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On the input-output approach towards distributed estimation

Fakhteh Saadatniaki†, Anton Korniienko‡, Gerard Scorletti‡, and Usman A. Khan†

Abstract— In this paper, we study distributed estimation of
continuous-time, linear time-invariant systems monitored by a
network of agents communicating over a graph. We assume
that no agent may possess enough measurements in its neigh-
borhood to estimate the entire state vector on its own. In this
context, we provide a networked Kalman-type estimator that
combines prediction and innovation with information fusion
among the neighboring agents and consider an approach based
on designing static estimator gains. The main contribution of
this paper is to analyze the estimation error using the notions of
dissipativity and the input-output approach, which enable us to
formulate stability and performance arguments as quasiconvex
optimization problems involving linear matrix inequalities. We
show that the resulting estimation error is stable and further
ensures a given level of performance regarding noise rejection.
Simulations illustrate the concepts described in this paper.

Index Terms— Distributed control; Consensus control and
estimation; Agents and autonomous systems

I. INTRODUCTION

Recently, there has been a significant amount of work
in the area of distributed estimation of physical and social
phenomena [1]–[3]. Some prime examples include tracking
in multi-agent networks [4], [5], estimation or optimization
in large-scale systems [6], [7], or studying opinion formation
or voting models in complex social networks [8]. Estimating
the underlying dynamics in such systems is a challenging
problem as measurements are typically distributed over a
network of geographically-dispersed agents (sensors, robots,
individuals). Distributed estimation, see e.g., relevant work
in [9]–[11], thus enables estimating the dynamics without
collecting measurements at a central location, a practically
infeasible task, but by enabling local estimation and inter-
agent information exchange. In this paper, we focus on the
distributed estimation of a Continuous-Time, Linear Time-
Invariant (CT-LTI) dynamical system whose measurements
are distributed over a network of sparsely-connected agents.

Relevant work on decentralized estimation of CT-LTI
systems can be found in [12]–[15]. For instance, Ref. [12]
considers decentralized state estimation of linear stochastic
systems based on a combination of local Kalman filters and
a dynamic consensus scheme among the agents. Ref. [13]
proposes a theoretical framework for coupled distributed
estimation and motion control of mobile sensor networks
based on distributed Kalman filtering for collaborative target
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tracking. Ref. [14] extends adaptive diffusion models to
continuous-time setups. Moreover, a recursive algorithm is
presented in [15] for the distributed estimation of a moving
target under switching interconnection topologies, where the
stability of the algorithm is analyzed under mild observability
and connectivity assumptions. Of significant relevance to this
paper is Ref. [16], which tackles the problem of control
law design for interconnected systems, ensuring global sta-
bility and a certain pre-specified performance criteria using
the notion of dissipativity, focusing on certain input-output
properties of dynamical systems related to the conservation,
dissipation, and transport of energy loosely referred to as
dissipative properties [17].

In this paper, we assume that the no agent possesses
enough measurements in its neighborhood to be able to
estimate the entire state-vector on its own. In this sense,
standard estimation techniques are not applicable and we
propose a consensus plus innovation estimator that recovers
the observability at each agent with the help of consen-
sus on the neighboring predictions. To keep the estimator
design simple and develop an estimator that requires min-
imal computation and coordination, we use a static gain
that is same for both of the consensus and the innovation
terms. In this context, we use the machinery developed
in Ref. [16] and cast the distributed estimation problem
in a similar decentralized control framework, where based
on dissipativity characterization of the dynamical systems,
we show that the gain design problem can be reduced to
two quasiconvex optimization problems under Linear Matrix
Inequality (LMI) constraints. In particular, we apply the
bounded-real lemma and matrix elimination procedure to
obtain existence conditions and a design procedure for a
static estimator gain, which guarantees stable error dynamics
while also satisfying a given performance level in terms of
an upper bound on the H∞-norm of the global error transfer
function. Our design is based on the input-output approach,
i.e., given a power spectral density (PSD) specification on
the input, the H∞-norm is closely related to the PSD of the
output, see e.g., [18], [19].

We now describe the rest of the paper. Section II formu-
lates the problem and describes related concepts on dissi-
pativity and the input-output approach. Sections III and IV
study the estimation error analysis and present our main
results on the design of a static estimator gain ensuring sta-
bility and performance specifications, respectively. Section V
illustrates our results and Section VI concludes the paper.

Notation: The superscripts ‘>’ and ‘∗’ denote transpose
and complex-conjugate transpose, respectively. The N ×N
identity matrix is denoted by IN and the n×m zero matrix is



denoted by 0n×m. The indexes are dropped if the context is
clear. The diagonal aggregation of two matrices A and B is
denoted by diag(A,B). With matrix G partitioned into four
blocks G11, G12, G21, and G22, G?K denotes the Redheffer
product, [20], i.e.,

G ?K = G11 +G12K (I −G22K)
−1
G21;

similarly, K ? G = G22 + G21K (I −G11K)
−1
G12. We

use <{α} to denote the real part of a complex num-
ber α ∈ C. For a stable LTI system represented by
transfer matrix G, ‖G‖∞ , sup { ‖G(jω)‖ |ω ∈ R }
denotes its H∞-norm, [18]. The ith eigenvalue of a real
square matrix P is denoted by λi(P ). For symmetric matri-
ces, ‘�’ (‘�’) denotes positive semi-definiteness (positive-
definiteness). Finally, R+ represents the set of nonnegative
real numbers.

II. PROBLEM FORMULATION

Consider the following CT-LTI dynamics:

ẋ(t) = Ax(t), t ≥ 0, (1)

where t is the continuous-time variable, x(t) ∈ Rn is the
state at time t, and A is the system matrix. The measure-
ments for this system are distributed over a network of N
agents, communicating according to a graph G = (V, E),
where V = {1, 2, . . . , N} is the set of agents and E is the
set of edges (links) between the agents. The neighborhood
at the ith agent is defined as Ni , {i} ∪ {j|(i, j) ∈ E} and
each agent i has the following observation model:

yi(t) = Hix(t) + ri(t), (2)

where yi(t) ∈ Rpi is the local measurement, Hi is
the local observation matrix, and ri(t) is the zero-
mean additive noise whose PSD is bounded by 1. Let-
ting A ∈ {0, 1}N×N to denote the corresponding adjacency
matrix and D = diag(|N1 \ {1}|, · · · , |NN \ {N}|) to de-
note the degree matrix, the normalized adjacency matrix is
defined as Ā = D−1A.

Given the dynamical system described by Eq. (1) and
local observations in Eq. (2), the goal is to estimate the
state x(t) of the system in a distributed manner. We assume
that the system is globally observable, i.e., with the system
matrix, A, and the collection of all measurement matri-
ces, Hi’s. However, no agent is assumed to be observable in
its neighborhood, i.e., the system matrix, A, is not necessarily
observable with the measurement matrices, Hj , j ∈ Ni, at
any agent in the network. Clearly, due to a lack of (neigh-
borhood) observability, no agent can implement the standard
Kalman filtering equations to estimate the state, x(t), even if
it collects all of the measurements in its neighborhood. The
distributed estimation problem is thus to estimate the state
of the system in this setting. Finally, we note that there is no
process noise in Eq. (1). Nevertheless, the state estimation
problem considered here is of relevance because the initial
conditions are not known, the measurements are corrupted
by noise, and no agent is locally observable.

We propose a variant of the Networked Kalman-type
Estimator (NKE), initially introduced in [21], which follows
a prediction + innovation framework based on state and
output exchange among agents with an additional consensus
term from inter-agent interactions to address the distributed
nature of the problem. Not only does this force agreement but
it also diffuses information on the state variables for which
there may be no measurement in the neighborhood:

˙̂xi(t) =Ax̂i(t)︸ ︷︷ ︸
predictor

+
∑
j∈Ni

Kij (x̂j(t)− x̂i(t))︸ ︷︷ ︸
state exchange: consensus

+
∑
j∈Ni

BijH
>
j

(
yj(t)−Hjx̂i(t)

)
︸ ︷︷ ︸

measurement exchange: innovation

, (3)

where x̂i(t) is the local state estimate at agent i, Kij ∈ Rn×n
are consensus gain matrices, and Bij ∈ Rn×n are innovation
gain matrices between agents i and j. Since each agent
estiamtes the same dynamical system, we assume the gain
matrices to be constant over the consensus and innovation
terms and across each agent, i.e., Kij = K

|Ni\{i}| , Bij = K,
where K ∈ Rn×n; this also serves as a baseline with respect
to the solutions obtained with higher degrees of freedom.

A. Error Dynamics

Defining the local estimation error as ei(t) , x̂i(t)−x(t),
it is straightforward to show that

ėi(t) = ˙̂xi(t)− ẋ(t)

= Aei(t) +
K

|Ni \ {i}|
∑
j∈Ni

[ej(t)− ei(t)]

−K

∑
j∈Ni

H>
j Hj

 ei(t) + K
∑
j∈Ni

H>
j rj(t)︸ ︷︷ ︸

external input due to noise

. (4)

The matrix K can be thought of as a static estimator gain,
designing which is the main goal of this paper such that
the estimation error is stable at each agent and meets certain
performance criteria with regard to noise rejection. The block
diagram corresponding to the graphical representation of the
local estimation error dynamics is depicted in Fig. 1.

Fig. 1: Local error dynamics

The signals enclosed in the dashed octagon represent the
estimation errors from the neighborhood Ni of agent i,
constructing the auxiliary variable eNi

(t) as labeled in Fig. 1.
The aggregate auxiliary signal from the entire network,



denoted as ē(t), reveals how the network topology affects
the global estimation error dynamics and is given by

ē(t) =

eN1(t)
...

eNN (t)

 = (Ā ⊗ In)

e1(t)
...

eN (t)

 , (Ā ⊗ In)e(t). (5)

Next we investigate the effect of agent measurements on the
global estimation error dynamics:

ȳ(t) =

yN1
(t)

...
yNN

(t)

 = DH

e1(t)
...

eN (t)

 , (6)

where DH is the block-diagonal matrix with
∑
j∈Ni

H>j Hj

being its ith block, and

r̄(t) =

rN1
(t)

...
rNN

(t)

 =


∑
j∈N1

H>j rj(t)
...∑

j∈NN
H>j rj(t)

 , (7)

which is the external input due to measurement noise.
Note that Ti(s) (as labeled in Fig. 1) can be rewritten

as G(s)K(I + G(s)K)−1 based on the push-through rule
from [19, Chapter 3]; consequently, we can express Ti(s) in
terms of the Redheffer product P(s) ? K with

P(s) =

[
P11(s) P12(s)
P21(s) P22(s)

]
=

[
0 G(s)
I −G(s)

]
. (8)

For the global error process, concatenating ui(t) (as labeled
in Fig. 1) in a vector u(t) results in the internal signal

u(t) = r̄(t) + ē(t)− ȳ(t) = r̄(t) + [(Ā ⊗ In)−DH ]e(t). (9)

The resulting global error process with r̄(t) as the in-
put and e(t) as the output is represented in Fig. 2. This
system can be interpreted as the interconnection F of N
identical subsystems Ti(s) = T (s), mathematically denoted
as (IN ⊗ T (s)) ? F , where e(s) = (IN ⊗ T (s))u(s). As
indicated in Fig. 2, the interconnection F is static; i.e., a
gain matrix, which means that the relation [in Fig. 2] holds
in both time and frequency domains. We now describe the
main problem addressed in this paper.

Fig. 2: Global error dynamics

Problem 1: (Distributed Estimation): Given the above for-
mulation, find the estimator gain K such that given the local
dynamics P as defined in Eq. (8) and the interconnection
matrix F in Fig. 2, the corresponding global error dynamics
is stable and satisfies the performance specification

‖(IN ⊗ T (s)) ? F‖∞ < η, (10)

for a given η > 0. This objective directly affects noise
rejection properties of the global error by setting an upper

bound η on the noise amplification from r̄ to e, see Fig. 2. To
this aim, we will design procedures based on the dissipativity
properties of the interconnection matrix F and the local
system T (s). The advantage of the dissipativity framework
lies in the fact that it reduces the complexity of global
stability and performance analyses by studying the local
[sub]systems, which is the main motivation behind input-
output approaches in the study of networked systems, see
e.g., [22]–[24]. The analysis is carried out in Sections III
and IV for stability and performance, respectively. Pre-
liminaries and essential results related to dissipativity are
described next.

B. Preliminaries on Input-output Approach

Consider a general state space

ẋ = f(x,u), u ∈ U = Rm,
y = h(x,u), y ∈ Y = Rp, (11)

where x ∈ Rn is the state and (u,y) is the input-output
pair. The concept of dissipativity describes the system by
relating the internally stored energy of the system to a
generalized energy supply rate function s(u(t),y(t)). There
are many different notions of dissipativity introduced in
various publications, see e.g., [17, Chapter 4] for a detailed
discussion. In our analysis of distributed estimation, we use
the following notion of dissipativity in frequency domain
from [16]:

Definition 1 (Dissipativity): A causal, stable LTI system T
is [strictly] (X,Y, Z)-dissipative, where X = X>, Y ,
and Z = Z> are real matrices of appropriate dimensions
such that [

X Y
Y > Z

]
is full-rank, if there exists ε = 0 [> 0] such that[

I
T (jω)

]∗ [
X Y
Y > Z

] [
I

T (jω)

]
+ εI � 0. (12)

for almost every ω ∈ R+.

The following result from [16] serves as the basis for our
proposed solution to the problem of distributed estimation
explained in the next two sections.

Theorem 1: Given η > 0, a stable interconnection F , a
local plant P(s), and the real matrices X = X> ≺ 0, Y ,
and Z = Z> of appropriate dimensions, if there exist

(i) a positive-definite matrix S ∈ RN×N such that F
is {diag(S⊗X,−η2I), diag(S⊗Y, 0), diag(S⊗Z, I)}-
dissipative, and

(ii) a local controller K such that T (s) = P(s) ? K is
strictly {−Z,−Y >,−X}-dissipative,

then the large-scale system
(
IN⊗T (s)

)
?F , depicted in Fig. 2

is stable and ‖
(
IN ⊗ T (s)

)
? F‖∞ ≤ η.

Theorem 1 can be specialized to analyze only the internal
stability by slightly modifying condition (i) as below.

(i′) a positive-definite matrix S such that M = F11, de-
fined in Fig. 2, is {S ⊗X,S ⊗ Y, S ⊗ Z}-dissipative.



In this paper, we assume diagonal matrices of the form

X = xIn, Y = yIn, Z = zIn, (13)

for the choice of X , Y , and Z in Theorem 1 [and its modified
version] and find x, y, and z such that conditions (i) [(i′)]
and (ii) are both satisfied. Matrices of more general structures
will be the focus of future studies.

III. ERROR STABILITY

Recall that our goal is to design the estimator gain ma-
trix K such that the global error dynamics are internally sta-
ble and satisfy a given level of performance. In this section,
we consider the stability of the error process, which ensures
that the estimation error would vanish if no measurement
noise is present across the network; the performance will be
discussed in the next section. We only focus on the case
where the system matrix A is not Hurwitz since otherwise,
the error process is stable with K = 0n. We now present
our main result on the error stability.

Theorem 2 (Stability): Given the dynamics in Eq. (1) with
non-Hurwitz system matrix A, the global estimation error
process (IN⊗T (s))?F , and M = F11 = Ā⊗In−DH , there
exists an estimator gain matrix K ∈ Rn×n ensuring internal
stability if there exist a positive-definite matrix S ∈ RN×N ,
and real values χ > 0 and c such that

M>(S ⊗ In︸ ︷︷ ︸
, S̃

)M�χ(cM − InN )>S̃(cM − InN ), (14)

χ < min{ 1

c2
,

1

(c− 1)2
}. (15)

The proof of Theorem 2 is beyond the scope of this
paper and is omitted because of space limitations. We have
included a sketch of the proof here.

Proof Sketch : Directly applying the modified version
of Theorem 1 and choosing x = −1, y = c, and z = 1

χ − c
2

in Eq. (13), Eq. (14) is equivalent to condition (i′). Moreover,
condition (ii) in Theorem 1 can be expressed as

χ (T (jω)− cI)
∗

(T (jω)− cI)− I ≺ 0, (16)

which is equivalent to ‖T̂‖∞ < 1 for the auxiliary
system T̂ (s) =

√
χ (T (s)− cI). Applying Bounded-Real

Lemma [25, Chapter 10] to the state-space representation
of T̂ (s) and introducing the change of variables Q = PK,
‖T̂‖∞ < 1 if and only if there exists a positive-definite
matrix P ∈ Rn×n such that[

A>P + PA− (Q> +Q) + χI Q− cχI
Q> − cχI (c2χ− γ2)I

]
≺ 0,

(17)

for γ2 = 1. The proof is completed by deriving the
equivalence between Eq. (15) and the feasibility of Eq. (17)
through the application of the Elimination Procedure for
Matrix Variables [25, Chapter 2] on Eq. (17).

Theorem 2 establishes the existence conditions for a
stabilizing estimator gain matrix K. In the remainder of

this section, we provide an algorithm to compute K based
on this theorem and the resulting observations made in the
following Remarks.

Remark 1: In the case of a single-input and single-output
system T , Eq. (16) means that the Nyquist plot of the transfer
function T (s) lies inside the circle centered at c+j0 with ra-
dius 1√

χ . Similar interpretation applies to the multiple-input
and multiple-output case as well. To relax this constraint for
a given center c, the radius has to be maximized, which is
equivalent to minimizing χ.

The key idea of the algorithm is based on the fact that
minimizing χ, as mentioned in Remark 1, would strengthen
the constraint in Eq. (14); therefore, Eqs. (14) and (16)
cannot be simultaneously relaxed. As a result, the following
optimization problem can be solved to satisfy the conditions
of Theorem 2, leading to the computation of the estimator
gain matrix K ensuring global stability.

minimize
χ,S

χ

subject to S � 0, S̃ = S ⊗ In,

M>S̃M � χ (cM − InN )
>
S̃ (cM − InN ) , (18)

which is a generalized eigenvalue problem for a fixed value
of c (see Remark. 2), with S ∈ RN×N and χ ∈ R+ as the
decision variables, [25].

Remark 2: The center c has to be fixed in order to have a
tractable optimization problem in Eq. (18); it must be chosen
in a way that Eq. (14) is feasible. The choice of c can
be based on the spectrum of M ; in fact, it can be shown
that Eq. (14) is feasible as long as

|c| ≤ 1

2 maxi

(∣∣∣∣<{λi(M)

}∣∣∣∣) . (19)

Remark 3: Having formulated the optimization in Eq. (18) as
a generalized eigenvalue problem, we cannot include Eq. (15)
as an explicit constraint; consequently, we proceed in the
following iterative manner: Denoting the values obtained
from the above procedure as c∗ and χ∗, we use these values
to verify whether the constraint in Eq. (15) is met, in which
case the static estimator gain is computed as K = (P f)−1Qf,
where P f and Qf are solutions to the feasibility problem
in Eq. (17) for γ = 1, c = c∗, and χ = χ∗. If not, we fix a
new value for c from the interval obtained in Eq. (19) and
repeat the earlier steps. Given a sufficiently large number
of samples from the interval in Eq. (19) (gathered in the
sample set C), one approach is to do a linear search on c
until the conditions of Theorem 2 are met or the sample
set is exhausted, the latter implying that a static estimator
gain K, ensuring stability of the global error, was not found.

The above procedure to compute the static estimator gain
is summarized in Algorithm 1.

Remark 4: In case of Hurwitz (stable) system matrix A, the
condition in Eq. (15) simplifies to χ < 1

c2 .



Algorithm 1 Compute Static Estimator Gain K
given M , C = {samples from the interval in (19)},
repeat

c∗ ← a value in C
χ∗ ← solve the generalized eigenvalue problem

in Eq. (18) for c = c∗

if χ∗ < min{ 1
c∗2 ,

1
(c∗−1)2 } then

P f, Qf ← solve the feasibility problem in Eq. (17)
for c = c∗, χ = χ∗

K ←
(
P f
)−1

Qf

return K
end if

until C has been exhausted.
return Static estimator gain K not found

IV. PERFORMANCE

In this section, we present our main result on H∞ perfor-
mance characteristics of the global error process and compute
estimator gain matrix K satisfying the H∞ performance
objective specified in Eq. (10) in addition to stability.

Theorem 3 (Performance): Given the global error pro-
cess (IN⊗T (s))?F , there exists an estimator gain matrix K
ensuring performance objective ‖(IN ⊗ T (s)) ? F‖∞ < η,
if there exist a positive-definite matrix S ∈ RN×N , and real
values χ > 0 and c such that

Φ>


0 0 0 0
0 0 0 0

0 0 1
χ S̃ 0

0 0 0 I

Φ�χΦ>


1
χ S̃ 0 0 0

0 η2

χ I 0 0

0 0 0 0
0 0 0 0

Φ, (20)

where S̃ , S ⊗ In, Φ =

 I 0 −cI 0
0 I 0 0
0 0 I 0
0 0 0 I

[ IF
]

, and

χ < min{ 1

c2
,

1

(c− 1)2
}. (21)

Proof Sketch : The proof is based on Theorem 1 and follows
the same procedure as the proof of Theorem 2.

Similar to the case of internal stability, we present a
systematic procedure to compute an estimator gain ma-
trix K satisfying the performance specification in Eq. (10)
in addition to internal stability based on Theorem 3. An
analogous observation to the one made in Remark 1, reveals
that condition (ii) in Theorem 1 (equivalent to Eq.(16)) and
Eq. (20) cannot be simultaneously relaxed, leading to the
following optimization problem:

minimize
χ,S

χ

subject to S � 0, S̃ = S ⊗ In,

Φ>


0 0 0 0
0 0 0 0

0 0 1
χ S̃ 0

0 0 0 I

Φ � χΦ>


1
χ S̃ 0 0 0

0 η2

χ I 0 0

0 0 0 0
0 0 0 0

 (22)

with Φ as defined earlier.
To formulate the optimization in Eq. (22) as a generalized

eigenvalue problem, we first solve the stability problem. Us-
ing the resulting values for c, χ and ‖(IN ⊗ T (s)) ? F‖∞ (as
a baseline for η), we introduce the change of variable ς = 1

χS

and parameter β = η2

χ . The resulting optimization problem,
presented in Eq. (23), is a generalized eigenvalue problem
with ς ∈ RN×N and χ ∈ R+ as the decision variables, [25].

minimize
χ,ς

χ

subject to ς � 0, ς̃ = ς ⊗ In,

Φ>

 0 0 0 0
0 0 0 0
0 0 ς̃ 0
0 0 0 I

Φ�χΦ>


ς̃ 0 0 0
0 βI 0 0

0 0 0 0
0 0 0 0

Φ. (23)

In the optimization problem above, β acts as a tuning param-
eter; if the optimization problem has no solution, β should
be increased to relax the last constraint of the problem. Also
note that for a given value of β, minimizing χ results in
the minimization of the upper bound on noise amplification
gain η according to the relation η2 = χβ.

V. SIMULATIONS

In this section, we illustrate the concepts introduced in this
paper and evaluate the effectiveness of the proposed static
gain distributed estimator in terms of internal stability and
H∞ performance, experimentally. We consider a network
of N = 20 agents communicating over an undirected
graph based on a 3-circulant graph with a few more links
generated at random. The agents’ goal is to estimate the
state of an unstable n = 3-dimensional CT-LTI dynamical
system evolving according to the model in Eq. (1) with
a randomly chosen initial condition x(0) using Eq. (3).
We have considered a bare minimum measurement setup
where 3 non-neighboring agents i1, i2, and i3 are selected at
random such that each of these three agents measures one of
the system states in a mutually exclusive and collectively
exhaustive manner while the rest make no measurement.
Note that in this setup, observability is nonexistent from both
individual and neighborhood perspectives.

In the remainder of this section, we demonstrate the
stability and performance characteristics of the static gain
estimator through a series of Monte Carlo simulations.

A. Internal Stability

To illustrate the stability of the estimaion error process,
agents are assumed to have perfect (noise-free) observa-
tions; i.e., ri(t) = 0. Given zero initial estimate x̂i(0), each
agent makes an estimate of the system state using Eq. (3)



for t ∈ [0 , 10] seconds. This procedure is repeated over 100
Monte Carlo simulations, each with randomly generated sets
of non-Hurwitz system matrix A, communication graph G,
and observer agents {i1, i2, i3}. Consistent with the theory,
the distributed estimator in Eq. (3) results in asymptotically
stable error as illustrated in Fig. 3a, where the normal-
ized 2-norm of the global error, over each trial and averaged
over 100 Monte Carlo simulations, has been plotted.

B. Performance

In this subsection, the performance level η in Eq. (10) is
set equal to 11 and the performance characteristics of the
global error process are demonstrated in presence of noise
signal r̄(t) defined in Eq. (7), for the case where agent obser-
vations are subject to Additive White Gaussian Noise with
PSD equal to σ2 = 0.25. This procedure is repeated over 100
Monte Carlo simulations with a fixed set of system matrix A,
communication graph G, and the bare minimum observation
scheme explained above. The resulting normalized 2-norm
of the global error signal is plotted in Fig. 3b, averaged
over 100 Monte Carlo simulations. We note that the error
process is stable and the H∞-norm of the resulting global
error process ‖(IN ⊗ T (s)) ? F‖∞ is 10.6803, satisfying the
performance specification in Eq.(10).
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(a) Internal stability problem.
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Fig. 3: Normalized error 2-norm ‖e(t)‖2
N .

VI. CONCLUSIONS

In this paper, we describe a static estimator gain design
method to solve the distributed estimation problem for CT-
LTI systems monitored by a network of agents. In this
context, we express the problem of distributed estimation as
corresponding optimization problems and apply techniques
based on the input-output approach to perform stability and
performance analyses. We derive existence conditions for a
static estimator gain matrix resulting in stable error dynam-
ics, i.e., estimation error vanishing over time in the absence
of measurement noise; additionally, we derive existence con-
ditions regarding static estimator gain design, guaranteeing
desirable performance characteristics for the error process
in terms of noise rejection. The approach described in this
paper serves as the foundation of future investigation towards
extending the current work to dynamic estimator design
meeting certain frequency-dependent performance objectives
in addition to stability and noise rejection.

REFERENCES

[1] U. A. Khan and A. Jadbabaie, “On the stability and optimality of
distributed Kalman filters with finite-time data fusion,” in Proc. Am.
Control Conf., Jun. 2011, pp. 3405–3410.

[2] S. Park and N. C. Martins, “Design of distributed LTI observers for
state omniscience,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp.
561–576, Feb. 2017.

[3] M. Doostmohammadian and U. A. Khan, “Graph-theoretic inference
in social networks,” IEEE J. Sel. Topics Signal Process., vol. 8, no.
4, pp. 613–623, Aug. 2014.

[4] S. Oh, L. Schenato, P. Chen, and S. Sastry, “Tracking and coordination
of multiple agents using sensor networks: System design, algorithms
and experiments,” Proc. IEEE, vol. 95, no. 1, pp. 234–254, Jan. 2007.

[5] S. Safavi and U. A. Khan, “An opportunistic algorithm for localization
in mobile networks,” IEEE Trans. Rob., vol. 33, no. 4, pp. 875–888,
Aug. 2017.
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