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Introduction

The exploding use of Internet and of hypermedia documents has turned crucial the necessity to
dispose of robust online algorithms to manage complexity and interactivity. One of the resulting
problems which has emerged recently is the synchronizationof hypermedia documents by con-
sidering that each object can be compressed or delayed like an elastic spring. The heterogeneity
of the objects that compose a hypermedia document turns their presentation in time and space a
hard problem. On the other hand, interactivity imposes thatreal-time updates of the schedule of
the document should be possible, increasing the need for faster decision-making algorithms.

As explained in [2], such documents are composed of media objects (audio, video, text, im-
age...), which duration of presentation must be adjusted tosatisfy a set of temporal constraints that
express the progress of the animation as defined by the author. But for these constraints to be sat-
isfied, the author must accept some flexibility on the duration (that we callideal) of presentation
of each object, pauses being totally forbidden if not explicitly wanted. To estimate the quality of
an adjustment, a cost function, usually convex (cf. figure 1), is introduced for each object. To
sum up, the problem we attempt to solve here is to find an adjustment of best quality, i.e. which
minimizes the sum of the costs of the media objects.
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Figure 1: Examples of cost functions. a) Piecewise linear with a single ideal value. b) Non-linear, but convex and derivable. c)
Piecewise linear with several ideal values. d) Discrete values.

The set of temporal constraints can be modeled as a directed graphG = (X;U) whereX is a
set of nodes,U a set of arcs,m = |U | andn = |X|. The nodes represent events (the start or the
end of presentation of an object). The arcs express durationconstraints between nodes. With each
arcu is associated a time domainSu, an ideal durationou and a cost functioncu defined on the
domainSu. An arcu = (x; y) between two nodesx andy means the eventx precedesy and they
are separated by a durationθu ∈ Su, the ideal value beingou.

Let π : X 7→ R be a potential function which assigns a date to each event node of the graph.
Then the durationθu of an object associated with an arcu = (x; y) can be seen as the difference
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of potentialsθu = πy −πx, in other words,θ = (θu)u∈U is a tension vector on the graph (e.g. [3]).
Denoting byA the incidence matrix of the graph, i.e. matrixA of dimension(m × n) with the
elementsaxu equal to−1 (if u leavesx), +1 (if u comes tox) or 0 (any other case), the problem,
called the minimum cost tension problem, is simply formulated as following:















minimize
∑

u∈U

cu(θu)

with θ = AT π, θ ∈ S

1 Continuous Domain and Convex Costs Minimization

In a first step, we consider the domainSu of an arcu as a continuous interval[au; bu] and suppose
the cost functioncu to be convex two-piecewise linear cost as shown by figure 1a, the adaptation
to more pieces of the methods described here is straightforward. Hence, we consider the cost
functioncu as following:

cu(θu) =

{

c1

u(ou − θu) , if θu < ou

c2

u(θu − ou) , if θu ≥ ou

With convex piecewise linear costs, it is possible to model the problem with linear programs.
It is a solution widely used in practice for the synchronization problem (e.g. [4]). Another way to
solve the problem is theout-of-kilteralgorithm first introduced for the minimum cost flow problem
by D.R. Fulkerson in 1961 and then for the minimum cost tension problem by J.M. Pla in 1971.
We proposed an adaptation of that method to piecewise linearcosts. That algorithm is pseudo-
polynomial,O(m2(A + B)) operations whereA = maxu∈U{au; bu} andB = maxu∈U{c

1

u; c2

u}.
A polynomial method is presented in [3] but is only really efficient in practice for a special class
of graphs (Penelope’s graphs). More recently, [1] presents an algorithm to solve a more generic
problem called theconvex cost integer dual network flow problem, the algorithm consists in trans-
forming the minimum cost tension problem into a minimum costflow problem, solved with the
well-knowncost-scalingmethod. This algorithm is polynomial,O(mn2 log nA) operations, and
proves to be very efficient in practice. After presenting briefly all these methods, we discuss a
practical comparison of the methods and how they can be used in hypermedia synchronization
systems and software.

2 Continuous Domain and Alterations Minimization

As explained in [5], authors of hypermedia documents often need to minimize the number of
media objects that are not scheduled at their ideal value. Itmeans the cost functioncu of an arcu
is defined as following:

cu(θu) =

{

0 , if θu = ou

1 , if θu 6= ou

The definition domainSu of a durationθu is still supposed to be continuous as presented in
the previous section. However, due to the nature of the cost functions, the techniques described
before can not be used directly, since the problem now belongs to the family of mixed integer
programming. We propose a method based on linear relaxationto solve the problem. We show
that it is still possible to use the tension formulation within the relaxation, which allows us to
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define efficient strategies based on methods presented in section 1 to get very good solutions in a
reasonable amount of time.

3 Discrete Domain and Convex Costs Minimization

We consider now another variation of the problem described in section 1. Instead of considering
a continuous domain for the tension of each arc, we are now dealing with discrete domains, e.g.
the tension of each arcu can only have some values belonging to a setSu ∈ R

k. We propose
an integer formulation that involves binary/decision variables for each possible value of each set
Su. This kind of problem has been shown to be much harder to solvewithin the context of linear
programming. Preliminary results are shown.
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