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Abstract 

In double-curvature gridshells covered with rigid flat panels, panels cannot lay flat on the top surface of 

beams. In many cases, costly elements need to be inserted in-between to insure a proper beam-panel 

connection. Precedent research on the geometric rationalization of gridshells has mostly focused on 

minimizing cladding panel curvature, simplifying node and beam fabrication, and allowing for 

repeatability of elements. The connection between beams and panels has received very little attention. 

This paper explores the possible gridshell geometries under the constraint of having a full planar contact 

between beams and cladding panels. A strategy that consists of folding panels is studied in details. It 

turns out that a rich variety of panel shapes and folding patterns is possible. Two generation methods 

for such shapes are proposed: a method for quad meshes of revolution covered with folded panels, and 

a method for folded hexagonal panels based on the projection algorithm developed by Bouaziz et al [1]. 

The resulting structures are of particular interest for opaque doubly curved facades covered with metal 

sheets or other foldable material. The good contact between beams and panels also offers the possibility 

to use the panels as bracing elements. Hence the proposed method proves to be efficient for construction 

purposes, but also for mechanical behavior. 

Keywords: Architectural geometry, structural morphology, gridshell, free-form envelope 

1.  Introduction 

Free-form building envelopes have gained in popularity in the past decade. Many iconic complex 

doubly-curved facades have been erected. Geometric complexity of envelopes tends to increase 

drastically the price of a building, because non-standard complex elements have to be fabricated. 

However, a clever use of geometry can often significantly decrease the complexity of the fabrication 

process. A recent field of research has focused on the development of geometric methods to ease the 

fabrication of complex envelope shapes. The scientific community has focused on topics such as 

panelizing a surface with flat panels ([2], [3], [4]), generating meshes with torsion-free nodes and offsets 

([5],[6],[7]…), repeating beams, panels ([8]) or nodes ([9],[10]), or optimizing the geometry to use a 

certain type of fabrication technic ([11]). Many of these complex envelopes are constituted of cladding 

panels supported by a beam lattice, such as a gridshell. To the best of our knowledge, no research has 

been dedicated to the rationalization of the connection between beams and cladding panels. 

The main geometric factor that affects the connection between beams and cladding panels is the 

incidence angle between the panel and the top surface of the beam, which we will refer to as the kink 

angle (see Figure 1). One project for which this angle caused drastic cost increase is the Hungerburg 

Funicular Station, designed by Zaha Hadid. Because of the high variation of the kink angle, custom 

panel connections had to be milled for every single beam. Glass covered gridshells are also highly 

susceptible to the kink angle. Glass panels are usually connected to the gridshell by extruded aluminum 

profiles. A given profile can accommodate a certain range of kink angles. The higher the kink, the more 

complicated the profile has to be, and thus the more expansive.  
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Table 1 shows the kink angle for a range of surface curvature radius and panel width. It also gives the 

gap between the beam and the panel due to the kink angle for an 80mm wide beam – as shown on 

Figure 1. Gaps above 2mm appear systematically in areas of high curvature or when panels are 

relatively large. The kink angle can be significantly higher than in Table 1 if the beam is not oriented 

such that both adjacent panels have the same kink angle. This typically happens if the planes of 

symmetry of beams are set vertical in order to facilitate the beam-to-beam connections.  

Table 1: Kink angle for various radii of curvature and panel sizes (gap between panel and a 80mm wide beam 

shown in brackets in mm) 

 

 

Figure 1: Kink angle between a cladding panel and a beam and corresponding gap 

In this paper, we will focus on the following question: what are the possible geometric strategies to 

design a gridshell where the cladding panels can “lay flat” on the top surface of beams – i.e. with a null 

kink angle? This property allows the connection between panels and beams to be very simple. It can 

also allow to make such a connection structural, such that panels can be used for bracing purposes. In 

this study, we will consider beams for which the top surface is developable, which is the case of 

rectangular or I cross-section.  

Given this constraint, the dihedral angle between adjacent panels is null. Therefore, the curvature of the 

envelope need to be located inside the panels. For this purpose, panels may be bent or folded. Section 2 

will address shortly the first option. Section 3 will explore the different folding methods and the 

associated mesh topologies. This section is only relevant for cladding materials such as steel, aluminum 

or polycarbonate. Finally, in section 4 and 5, we will study two particular patterns with folded panels: 

simply folded quad panels on quadrangular gridshells, and tri-folded hexagonal panels. 

 

2. Developable panels 

A first solution to our problem is to bend initially flat panels. Thin panels can be deformed easily into nearly 

developable surfaces by hot or cold bending. Cold bending of glass panels is a popular method to cover a 

gridshell without planar faces with glass. This method was for example used for the facades of Strasbourg 

train station [12] and Vuitton Foundation in Paris.  

0.4 0.6 0.8 1 1.2

3 3.8°  (2.7) 5.7°  (4) 7.7°  (5.4) 9.6°  (6.8) 11.5°  (8.2)

5 2.3°  (1.6) 3.4°  (2.4) 4.6°  (3.2) 5.7°  (4) 6.9°  (4.8)

7 1.6°  (1.1) 2.5°  (1.7) 3.3°  (2.3) 4.1°  (2.9) 4.9°  (3.4)

10 1.1°  (0.8) 1.7°  (1.2) 2.3°  (1.6) 2.9°  (2) 3.4°  (2.4)

15 0.8°  (0.5) 1.1°  (0.8) 1.5°  (1.1) 1.9°  (1.3) 2.3°  (1.6)

20 0.6°  (0.4) 0.9°  (0.6) 1.1°  (0.8) 1.4°  (1) 1.7°  (1.2)

25 0.5°  (0.3) 0.7°  (0.5) 0.9°  (0.6) 1.1°  (0.8) 1.4°  (1)

30 0.4°  (0.3) 0.6°  (0.4) 0.8°  (0.5) 1°  (0.7) 1.1°  (0.8)

Curvature 

radius (m)

Panel width (m)
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Since we are dealing with cases where the top surface of the beam is a developable surface, the geometry 

of this surface can be fully described by one curve and one family of normal vectors, which defines the 

orientation of the top face at any point of the line. It can be shown ([13]) that there is only one developable 

surface which is incident to the curve and whose rulings are perpendicular to the normals. Therefore, two 

panels resting along the same beam belong necessarily to the same developable surface: their rulings are 

identical. As a result, a structure made of bent panels lying flat on their supporting beams can only describe 

one single developable surface, as illustrated in Figure 2. 

The generation of developable surfaces is a topic that is already well researched. Thus, we will not discuss 

this option further.  

 

Figure 2 : Developable panels connected without kink angle form one large developable surface 

 

3. Folded panels  

A second solution to our problem is to fold the cladding panels. This section will explore folding 

methods and associated mesh topologies.  

3.1. Types of folding  

Folding has been the focus of a lot of research, see for example [14] for a review of folds related to 

structural application. We will here focus on possible ways to fold one panel in the context of our 

problem.   

A first way to fold the panels is to follow the edge of the supporting beams, as shown on Figure 3. This 

solution can readily be applied to any mesh with planar faces. However, this method requires a lot of 

folding and cutting. Furthermore, special details are needed at the corner to insure water tightness.  

                

Figure 3: Panels folded along the beam edges (left) and along a diagonal (right) 

A second way is to follow the diagonals, as shown on Figure 3. This method has been often used for 

doubly curved facades with metallic cladding. For examples the facade of Rhike Park in Tbilisi, Georgia 

and the Bus Umsteigebahnhof Poppenbüttel in Hamburg are covered with simply folded aluminum 

panels. The Kaiser Hawaiian geodesic dome uses a more elaborate type of folding: quads are folded 

along their diagonals to form series of pyramids. 
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For materials that cannot be folded, panels may just be cut along diagonals. This method was for 

example used in the gridshell of the History Museum of Hamburg ([15]), for which some glass panels 

had to be cut diagonally to fit the gridshells in highly curved faces. 

In origamis folding such as the Miura pattern, multiple fold lines may end at the same vertex. This type 

of folding is too complicated technologically to be applied to a cladding panel. Thus we will only 

consider fold lines that start and end on the boundary of a panel. 

Fold lines may be curved. In that case the panel is not flat on either side. The fabrication of panels with 

curved fold lines is highly complex. However, recent projects such as ARUM, the Zaha Hadid exhibit 

for the 2012 Venice biennale, showed the potential of robotics to make complex curved folds. 

Complex panel deformations can be obtained by pressing. Recently, Trautz et al [16] proposed a 

technique to create complex crease patterns on a metal sheet by incrementally pressing it with a moving 

dice.  

Amongst all these folding methods, we shall only consider straight folds along panel diagonals, as this 

is the technically simplest and the least expensive option.  

 

3.2. Geometry and topology of meshes  

Envelopes covered with folded panels can be geometrically described by two meshes, as shown in Figure 

4 (in which panels are shown in yellow and grey): 

 A structural mesh, which represent the top centerline of support beams. This mesh also 

corresponds to the edges of the panels. 

 A fold mesh (dashed), which corresponds to all the fold lines. Each node of this mesh has to 

correspond with one node of the structural mesh. Faces of this mesh are also planar. 

As seen on Figure 4, a node of the structural mesh may or may not be a node of the fold mesh. In the 

second case, the node is necessarily flat: all incident planes are coplanar. Such nodes are very simple to 

fabricate.  

   

Figure 4: Fold mesh and structural mesh 

 

3.3. Combination of structural and envelope meshes 

Figure 4 shows a structure in which both the fold mesh and the structural mesh are quadrangular. 

However, many other mesh topologies are possible. Figure 5 shows four combinations of structural and 

fold meshes: 

- In pattern (a), a hexagonal beam layout is covered with triply folded hexagons. The fold mesh 

is triangular. This configuration has nodes with valence 3, which simplifies their fabrication. 
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- In pattern (b), quads are folded along their diagonal and assembled in a tiling which is the dual 

of the Archimedean tiling referred to as (34,6). The fold mesh is a Kagome mesh. This pattern 

has flat nodes of valence 3 and 6 and 3D nodes of valence 4. 

- Pattern (c) is the one shown on Figure 4, with quadrangular fold and structural meshes. 

- In pattern (d), folded quad panels are assembled to form a hexagonal fold mesh, while the 

structural mesh has the topology of the dual of the Archimedean tiling (3,4,6,4). 

We will study in more details patterns (c) in section 4, as it is simple and efficient mechanically. We 

will also see in Section 5 that pattern (a) is much less constrained geometrically for a gridshell with 

torsion-free nodes thanks to the lower valence of the nodes. 

 

 

Figure 5: Various combinations of structural and envelope meshes 

 

3.4. Structural considerations  

Since panels lay flat on the top beam surface, the connection between beams and panels can be structural 

– for example bolted or nailed. Panels can then be used as bracing elements for the beams. In that case, 

diagonal cables or moment connection are not needed anymore, thus lowering the cost of the structure. 

Since this paper focuses on form exploration, mechanical performance and structural details will be 

addressed in future work. 
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4. Quad meshes with torsion-free nodes 

In this section, we analyze the geometry of meshes with the quadrangular pattern shown in Figure 5 

(c). This pattern can be applied to any quadrangular mesh with planar faces – referred to as PQ mesh. 

We will focus here on meshes with torsion free nodes, which are much more cost effective and also 

more challenging geometrically.  

For such meshes, the fold mesh is a PQ mesh. Inside each face of this mesh, there is a flat node of the 

structural mesh. The axis of this node is necessarily perpendicular to the face. For nodes to be torsion-

free, this axis needs to be coplanar with the axes of the adjacent nodes of the structural mesh, which are 

3D nodes. This property is shown on Figure 6: 

   

Figure 6: Left: Axes of a torsion-free mesh with folded quads.                                                                                 

Right: Torsion-free nodes cannot be obtained at a 3D node with negative curvature. 

Such meshes cannot be negatively curved. One way to understand this is by looking at a fold mesh, as 

shown on Figure 6. If the node has a negative curvature, we cannot find an axis which is coplanar with 

the axes of the flat nodes. 

If the width of faces of the mesh tends towards zero, such that the mesh tends towards a smooth surface, 

the fold mesh will tend towards a conjugate networks, as it is a PQ mesh ([17]). On the other hand, the 

structural mesh (and the diagonals of the PQ mesh) will tend towards principal curvature lines, because 

of the torsion-free property of the normals. These properties are shown on Figure 7Figure 7. They 

constrain entirely the orientation and aspect ratio of faces of the mesh. This aspect ratio can be directly 

estimated using the Dupin indicatrix of the surface, which is an ellipse of aspect ratio k1/k2 whose main 

axes are aligned with principal curvature directions (where k1 is the maximum principal curvature and 

k2 the minimum one). The fold mesh being a PQ mesh, nodes of a given face can be approximated by 

this ellipse. Since the diagonals are aligned with curvature direction, the length ratio of the diagonals is 

roughly k1/k2. 

 

Figure 7: Constraints on the aspect ratio and orientation of a quad of the fold mesh 

Because of the high level of constraints, it was found that optimizing a mesh to give it all the above 

properties gives poor results. However, it is possible to generate meshes of revolutions in a parametric 

manner that fulfill all these properties exactly. An example is shown on Figure 8. The geometry of this 
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dome was adjusted such that the planes of symmetry of the beams at the planar nodes intersect at 90 

degrees. This property simplifies node fabrication. 

 

 

Figure 8: Mesh of revolution with torsion-free nodes 

5. Tri-folded hexagonal panels on torsion-free gridshell 

One major drawback of quad meshes studied in the previous section is that they do not allow negative 

curvature. Thanks to the lower valence of the nodes, the pattern shown on Figure 5 (a) does not have 

this limitation, and its geometry is much less constrained. As a result, meshes can be generated by 

optimization methods. Such a method was implemented with the plugin Kangaroo2 for Rhino – 

Grasshopper, which uses the algorithm developed by Bouaziz et al [1].    Figure 9 shows a mesh 

generated with this method and the set of constraints associated to a face. In areas of negative curvature, 

hexagons do not need to be in a bow-tie shape, because they do not need to be planar. This gives a 

significant structural and aesthetic advantage compared to hexagonal gridshells with planar faces. 

     

   Figure 9: Left: A torsion-free mesh that can be covered with tri-folded hexagons lying flat on beams. 

 Right: Geometrical constraints associated with the mesh 

Conclusion and future work 

This paper presented different ways to design a gridshell under the constraint of having panels lying flat 

on the top surface of beams. The proposed methods are of particular interest for opaque envelopes with 

high curvature, coarse panelization, or when cladding panels are aimed at bracing the beam network. 

Future work will address the mechanical behavior of the proposed solutions in this last case. Also, the 

feasibility of folded hexagonal sandwich panels will be studied. A prototype is being done at scale 1:1 

to investigate possible fabrication details. This work is an example of how constraints can paradoxically 

stimulate creativity to find structural and technical solutions. 
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