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Abstract

Coevolution has long been thought to drive the exaggeration of traits, promote major evolu-

tionary transitions such as the evolution of sexual reproduction, and influence epidemiological

dynamics. Despite coevolution’s long suspected importance, we have yet to develop a quan-

titative understanding of its strength and prevalence because we lack generally applicable

statistical methods that yield numerical estimates for coevolution’s strength and significance

in the wild. Here we develop a novel method that derives maximum likelihood estimates

for the strength of direct pairwise coevolution by coupling a well established coevolutionary

model to spatially structured phenotypic data. Applying our method to two well-studied

interactions reveals evidence for coevolution in both systems. Broad application of this ap-

proach has the potential to further resolve long-standing evolutionary debates such as the

role species interactions play in the evolution of sexual reproduction and the organization of

ecological communities.
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Main text

Introduction:

Our current understanding of coevolution’s importance rests upon methods that fall into1

two general classes: those that are broadly applicable but yield only qualitative evidence for2

coevolution and those that produce quantitative estimates for the strength of coevolution3

but can be applied only in a narrow range of systems. For example, one popular approach for4

inferring coevolution relies on measuring the spatial correlation between traits of interacting5

species and using significant interspecific correlations as evidence of a coevolutionary process6

(Berenbaum et al., 1986; Hanifin et al., 2008; Toju, 2008; Pauw et al., 2009). Strengths of this7

approach include the relative ease of collecting the relevant data and its broad applicability to8

a wide range of species interactions. The critical weakness of this approach, however, is that9

significant interspecific correlations are neither necessary nor sufficient for demonstrating10

coevolution (Nuismer et al., 2010; Janzen, 1980). Similarly, time-shift experiments have been11

broadly implemented in systems where experimental evolution is a tractable approach, but12

do not yield quantitative estimates of the strength of coevolution (Koskella, 2014; Blanquart13

& Gandon, 2013; Gaba & Ebert, 2009). In contrast, more quantitative approaches such14

as selective source analysis, a method that additively partitions selection gradients into15

independent components of selection (Ridenhour, 2005), require the collection of extensive16

trait and fitness data from interacting species and thus have proven difficult to employ in all17

but a few specialized systems (Brodie III & Ridenhour, 2003; Nuismer & Ridenhour, 2008;18

Burkhardt et al., 2012). As a consequence of these trade-offs in existing approaches, rigorous19

quantitative estimates of the strength of coevolution in natural populations are extremely20

scarce.21

A promising alternative to existing approaches is the development of model-based infer-22

ence methods that use easily collected phenotypic data to estimate the significance of well23

established coevolutionary models and hence to test for the significance of coevolution. In24

particular, coevolutionary models now exist that predict the statistical distribution of traits25

across multiple populations for a pair of interacting species that evolve in response to ran-26

dom genetic drift, abiotic selection, and coevolution (Nuismer et al., 2010). Crucially, these27
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models predict that the distribution of local population trait means in the interacting species 28

across a metapopulation will approach a bivariate normal distribution entirely described by 29

five statistical moments: the average value of the key trait in each species among populations, 30

the variance of the key trait in each species among populations, and the spatial association 31

(covariance) between the key traits in each species. The phenotypic data necessary to cal- 32

culate these statistical moments can be visualized as a two-dimensional scatter plot. Where 33

each axis measures the mean trait value for one of the species. Hence, each point in the 34

scatter plot corresponds to a pair of mean traits of the two interacting species within a given 35

population. 36

Because the models predict a bivariate normal distribution of traits, calculating the likeli- 37

hood of observing any particular set of trait values in a pair of interacting species is straight- 38

forward. With the five statistical moments that describe the bivariate normal distribution, 39

we can infer up to five model parameters. The five parameters our method infers includes 40

strengths of reciprocal selection caused by the focal interaction (the strengths of biotic se- 41

lection B1, B2), the strengths of selection due to any other source (the strengths of “abiotic” 42

selection A1, A2), and the optimal offset between trait values that optimize biotic fitness (δ). 43

The parameters quantifying selection (Bi and Ai) are proportional to the selection gradients 44

due to the biotic and abiotic components of selection in each population (see Appendix S1.4). 45

By maximizing the resulting likelihood with respect to these key parameters, our method 46

can be used to rigorously test for the presence of coevolution. Specifically, for a coevolution- 47

ary hypothesis to be supported, reciprocal selection must be demonstrated (Janzen, 1980; 48

Thompson, 1994). In our maximum likelihood framework, this long-standing and widely 49

accepted definition of coevolution corresponds to demonstrating that both strengths of bi- 50

otic selection are significantly non-zero. By performing likelihood ratio tests, support for 51

the coevolutionary hypothesis can be compared relative to support for the null hypotheses 52

of unilateral evolution where B1 = 0 or B2 = 0 (also referred to as tracking, see Figure 1). 53

Due to the nested structure of these models, the likelihood of coevolution and the likelihoods 54

of the null models can be directly compared via likelihood ratio tests. Figure 1 shows that 55

each p-value p1 and p2 must be less than the significance threshold α (we use α = 0.05) 56

to support a coevolutionary hypothesis. Rejecting either null hypothesis of unilateral evo- 57
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lution automatically implies the rejection of evolution completely absent of biotic selection58

(B1 = B2 = 0) since the likelihood of the this third null model will always be less than the59

likelihoods of tracking.60

While showing both B1 and B2 are non-zero is necessary for demonstrating the significance61

of pairwise coevolution, the strength of coevolution can most easily be quantified as the62

geometric mean of the absolute value of the two biotic selection strengths: C ≡
√
|B1B2|.63

If either strength of biotic selection is zero, and hence coevolution is absent, then C = 0 as64

desired and if |B1| = |B2|, then C = |B1| = |B2|. However, our metric C fails to capture65

a sense of balance in the forces of biotic selection. We therefore propose an accompanying66

measure based on Shannon entropy that takes this into account. Setting bi = |Bi|/(|B1| +67

|B2|) we define the balance of coevolutionary selection as68

B ≡ (b1 ln b1 + b2 ln b2)

ln(1/2)
. (1)

Standardizing by ln(1/2) makes 0 ≤ B ≤ 1 with B = 1 representing perfect balance and69

B = 0 representing unilateral evolution. Though the strength and balance of coevolution can70

be subjectively inferred upon inspection of the biotic selection strengths, these two metrics71

provide a way to quantitatively compare these aspects of coevolution across systems.72

Materials and methods

The coevolutionary model:

To model the coevolutionary process, we begin by considering a local population level73

model of pairwise coevolution. This model assumes fitness is a function of the environment,74

the trait of the focal individual and the trait of the individual being encountered. In partic-75

ular, we assume species i has an optimal phenotype θi that maximizes fitness in the absence76

of the interaction (the abiotic phenotypic optimum). We define Ai to be the strength of77

abiotic selection on species i so that the abiotic component of fitness (WA,i), as a function78

of the trait value zi, is proportional to79

WA,i ∝ exp

(
−Ai

2
(θi − zi)2

)
. (2)
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Likewise, beginning from first principles, we derive the biotic component of fitness for an 80

individual of species i. We assume that biotic fitness is maximized when the trait value of 81

the focal individual zi is offset from the trait value being encountered zj by an ideal amount 82

δ. We refer to δ as the “optimal offset”. A simple example of an optimal offset comes from 83

considering the interaction between long-tubed flowers and the long-proboscid flies that visit 84

them. The biotic component of fitness for the fly is maximized when its proboscis is slightly 85

longer than the nectar tube depth of the flower, allowing the fly to easily extract its nectar 86

reward. The difference between tube depth and proboscis length that maximizes the flies 87

biotic fitness component is the optimal offset for the fly. Note how this differs from a “bigger 88

is better” situation commonly referred to for the explanation of coevolutionary arms races. 89

Under the optimal offset model, fitness is a unimodal function and therefore does not increase 90

indefinitely with larger (or lesser) trait values. A more general model would allow different 91

δ’s for each species, but since our method can only infer up to five parameters we make 92

the parsimonious assumption that both species have the same optimal offset. Defining Bi 93

to be the strength of biotic selection on species i, the biotic component of fitness (WB,i) is 94

proportional to 95

WB,i ∝ exp

(
−Bi

2
(z̄j + δi − zi)2

)
(3)

when biotic selection is weak (|Bi| � 1). Here z̄j is the within population average phenotype 96

of species j. Net fitness is given by the product of the abiotic and biotic components of fitness. 97

Since the amount by which fitness is proportional to these values is irrelevant for evolutionary 98

dynamics, we leave them out here. Detailed derivations are provided in Appendix S1. As 99

noted above our method infers values for B1, B2, A1, A2 and δ and can thus accommodate 100

most coevolutionary scenarios including escalation (δ 6= 0) and matching (δ = 0, B1, B2 > 0). 101

With a functional form of fitness in hand, we employed theoretical quantitative genetics 102

to formally derive the local population model of mean trait dynamics for the two species. 103

From this local model we derived the dynamics of the distribution of pairs of mean traits 104

across the metapopulation. Since our model predicts the metapopulation distribution of 105

mean-trait-pairs will converge to a bivariate normal (a proof is given in Appendix S1.8), 106
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we are justified in tracking only the first five moments of the metapopulation distribution.107

These are the metapopulation mean traits of each species (µ1 and µ2), the metapopulation108

variance of local mean traits for each species (V1 and V2) and the metapopulation covariance109

of local mean traits for the two species (C). For species i we denote the additive genetic110

variance by Gi and the local effective population size by ni. Results derived in Appendix S1111

demonstrate that the five moments change according to the following recursions:112

∆µ1 = G1 {B1δ +B1(µ2 − µ1) + A1(θ1 − µ1)} (4a)

113

∆µ2 = G2 {B2δ +B2(µ1 − µ2) + A2(θ2 − µ2)} (4b)

114

∆V1 = −2A1G1V1 + 2B2G2(C − V1) +G1/n1 (4c)

115

∆V2 = −2A2G2V2 + 2B1G1(C − V2) +G2/n2 (4d)

116

∆C = B2G2(V1 − C) +B1G1(V2 − C)− (A1G1 + A2G2)C. (4e)

Parameter estimation:

After solving for the equilibrium expressions of the first five moments from equations (4),117

we use maximum likelihood to estimate the selection strengths (A1, A2, B1 and B2) and118

the optimal offset (δ). However, to do so requires more than estimates of mean trait pairs119

from multiple populations. Background parameters of the model also need to be estimated.120

These include the effective population sizes n1, n2, the optimal phenotypes favored by abiotic121

stabilizing selection θ1, θ2 and the additive genetic variances G1, G2.122

We show in Appendix S1.5 that if ni has been estimated from multiple locations, these123

can be included by using their harmonic mean as the effective population size in our model.124

Likewise, if Gi has been estimated from multiple populations, these can be included by using125

their arithmetic mean as the effective additive genetic variance for our model. Finally, the126

model used in this manuscript assumes the abiotic optimum is constant across space. In the127

associated Mathematica notebook, we expand the model to formally account for variable θi.128

The results of this notebook demonstrate that the two models are equivalent when variation129

in θi is small and therefore implies that the average abiotic optimum across space works as130

the effective abiotic optimum needed to perform inference. This notebook also implies that131
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our method is readily adaptable for the inclusion of spatially varying optima as such data 132

become available. 133

The likelihood is a routine calculation in terms of the first five moments which are in turn 134

functions of model parameters (n1, n2, θ1, θ2, G1, G2, δ) and selection strengths (A1, A2, B1, B2). 135

In Appendix S2 we show how to invert these expressions to obtain analytic solutions for the 136

maximum likelihood estimates of selection strengths. Full expressions are provided in the 137

associated Mathematica notebook. Although our focus is on finding point estimates for the 138

strengths of biotic selection, coevolution and coevolutionary balance, we also estimated un- 139

certainty due to error caused by sampling from the metapopulation. To do so we calculated 140

95% confidence intervals for each selection strength. 141

Estimating significance:

Denoting the likelihood of the coevolutionary model by Lc and the likelihood of null model 142

i (for which Bi = 0) by Li, we compute the log-likelihood difference statistic by 143

Λi = 2(lnLc − lnLi). (5)

Denote by Fj(x) the distribution function of a χ2 random variable with degrees of freedom 144

j. Wilk’s theorem implies the distribution of Λi is approximately a χ2 (Wilks, 1938). Since in 145

each null model we fix just one parameter, the degrees of freedom is one for both tests. Thus, 146

the p-value associated with testing against null hypothesis i (written pi) has the following 147

approximation 148

pi ≈ 1− F1(Λi). (6)

If both p1 and p2 < 0.05 for a given study system then our method asserts significant 149

evidence for coevolution exists in this system. We provide a tutorial for implementing our 150

approach using the statistical programming language R at the following url: 151

https://bobweek.github.io/measuring_coevolution.html 152

Evaluation of performance:

Before applying our maximum likelihood methodology to specific study systems, we eval- 153

uated its performance when challenged with simulated data. We assessed the type-1 error 154
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rate and statistical power of our method across a range of biotic selection strengths and155

metapopulation sample sizes. These analyses were performed by simulating data under the156

model with randomly drawn model parameters. Distributions used for each background pa-157

rameter are reported in Table 1. For error rates as functions of biotic selection strengths,158

sample sizes were drawn at random from a Poisson distribution with a mean of 20. Draws159

were repeated until a sample size of at least three was obtained. For type-1 error rates as160

functions of unilateral selection we chose one biotic strength to be zero and set the other161

to the strength of unilateral selection. For type-2 error rates as functions of the strength162

of coevolution C, we drew one biotic selection strength from a uniform distribution on the163

interval (C/10, 10C) and set the other such that their geometric mean equates to C. When164

calculating type-2 error rates as functions of sample size, strengths of biotic selection were165

drawn independently from a uniform distribution on (0,0.01). A similar approach was taken166

for calculating type-1 error rate as a function of sample size, except one or both of the biotic167

selection strengths were set to zero at random. If either strength of biotic selection was set168

to zero in the simulation and reported significantly non-zero by our method, a false positive169

was accumulated. Likewise, if both strengths of biotic selection were set to some non-zero170

number and our method failed to detect coevolution, then a type-2 error was accumulated.171

This scheme was repeated 10,000 times for each estimated error rate.172

Alongside our analyses of error rates, we investigated our methods ability to accurately173

infer the strength of coevolution using simulated data. For each replicate, we simulated174

phenotypic data using the coevolutionary model with known selection strengths and back-175

ground parameters drawn from the same set of distributions as those used for the error rates176

as functions of sample size analysis. We then estimated the strength of coevolution as defined177

above using our maximum likelihood approach and compared it against its actual value via178

linear regression. Each regression was performed across a range of sample sizes (Figure 2).179

We also extended this analysis using more general simulations that relax key assumptions180

such as the absence of gene-flow and normality of data in Appendix S3.181

Numerical analyses of our methods performance were done using the statistical program-182

ming language R. The scripts are publicly available at the following Github repository:183

https://github.com/bobweek/measuring.coevolution184
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Measuring coevolution in the wild:

We next applied our maximum likelihood approach to two well-studied species interactions 185

where previous work implicated coevolution as a cause of trait exaggeration and spatial 186

variability (Pauw et al., 2009; Toju, 2011): the mutualism between the long tongued fly 187

Moegistorhynchus longirostris and a plant it pollinates Lapeirousia anceps as well as the 188

antagonism between the camellia plant Camellia japonica and its seed predator, the weevil 189

Curculio camelliae. In both cases, the interactions are thought to depend largely on a 190

single key trait in each species (fly proboscis and plant floral tube lengths or weevil rostrum 191

length and camellia pericarp thickness). This is a crucial detail as the models upon which 192

our method is based assume interactions are mediated by a single trait in each species. 193

Phenotypic data for these systems have been collected from several populations, providing 194

a sample of pairs of mean trait values, the core data required by our method. In addition to 195

the essential phenotypic data, previous work in both systems provided valuable additional 196

information that allowed us to estimate the key background parameters required by our 197

method: the likely trait optima in the absence of the interaction (the “abiotic” optima), 198

the effective population sizes for each species (assumed fixed over time and space), and the 199

effective additive genetic variances for each species (also assumed to be fixed over time and 200

space). 201

The long proboscid fly, M. longirostris, resides in lowland habitats near the coast of South 202

Africa and pollinates a guild of at least 20 plant species (Manning & Goldblatt, 1997). Among 203

these species, the most widespread is L. anceps, a long tubed perennial whose distribution 204

extends outside the range of M. longirostris (Pauw et al., 2009). We were able to estimate the 205

likely optimal tube and proboscis lengths for these species in the absence of this particular 206

interaction. Using the phenotypic data published by Pauw et al. (2009), we inferred this 207

parameter for the flower as the average mean tube length of two populations not visited by 208

the fly. Estimating the abiotic optima for the fly was more challenging because we were 209

unable to identify fly populations where the plant did not co-occur. However, there are data 210

available for the proboscis lengths in three sister species of M. Longirostris (41.0 mm for M. 211

braunsi, 11.5 mm for M. brevirostris, and 32.0 mm for M. perplexus) (Bequaert, 1935). Since 212

these sister species do not interact with L. anceps (Barraclough & Slotow, 2010), their traits 213
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represent potential evolutionary trajectories that could have been taken by M. longirostris214

in the absence of its interaction with L. anceps. Given that none of the three sister species215

underwent a similar arms race with some other flower (which appears likely based on their216

relatively modest proboscis lengths), we therefore take these values as rough approximations217

of the actual abiotic optimal phenotype for M. longirostris. Hence, we estimated selection218

strengths and significance when the abiotic optimum was set equal to each of the three trait219

values and the average of all three. The result presented in the main text correspond to the220

average of all three sister species, but we present the results for all four abiotic optima in221

Appendix S4.1. Effective population sizes have not been estimated for either species. We222

therefore relied on the biologically plausible census sizes of 1000 for L. anceps and 100 for223

M. longirostris, as suggested by B. Anderson (personal communications). Since heritabilities224

for neither of these traits have been estimated, we relied on within population phenotypic225

variances as a rough proxy for the additive genetic variances in this system.226

We complement our analysis of this plant pollinator mutualism with an analysis of the227

antagonistic interaction between C. camelliae and C. japonica (Toju & Sota, 2005). Female228

weevils bore holes into the woody pericarps of the camellia to oviposit. Inside the fruit,229

weevil larvae feed on the seeds of the camellia up until the fourth instar, at which time230

they exit the fruit and overwinter (Toju & Sota, 2005). These two species co-occur across231

Japan, although camellia populations where the weevil is absent also exist (Toju & Sota,232

2005). We were able to establish point estimates of each background parameter using data233

from previously published work (Toju et al., 2011b,a) and the fact that male weevil rostrum234

lengths could be used as a proxy for the abiotic optimum of the female weevils since males235

do not interact with the camellia. Hence, our method does not inherently require estimates236

of abiotic optima to come from populations where the interaction is absent. However, using237

male traits as a surrogate for the abiotic optimum assumes that male and female trait values238

are either genetically uncorrelated or have reached equilibrium. The abiotic optimum for239

the pericarp thickness of the camellia was inferred by averaging pericarp thicknesses across240

populations where weevils are absent. Heritability of pericarp thickness has been estimated241

directly (Toju et al., 2011a) and can be at least crudely inferred for weevil rostrum length242

via estimates of related species (Toju & Sota, 2009). We used the average of these values for243
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each species multiplied by the average within population phenotypic variances to estimate 244

additive genetic variances in this system. 245

To assess the biological significance of the strengths of coevolution inferred, we compared 246

the distribution of trait values we would expect in the presence vs absence of coevolution. 247

This was accomplished by setting both B1 and B2 equal to zero and maximizing the resulting 248

restricted likelihood function with the remaining free parameters (A1, A2 and δ). Using a 249

multivariate generalization of effect size (see Appendix S4.3), we summarize with a single 250

number the effect of coevolution in each system. 251

Results:

Evaluation of performance:

Regressions of randomly drawn strengths of coevolution onto those inferred by our method 252

were heteroskedastic with variation proportional to the strength of coevolution (Bartlett’s 253

test: p-value < 2.22e−16). To rectify this we used weighted least squares. For each point in 254

the regression we set its weight equal to the inverse of its Euclidean distance to the origin. 255

Analysis of regression results demonstrates that at low sample sizes our method tends to 256

overestimate the strength of coevolution, but this bias rapidly diminishes with sample size 257

(see Figure 2). 258

False positive rates are greatly exaggerated for small sample sizes (e.g., < 5), modestly 259

inflated for sample sizes between 5− 10, but approach their set value (0.05) for sample sizes 260

> 10 (Figure 2). This behavior is attributable to two factors. First, statistical artifacts accu- 261

mulate in sample moments for small sample sizes. For example, the correlation of a sample 262

of size two will always be ±1. Second, the distribution of our p-values may significantly 263

diverge from a Chi-square distribution at small sample sizes (Wilks, 1938). We therefore 264

suggest this method only be used for sample sizes of at least five. Another important caveat, 265

however, is that as biotic selection becomes increasingly imbalanced under the null scenario 266

when one strength is zero and the other set to some non-zero number, the false positive 267

rate increases monotonically (see Figure 2). Hence, our method can be tricked by extreme 268

unilateral selection. 269

Power to detect coevolution is reasonably high at low sample sizes (≈ 0.9) and increases 270
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monotonically with sample size. As a function of the strength of coevolution, power is271

initially negligible but increases quickly and monotonically.272

Measuring coevolution in the wild:

We found that the biotic selection strengths B1 and B2 acting on M. longirostris and273

L. anceps both differ significantly from zero (Table 2). Thus, our analysis supports the274

hypothesis of pairwise coevolution in this system. Likewise, both B1, the strength of biotic275

selection on the weevil, and B2, biotic selection on the camellia plant, significantly differed276

from zero. Hence, we also found evidence for pairwise coevolution between the seed-eating277

weevil C. camelliae and its host plant C. japonica. For numerical estimates of biotic selection278

strengths, p-values, and the strength and balance of coevolution, see Table 2. Cross-system279

comparison of biotic selection strengths is visualized in Figure 3.280

In addition to providing information on the magnitude and significance of coevolution, we281

quantified the extent of trait exaggeration produced by coevolution by comparing the equi-282

librium phenotypic distribution we would expect with and without the levels of coevolution283

we estimated (Figure 4). This comparison reveals that although the numerical estimates of284

coevolutionary selection appear superficially small, for the camellia-weevil interaction coevo-285

lution results in a 111% increase in the mean rostrum length of the camellia weevil and a286

66.0% increase in the pericarp thickness of the camellia fruit (Figure 4). For the fly-flower287

system coevolution appears to have caused a 134% increase in proboscis length and a 34.5%288

increase in floral tube depth compared to equilibrium estimates for these values we predict289

when coevolution is absent. Using a multivariate analog of effect size we calculated the effect290

of coevolution in each system. We found an effect size of 7.55 for the fly-flower system and291

an effect size of 3.07 for the camellia-weevil interaction.292

Discussion:

Our results demonstrate that coupling existing coevolutionary models with a maximum likeli-293

hood approach allows the strength of coevolutionary selection to be estimated using routinely294

collected phenotypic data. Regression analysis shows that with sufficient sample sizes we can295

obtain accurate estimates of the strength and significance of coevolution. Furthermore, our296

method is robust to modest amounts of gene flow and weakly non-normal data (Appendix297
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S3). 298

Applying our method to two textbook examples of pairwise coevolution, we find strong 299

evidence for significant coevolution in both systems. This qualitative result is complemented 300

by quantitative estimates of the strength of coevolution in the wild. By applying this method 301

to various systems, it will be possible to obtain an empirical distribution of the strength of 302

coevolution in nature. After the appropriate transformation (analogous to standardizing 303

selection gradients with respect to phenotypic distributions) such data will allow for a meta- 304

analysis akin to (Kingsolver et al., 2001; Siepielski et al., 2009, 2013) which would provide 305

a yardstick allowing us to further understand the biological significance of our numerical 306

results. 307

In spite of the various merits of our method, there are serious limitations that must be 308

confronted empirically. Most notable is the necessity of providing estimates of abiotic optima. 309

Since these parameters are seldomly estimated for natural populations, we are restricted in 310

our analysis here to two data sets in which sufficient information was provided. In particular, 311

phenotypic measurements in populations that do not partake in the interaction (due to 312

geographical isolation or sexual dimorphism) provide reasonable estimates of the abiotic 313

optima, though other means of estimating these parameters exist as demonstrated above. 314

Alongside the empirical work necessary for estimating background parameters of our model, 315

our results suggest that increasing the number of populations used in studies of trait matching 316

would also substantially improve opportunities for coevolutionary inference. Specifically, we 317

suggest sample sizes of at least five and ideally more than twenty to avoid type-1 errors. 318

Taken together, these considerations outline a reasonably tractable set of sufficient conditions 319

empirical data-sets must meet in order to utilize our method. 320

Theoretical limitations of our approach stem from its grounding in classic quantitative 321

genetics and include the assumptions of fixed additive genetic variance and weak selection. 322

Although we do not assume strict equilibrium for each component population, we do as- 323

sume that the system as a whole has reached approximate statistical equilibrium so that 324

the means, variances and spatial covariance have become relatively constant with respect to 325

time. This implies that pairs of species for which this method is ideal have been interact- 326

ing for a sufficiently long period of time. In reality, however, empirical systems may be far 327
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enough from equilibrium that a significant contemporary trend in the five moments describ-328

ing their distribution should be accounted for. Lastly, our method assumes the key traits329

mediating the interaction are univariate which may not be ubiquitous across coevolving sys-330

tems. Future work that generalizes our approach to multivariate traits, strong selection and331

non-equilibrium (ie, time-series data) will result in a more broadly applicable method.332

By providing a methodology that does not rely on extensive and system specific experimen-333

tal manipulation, our approach greatly expands the range of systems for which the strength334

of coevolutionary selection can be estimated, paving the road for a more quantitative and335

critical assessment of coevolution’s importance in natural systems. To add substance to this336

claim we provide three examples. First, with finer spatial resolution in phenotypic data this337

method can be applied to the same pair of species across different partitions of their range338

to infer the strength of selection mosaics argued to be central to the coevolutionary pro-339

cess by the Geographic Mosaic Theory of Coevolution (Thompson, 2005). Second, previous340

investigations have resulted in mixed views on the significance of pairwise coevolution in341

shaping various aspects of ecological communities including inter- and intraspecific diversity,342

demographic stability, network structure and ecosystem function (Iwao & Rausher, 1997;343

Roughgarden, 1979; Nuismer et al., 2013; Althoff et al., 2014; Yamamura et al., 2001). By344

applying our method to each pairwise interaction in a set of interacting species, the distribu-345

tion of pairwise coevolution can be inferred within a community to provide empirical insight346

into the degree to which coevolution molds the previously mentioned properties of ecological347

communities. Third, theoretical studies suggest that only very strong coevolution favors the348

evolution of sexual reproduction (Otto & Nuismer, 2004; Lively, 2010; Agrawal, 2006). Our349

method could inform this hypothesis by determining the strength of coevolution in specific350

systems where the evolution of sex has been attributed to interspecific interactions. Hence,351

when coupled with data from a broad range of empirical systems, this method and its fu-352

ture iterations hold the potential to settle long standing debates involving the importance353

of species interactions and coevolution in the evolution of various phenomena including phe-354

notypic diversity, sexual reproduction, community structure, and epidemiological dynamics355

(Yoder & Nuismer, 2010; Hamilton, 1980; McPeek, 2017; Anderson & May, 1982).356
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Table 1: Distributions of background parameters used for generating error rates and regres-
sion analyses.

Parameter(s) Description Distribution

Ai Strength of abiotic selection Uniform(0,0.01)
δ Optimal offset Exp(0.1)
θi Abiotic optima Normal(0,10)
Gi Additive genetic variance Exp(1)
ni Effective population size Exp(0.01)

Table 2: Biotic and abiotic selection strengths, optimal offsets, p-values, and strengths of
coevolution and coevolutionary balance for each system. CW refers to the camellia-weevil
system and FF refers to the fly-flower system. Units of selection strengths are all inverse
square phenotypic units (mm−2 in this case). Optimal offsets (δ) are in phenotypic units
(mm). The p-values and balances of coevolutionary selection are unitless.

CW FF

B1 7.17e-04 6.40e-05
B2 5.00e-06 1.84e-06
A1 2.59e-04 7.04e-06
A2 8.05e-06 3.13e-06
δ 4.51 14.2
p1 <2.22e-16 <2.22e-16
p2 <2.22e-16 1.19e-07
C 5.99e-05 1.08e-05
B 5.97e-02 1.84e-01
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Figure 1: The network structure of hypotheses that can be distinguished using our approach. Nodes
represent the three relevant hypotheses for coevolutionary inference. Edges represent comparisons
labeled by their p-values. The upper node (in green) represents the coevolutionary hypothesis
in which both strengths of selection induced by the interaction are non-zero. The pink colored
nodes represent the hypotheses of unilateral evolution, or tracking, where one species experiences
biotic selection, but the other does not. By ruling out tracking this approach automatically rejects
evolution completely absent of biotic selection.
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Figure 2: Top row: Performance of parameter estimation as a function of sample size. The left-
hand panel shows the slope of the regressions converging near one as sample size increases. The
right-hand plot shows the percent variance explained (R2) increasing with sample size. Lower two
rows: Error rates as functions of sample sizes and selection strengths. The left-hand column shows
the type-1 and type-2 error rates as functions of sample size. The right-hand column shows type-
1 error as a function of the strength of tracking (ie, unilateral selection where the species being
tracked does not experience biotic selection) and power as a function of the strength of coevolution.
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Figure 3: The estimated strength of biotic selection for the M. longirostris-L. anceps interaction
(pink) and the C. japonica-C. camelliae interaction (green). Units for each strength are in mm−2,
the inverse of the square of the phenotypic units. 95% confidence intervals are shown around each
estimate. Each selection strength was found to be statistically significant and hence coevolution
was detected in both systems.
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Figure 4: The effect of coevolution on the trait distributions predicted by our model. The
point in the center of each contour represents the mean traits of the species involved. The
green contours represent data predicted without coevolution and the pink contours represent
the observed data.
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