 1 with x∗ denoting the conjugate
transpose of x. Then

√
1− |x∗y|2 ≤

√
1− |x∗z|2 +

√
1− |z∗y|2.

Equality holds if and only if there exists β ∈ C such that
either z = βx or z = βy.

PROOF. [Proof of Proposition 5] The upper bound is
immediate. To see this, let η0 6= 0 be the eigenvector
associated with the smallest eigenvalue of X̃X̃⊤. Then

λmin(X̃X̃⊤) ‖η0‖22 =

N∑

t=1

(x̃⊤
t η0)

2

≥
∑

t∈Iα(X,η0)

(x̃⊤
t η0)

2

≥ |Iα(X, η0)|α2 ‖η0‖22

.

It follows that ρα(X) = 1/N infη∈Rn |Iα(X, η)| ≤
1/N |Iα(X, η0)| ≤ λmin(X̃X̃⊤)/(Nα2). The upper in-
equality in (12) follows by additionally taking into
consideration the obvious fact that ρα(X) ≤ 1.

We now prove the inequality vα(X) ≤ ρα(X). To begin
with, note from (9) that for any η ∈ R

n satisfying ‖η‖2 =
1, there exists t(η) ∈ I such that |η⊤x̃t(η)| ≥ σ(X).

Consider an index k ∈ I, such that |x̃⊤
k x̃t(η)| ≥ h for some

h ∈ [0, 1]. Then observe that |x̃⊤
k η| ≥ α is equivalent to

√
1− (x̃⊤

k η)
2 ≤

√
1− α2.

On the other hand, by applying Lemma 6, we can write

√
1− (x̃⊤

k η)
2 ≤

√
1− (η⊤x̃t(η))2 +

√
1− (x̃⊤

k x̃t(η))2

≤
√
1− σ(X)2 +

√
1− h2.

It follows that for |x̃⊤
k η| ≥ α to hold, it is sufficient that

√
1− σ(X)2 +

√
1− h2 ≤

√
1− α2,

which in turn is equivalent to h ≥
√
1− δ2 with

δ =
√
1− α2 −

√
1− σ(X)2 ∈ [0, 1] by the assumption

that σ(X) ≥ α. Hence, for |x̃⊤
k η| to be greater than

or equal to α, it is enough that |x̃⊤
k x̃t(η)| ≥

√
1− δ2.

This means that for a given t, k being in the index
set Jt(η),α(X) defined in (10) is a sufficient condition

for |x̃⊤
k η| ≥ α for all η ∈ R

n such that ‖η‖2 = 1.
Therefore Jt(η),α(X) ⊂ Iα(X, η) hence implying

that
∣∣Jt(η),α(X)

∣∣ ≤ |Iα(X, η)|. Taking now the in-

fimum produces vα(X) ≤ infη∈Rn

1

N

∣∣Jt(η),α(X)
∣∣ ≤

infη∈Rn

1

N
|Iα(X, η)| = ρα(X). ✷

The key benefit of Proposition 5 is that it provides a
method for estimating the measure ρα(X) defined in (8)
at an affordable cost. Note however that while the up-
per bound in (12) can be computed easily, obtaining the
lower bound vα(X) is still challenging. The reason is
that this bound involves the number σ(X) in (9) whose
numerical evaluation requires solving a nonconvex opti-
mization problem. Nevertheless, it can be approximated
through some heuristics, e.g. by solving a sequence of
linear programs.

Remark 7 In comparison to the classical concept of
persistence of excitation (PE) in system identification,
the richness property requiring that ρα(X) be large is a
stronger property. In finite time, the quantitative per-
sistence of excitation (called specifically sufficiency of
excitation in this case) asks for the condition number

λ
1/2
max(XX⊤)/λ

1/2
min(XX⊤) of XX⊤ to be as close to 1

as possible. The PE condition appears to be a global
property of the matrix X while the richness condition
introduced here is a somewhat local property as it is ba-
sically counting the number of vectors xt pointing in any
direction of the regression space.

3.2 Main results

Equipped with the measure of informativity introduced
above, we can now state the main result of this paper,
which stands as follows.

Theorem 8 Let I0ε = {t ∈ I : |vt| ≤ ε} and Icε =
{t ∈ I : |vt| > ε} with {vt} denoting the noise sequence
in (1). Let ℓ be a function obeying P1-P4. Assume that
the following condition is satisfied for some α ∈ ]0, 1],

1

1 + e−γℓ(ε)
ρα(X) + e−γℓ(ε) |I0ε |

N
> 1. (13)

Then for any θ⋆ ∈ Ψmce

(
ZN
)

with ZN being generated
by system (1), it holds that

ℓ(αrx ‖θ⋆ − θo‖2) ≤
1

γαℓ
ln(1/µℓ), (14)

where

µℓ =
1 + e−γℓ(ε)

|I0
ε
|

N + ρα(X)− 1

[
1

1 + e−γℓ(ε)
ρα(X)

+e−γℓ(ε) |I0ε |
N

− 1

] (15)

If in addition, ℓ is strictly increasing on R+, then

‖θ⋆ − θo‖2 ≤ 1

αrx
ℓ−1

(
1

γαℓ
ln(1/µℓ)

)
. (16)
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PROOF. Let

θ⋆ ∈ Ψmce

(
ZN
)
= argmax

θ∈Rn

V̂φℓ
(yt, ŷt(θ)).

Then for any θ ∈ R
n, it holds that

N∑

t=1

exp
[
− γℓ(yt − x⊤

t θ)
]
≤

N∑

t=1

exp
[
− γℓ(yt − x⊤

t θ
⋆)
]

Taking in particular θ = θo and invoking the system
equation (1), it follows that

∑

t∈I0
ε

exp
[
− γℓ(vt)

]
+
∑

t∈Ic
ε

exp
[
− γℓ(vt)

]

≤
∑

t∈I0
ε

exp
[
− γℓ(vt − x⊤

t η
⋆)
]

+
∑

t∈Ic
ε

exp
[
− γℓ(vt − x⊤

t η
⋆)
]

where we have posed η⋆ = θ⋆ − θo. This implies that

∑

t∈I0
ε

exp
[
− γℓ(vt)

]
≤
∑

t∈I0
ε

exp
[
− γℓ(vt − x⊤

t η
⋆)
]
+ |Icε |

With |vt| ≤ ε for any t ∈ I0ε , we have −γℓ(vt) ≥ −γℓ(ε)
by the symmetry and nondecreasing properties of ℓ. As
a consequence,

∑
t∈I0

ε

exp
[
− γℓ(vt)

]
≥ ∑

t∈I0
ε

exp
[
−

γℓ(ε)
]
. On the other hand, by the fourth property of

the function ℓ, ℓ(vt − x⊤
t η

⋆) ≥ αℓℓ(x
⊤
t η

⋆) − ℓ(vt) ≥
αℓℓ(x

⊤
t η

⋆)− ℓ(ε) hence implying that −γℓ(vt−x⊤
t η

⋆) ≤
−γαℓℓ(x

⊤
t η

⋆)+ γℓ(ε). Combining these observations al-
lows us to write

∑

t∈I0
ε

exp
[
− γℓ(ε)

]
− |Icε |

≤ exp
[
γℓ(ε)

]∑

t∈I0
ε

exp
[
− γαℓℓ(x

⊤
t η

⋆)
]

= exp
[
γℓ(ε)

] ∑

t∈I0
ε
∩Iα(X,η⋆)

exp
[
− γαℓℓ(x

⊤
t η

⋆)
]

+ exp
[
γℓ(ε)

] ∑

t∈I0
ε
∩I c

α
(X,η⋆)

exp
[
− γαℓℓ(x

⊤
t η

⋆)
]

In the last equality we have partitioned the set I0ε into
I0ε ∩Iα(X, η⋆) and I0ε ∩I c

α(X, η⋆) with I c
α(X, η⋆) being

the complement of Iα(X, η⋆) in I. Note from (7) that
for all t ∈ I0ε ∩ Iα(X, η⋆), ℓ(x⊤

t η
⋆) ≥ ℓ(αrx ‖η⋆‖2) so

that −γαℓℓ(x
⊤
t η

⋆) ≤ −γαℓℓ(αrx ‖η⋆‖2). Plugging these

observations into the above inequality yields

exp
[
− γℓ(ε)

]{ ∣∣I0ε
∣∣ exp

[
− γℓ(ε)

]
− |Icε |

}

≤
∣∣I0ε ∩ Iα(X, η⋆)

∣∣ exp
[
− γαℓℓ(αrx ‖η⋆‖2)

]

+
∣∣I0ε ∩ I

c
α(X, η⋆)

∣∣ .

By observing that
∣∣I0ε ∩ I c

α(X, η⋆)
∣∣ = |I0ε |−

∣∣I0ε ∩ I 0
α (X, η⋆)

∣∣,
we can rearrange the above inequality in the form

e−γℓ(ε)
( ∣∣I0ε

∣∣ e−γℓ(ε) +
∣∣I0ε
∣∣−N

)
−
∣∣I0ε
∣∣

≤
∣∣I0ε ∩ Iα(X, η⋆)

∣∣
{
exp

[
− γαℓℓ(αrx ‖η⋆‖2)

]
− 1
}

(17)
Now by exploiting the definition of ρα(X), we can ob-
serve that

|I0ε ∩ Iα(X, η⋆)| = |I0ε |+ |Iα(X, η⋆)| − |I0ε ∪ Iα(X, η⋆)|
≥ |I0ε |+Nρα(X)−N.

Moreover since

Nρα(X) + |I0ε | ≥
1

1 + e−γℓ(ε)
Nρα(X) + e−γℓ(ε)|I0ε |,

the assumption (13) guarantees that |I0ε | + Nρα(X) −
N > 0. Therefore since the term on the right hand side
of (17) is negative, it holds that

e−γℓ(ε)
{ ∣∣I0ε

∣∣ e−γℓ(ε) +
∣∣I0ε
∣∣−N

}
−
∣∣I0ε
∣∣

≤
(
|I0ε |+Nρα(X)−N

){
exp

[
− γαℓℓ(αrx ‖η⋆‖2)

]
− 1
}

Then direct algebraic calculations lead to

µℓ ≤ exp
[
− γαℓℓ(αrx ‖η⋆‖2)

]
≤ 1

where µℓ is defined as in (15). Indeed, in virtue of the
assumption (13), µℓ is positive. Hence we have

ℓ(αrx ‖η⋆‖2) ≤
1

γαℓ
ln(1/µℓ).

Of course, if ℓ is monotonically increasing on R+ then it
is invertible and the error bound in (16) follows. ✷

A few comments follow from this result. A key assump-
tion of the theorem is condition (13). What it requires is
on the one hand, that the proportion of outliers be some-
how small and on the other hand, that the regression
data X be rich in the sense that ρα(X) be large enough
for a given nonzero α ∈ ]0, 1]. An important teaching of
this condition is that the richer the data matrix X, the
larger the number of outliers that can be corrected by
the estimator. We can interpret (13) as a sufficient con-
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dition for the stability of the estimator since it guaran-
tees a bounded estimation error.

A second comment concerns the amplitude of the error
bound given in (16). For the purpose of making this
bound small, we need the constant µℓ to be close to one.
Again we see that this is favored by a small number of
outliers and a rich data set. An interesting special case
is when ℓ(ε) = 0, which occurs when the data are only
affected by some outliers (ε = 0) and no dense noise. In
this case the number µℓ defined in (15) reduces to

µℓ = 1− 1− |I0

ε
|

N
|I0

ε
|

N + ρα(X)− 1

which tend to suggest, since µℓ 6= 1, that no exact re-
covery might be achieved once the data are affected by
a single outlier unless we consider in (16) the limit case
when γ → +∞. A similar observation was made in [6]
in a comparable context. We will prove below that the
MCE does not possess the exact recovery property, at
least in the case when ℓ(a) = a2. In contrast, a robust
estimator such as the LAD estimator (see, e.g., [1,2]) is
able to achieve exact recovery under a relatively signifi-
cant proportion of nonzero errors.

Proposition 9 Let Assumption 4 hold and assume that
for any t ∈ I0ε , vt = 0. Take the function ℓ in (4) to be the
square function, ℓ(a) = a2. For all ε > 0, if |Icε | ≥ 1 then
there exists a sequence {vt} such that θo /∈ Ψmce(Z

N )
when ZN is generated from (1) under the action of {vt}.

PROOF. We start by observing that with ℓ being the
square function, the cost V̂φℓ

(yt, ŷt(θ)) is differentiable.
Therefore, a necessary condition for θ to be in Ψmce(Z

N )

is that ∇V̂φℓ
(yt, ŷt(θ)) = 0, where ∇ refers to the gra-

dient. This, by using the system equation (1) and ex-
ploiting the assumption that vt = 0 for t ∈ I0ε , can be
translated into

(
N∑

t=1

wt(θ)xtx
⊤
t

)
(θ − θo) =

∑

t∈Ic
ε

wt(θ)vtxt,

where wt(θ) = exp
(
− γℓ(vt − x⊤

t (θ − θo))
)
. Note that

the matrix on the left hand side of the equation above
is finite regardless of the value of θ. Hence, in the event
that θo ∈ Ψmce(Z

N ), we would have

∑

t∈Ic
ε

wt(θ
o)vtxt =

∑

t∈Ic
ε

λtxt = 0

with λt = exp(−γℓ(vt))vt. Clearly, it is possible to find
a nonzero sequence {vt} which does not meet this condi-
tion. Hence θo cannot be in Ψmce(Z

N ) for an arbitrary
{vt : t ∈ Icε} no matter how small the cardinality of Icε
is. ✷

We now discuss some special instances of Theorem 8
corresponding to two kernels which are frequently used
for estimation. For convenience of the discussion, let us
introduce the following notation. Let µ : R3

+ → R+

µ(z, ε, α) =
1 + e−z

|I0
ε
|

N + ρα(X)− 1

[ 1

1 + e−z
ρα(X)+e−z |I0ε |

N
−1
]

whenever e−z |I0

ε
|

N + 1
1+e−z ρα(X)−1 > 0 and µ(z, ε, α) =

0 otherwise.

Remark 10 The bound (16) allows for some degree of
freedom in the choice of the parameter α. For a given
function ℓ assumed to be invertible on R+, a better bound
can, in principle, be obtained as

min
α∈]0,1]

1

αrx
ℓ−1

(
1

γαℓ
ln
( 1

µ(γℓ(ε), ε, α)

))

subject to α ≤ σ(X) and condition (13). Although such a
minimum might not be easy to compute exactly, one can
make the error bound a little tighter by performing for
example some grid search. In the same manner one can
envision optimizing the parameter γ of the estimator.

3.3 Laplacian kernel

The Maximum Laplacian Correntropy estimator (MCE-
L) corresponds to the case where the function ℓ in (3) is
taken to be such that ℓ(a) = |a|. As a result, the function
φℓ takes the form

φ1(y, ŷ) = exp (−γ1 |y − ŷ|) . (18)

It is straightforward to see that the properties P1-P4 are
satisfied by ℓ with αℓ = 1. Theorem 8 can be specialized
to this case as follows.

Corollary 11 (Laplacian kernel)
Let I0ε be defined as in Theorem 8. Assume that the fol-
lowing condition is satisfied

1

1 + e−γ1ε
ρα(X) + e−γ1ε

|I0ε |
N

> 1 (19)

for some α ∈ ]0, 1].

Then for any θ⋆ ∈ argmaxθ∈Rn V̂φ1
(yt, ŷt(θ)) with φ1

defined as in (18), it holds that

‖θ⋆ − θo‖2 ≤ 1

γ1αrx
ln
( 1

µ(γ1ε, ε, α)

)
(20)

3.4 Gaussian kernel

The most used form of correntropy is the one based on
the Gaussian kernel which, by omitting the normalizing
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factor, can be written in the form

φ2(y, ŷ) = exp(−γ2(y − ŷ)2) (21)

with γ2 > 0. We will refer to the associated estimator as
the maximum Gaussian correntropy estimator (MCE-
G). Here, the function ℓ is defined by ℓ(a) = a2 and
according to Lemma 3, it satisfies the properties P1-P4.
In particular, P4 is satisfied with αℓ = 1/2. Moreover ℓ
is clearly monotonic on R+. As a consequence, we get a
corollary of Theorem 8 as follows.

Corollary 12 (Gaussian kernel) Let I0ε be defined as
in Theorem 8. Assume that the following condition is
satisfied

1

1 + e−γ2ε2
ρα(X) + e−γ2ε

2 |I0ε |
N

> 1 (22)

for some α ∈ ]0, 1].

Then for any θ⋆ ∈ argmaxθ∈Rn V̂φ2
(yt, ŷt(θ)), it holds

that

‖θ⋆ − θo‖2 ≤ 1

αrx

[
2

γ2
ln
( 1

µ(γ2ε2, ε, α)

)]1/2
. (23)

3.5 A remark on the error-in-variables scenario

We now consider the situation where only a noisy ob-
servation x̄t = xt + wt of the regressor vector xt in (1)
is available for prediction. This scenario is referred to as
the robust error-in-variable (EIV) regression problem.
Then the predictor output is given by

ŷt(θ) = x̄⊤
t θ.

Indeed Theorem 8 remains valid for this case. To see this
note that the system equation (1) can be rewritten as

yt = x̄⊤
t θ

o + v̄t

where v̄t = vt−w⊤
t θ

o. Then clearly the theorem applies
to the EIV scenario with {xt} and {vt}, replaced respec-
tively by {x̄t} and {v̄t}. One limitation however in this
case is that for a given ε ≥ 0, the cardinality of the set
I0ε = {t ∈ I : |v̄t| ≤ ε} is likely to be much smaller than
in the situation where the regressors are noise-free.

4 Numerical experiments

The purpose of this section is to provide a numerical il-
lustration of the richness measure (8) and of the estima-
tion error bound (16). The system example considered
for the experiment is of an FIR-type and is given by

yt = 0.5ut − ut−1 + 0.2ut−2 + vt (24)

which can be written in the form (1) with θo =

[0.5 −1 0.2]⊤ and xt = [ut ut−1 ut−2]
⊤. For the data-

generation experiment, assume that {ut} iid∼ N (0, 1)
i.e., {ut} is sampled independently and identically from
a zero-mean Gaussian distribution of unit variance. As
for the noise signal {vt}, it is defined as vt = et + ft

with {et} iid∼ U([−ε, ε]) where U refers to the uniform
distribution and {ft} is a sequence of sparse noise with
only a few nonzero elements (which are otherwise not
constrained in magnitude); the nonzero elements of {ft}
are here sampled from N (50, 10).

4.1 Illustration of estimates

We generate N = 300 data pairs (xt, yt) and carry out a
comparison between three estimators: on the one hand,
the maximum Laplacian correntropy estimator (MCE-
L) and the maximum Gaussian correntropy estimator
(MCE-G) and on the other hand, the Least Absolute
Deviation (LAD) estimator (which is also called ℓ1 es-
timator). Recall that MCE-G and MCE-L involve non
convex optimization. Here they are heuristically imple-
mented as a reweighted iterative least squares estimator
and as a reweighted ℓ1 estimator respectively. The re-
sults are represented in Figure 1 in term of average esti-
mation error. What this suggests is that for fixed values
of the design parameters γ1 and γ2 (see Eqs (18) and (21)
for the roles of these parameters), LAD and MCE-L en-
joy a similar performance for small amount of noise. But
as the noise level increases, LAD shows better stability
capabilities than the MCE-L. Note that overall MCE-G
tends to perform best in the setting of this experiment
as long as the magnitude of the dense noise is reason-
able (SNR larger than 2.8 dB). A possible justification
for this is that squaring errors that contain outliers as in
(21) cancel out their influence more forcefully than just
taking their absolute value as in (18).

4.2 Estimation of richness measure ρα(X)

We provide a graphical representation of how the infor-
mativity measure ρα(X) may, for a given data matrix
X ∈ R

n×N , evolve with respect to the dimensions N/n
of X and the demanded degree α of richness (See Figure
2). The estimated range for ρα(X) is based on Eq. (12).
Here X is formed from an FIR-type of regressors with
an input sampled from a zero-mean and unit variance
Gaussian distribution. Our experiments in this specific
study tend to suggest that ρα(X) is a non decreasing
function of the ratio N/n and a decreasing function of
α. Moreover, the estimated range (gray regions in Fig.
2) gets wider when n is large.

4.3 Estimates of error bounds

The goal here is twofold: (i) illustrate the variation of
the estimation error bounds with respect to the magni-
tude of the dense noise in the special cases (20) and (23);
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Figure 1. Comparison of the estimators MCE-L, MCE-G and
LAD. Evolution of the (average) estimation error in function
of the level ε of noise. The range [0, 1.6] of ε corresponds
indeed to a range of about [2,+∞] for the signal-to-noise
ratio in this experiment. The results are obtained from a
Monte-Carlo simulation of size 1000. For each experiment,
the proportion of outliers is maintained fixed and equal to
50%. Design parameters: γ1 = 0.5 and γ2 = 0.25.
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Figure 2. Estimates of ρα(X) as a function of α ∈ [0, 1]. The
true values of ρα(X) lie in the region depicted in gray color.

(ii) assess how conservative the derived theoretical error
bounds may be with respect to the empirical errors.
Increasing rates of the bounds. If for each level ε

of noise, we select the parameter γ such that the prod-
uct γℓ(ε) is kept constant, then the error bounds corre-
sponding to both MCE-L and MCE-G have a linear rate
of change with respect to ε as depicted in Figure 3. The

increasing rate of the bound corresponding to MCE-L is
larger than that of MCE-G for the current setting. Note
that the computation of bounds made here is not con-
nected to the experiment of Section 4.1.
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1
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B
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ε

Bound MCE-L

Bound MCE-G

Figure 3. Illustration of increasing rates of the error bounds.
Results obtained by assuming that γℓ(ε) = 0.2, |I0ε |/N = 0.8,
ρα(X) = 0.8, α = 0.6 in both cases. These values are chosen
independently of a specific data matrix X but in such a way
that (19) and (22) are satisfied.

Comparing theoretical bounds and empirical er-
rors. It might be instructive to see how far away the
theoretical error bounds may be from the empirical val-
ues. To study this aspect, let us consider a numerical
experiment with a similar data-generating process as de-
scribed in the beginning of Section 4. The dense noise
level is set to ε = 0.05 which gives an SNR of about 25
dB and the proportion of outliers is set to 10% (which is
small enough to enforce condition (13)). One difficulty
in evaluating the theoretical bounds is that this requires
evaluating ρα(X) which, as already discussed in Section
3.1, is a hard problem. Hence, ρα(X) is replaced here
with the mean value of the lower and upper estimates
displayed in (12). We then let the number N of data vary
from 500 to 5000 and plot the empirical errors along with
the bounds from (20) and (23) in Figure 4.

It is fair to observe that the theoretical bounds are con-
servative in the sense that they are generally higher than
the true empirical errors. Here the ratio between the
bounds and the true errors is about 30. Conservativeness
is indeed a common feature for these types of results due
to the various inequalities employed for the derivation.
Nevertheless, the main interest of Theorem 8 is that it
provides a sufficient condition for the robustness of the
maximum correntropy estimator, a condition that de-
pends explicitly on the degree of informativity of the
regression data and on the proportion of outliers. More-
over, by expressing error bounds which involve explicitly
the design parameters, the theorem gives insights into
how to tune those parameters with the aim to improve
estimation performance.
A further remark one can make is that the general for-
mula for the error bound in (16) has a kind of universal
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Figure 4. Comparison of theoretical bounds and empirical er-
rors ‖θ⋆ − θo‖2. Results obtained with an estimate of ρα(X)
for α = 0.6, ε = 0.05 (i.e., SNR = 25 dB), γℓ(ε) = 0.2,
|I0ε |/N = 0.9. The results are obtained from a Monte-Carlo
simulation of size 1000.

feature in the following sense: since the bound does not
involve the magnitude of the true θo (for an FIR-type
system for example), it is in principle valid regardless of
θo. Hence the relative error will be as smaller as the norm
of the to-be-estimated parameter vector θo is larger.

5 Conclusion

In this paper we have proposed an analysis of the robust-
ness properties of a correntropy maximization frame-
work for regression problems. The class of estimators
considered is quite general and include the Gaussian and
Laplacian kernels as special cases. The contribution of
the work consists in (i) deriving an appropriate notion
of richness for the regression data; (ii) proving stability
of the considered class of estimators under the derived
richness condition when the data are subject to dense
and sparse noise (outliers). Our main result states that if
the regression data are rich enough and if the number of
outliers is small in some sense, then the parametric esti-
mation error is bounded. The results come with explicit
bounds which, in default of being exactly computable,
can be estimated with computable estimates.
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