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MATHEMATICAL MORPHOLOGY ON TENSOR IMAGES
FOR FIBER ENHANCEMENT

S. Blusseau1,2, I. Bloch2, Y. Gousseau2, S. Velasco-Forero1, J. Angulo1
1: CMM, Mines ParisTech, PSL Research University, France 2: LTCI, Télécom ParisTech, Université Paris-Saclay, France

We introduce morphological methods to analyse images of positive semi-definite matrices (ellipsoids), such as diffusion or structure tensors. Morphological operators cannot be directly defined on these
objects because they lack a complete lattice structure. Therefore, we extend recent developments in morphological signal processing on graphs. Graphs are constructed based on all the available information,
whereas a scalar signal (anisotropy) is processed on these graphs, successfully enhancing structures such as vessels and fibers.

Basics of Mathematical Morphology
Complete lattices and morphological operators
Complete lattice A complete lattice (L,≤) is a partially ordered set for which every subset A ⊆ L has a
supremum noted

∨
A and an infimum noted

∧
A.

In the following, (L,≤) and (L′,≤′) denote two complete lattices.

Dilation, Erosion
- A dilation is a mapping δ : L→ L′ that commutes with the supremum:
for any family (xk)k∈K of L, δ(

∨
k∈K xk) =

∨′
k∈K δ(xk), where K is an index set.

- An erosion is a mapping ε : L′→ L that commutes with the infimum: ε(
∧′
k∈K xk) =

∧
k∈K ε(xk).

Opening, Closing
- A closing is a mapping φ : L→ L that is increasing, extensive and idempotent.
- An opening is a mapping γ : L→ L that is increasing, anti-extensive and idempotent.

Adjunction A pair of mappings (ε, δ), ε : L′ → L, δ : L → L′, forms an adjunction if and only if
∀x ∈ L, y ∈ L′, δ(x) ≤′ y ⇐⇒ x ≤ ε(y).

Examples
Proposition 1. If (ε, δ) is an adjunction, then φ = εδ is a closing and γ = δε is an opening.

Figure 1: Example of morphological operators depending on a structuring element. (a) Input image:
binary image on the first row, greyscale image on the second row. (b) Structuring element (SE) B. (c)
Erosion εB. (d) Adjoint dilation δB. (e) Opening δBεB. (f) Closing εBδB.

The data
The cone of positive semi-definite matrices S+n
No natural lattice ordering

A

B

A

B

C

D

Figure 2: The Loewner ordering is defined by
B ≤ A ⇐⇒ A − B ∈ S+n (Left). The
example on the right shows that this is not a
lattice ordering: if it were, then C would be
the supremum of A and B, but D is another
upper bound of A and B and yet is not com-
parable with (and therefore not larger than) C.

Structure tensors for greyscale 2D images
We consider a greyscale image f , whose pixels coordi-
nates are noted (x, y).

Scale zero tensor T0 : (x, y) 7→ ∇f (x, y) · ∇f (x, y)T

Scale σ > 0 tensor Tσ = Gσ ∗ T0
where Gσ is the σ-scale Gaussian kernel.

Anisotropy image Aσ = λ1−λ2
λ1+λ2

,
where 0 ≤ λ2(x, y) ≤ λ1(x, y) are the eigenvalues of
Tσ(x, y).

Figure 3: Image of structure tensors Tσ (obtained
thanks to [2]) and the corresponding anisotropy im-
age (σ = 3).

Morphological signal processing on graphs
Graph. G = (V,E), weighted and directed graph, containing n vertices.

Adjacency matrix. W ∈ Matn(R ∪ {−∞}) such that for any (i, j), 1 ≤ i, j ≤ n −∞ ≤ wij ≤ 0,
wii = 0, and −∞ < wij ⇐⇒ (i, j) ∈ E (called Conservative morphological weight matrix in [3]).

Lattice. We work with vectors x ∈ [0, 1]n supported by the graph G, so the considered complete lattice is
L = ([0, 1]n,≤) equipped with the usual product partial ordering (Pareto ordering):

x ≤ y ⇐⇒ xi ≤ yi ∀i ∈ {1, . . . , n}.

Dilations, erosions, openings. We define the dilation δW and its adjoint erosion εW on L by

δW (x)i = max
1≤j≤n

(
xj+wij

)
= max
j∈Ni

(
xj+wij

)
, εW (x)i = min

1≤j≤n

(
xj−wji

)
= min
j,i∈Nj

(
xj−wji

)
(1)

where Ni =̇
{
j ∈ {1, . . . , n}, (i, j) ∈ E

}
is the set of neighbours of vertex i in G. We also consider their

iterated erosions εpW and dilations δpW , from which we build the openings γ(p)W for p ∈ N:

ε
p
W = εW ◦ · · · ◦ εW , δ

p
W = δW ◦ · · · ◦ δW , γ

(p)
W = δ

p
Wε

p
W .

Co-circularity graph
In our application the vertices are the pixels or voxels of an image (2D or 3D), thus characterised by their
coordinates and a scalar value (the anisotropy) [1].

Measure of co-circularity

i

j

wij=w ji=0

Coefficient wij is computed based on the principal orientations of the ellipsoids in
i and j, and their relative positions in the image. Given the angular error θij to
cocircularity (see illustration), we distinguish two cases:

Binary case with threshold α: wij =
{
0 if cos(θij) ≥ cos(α)
−∞ otherwise

Non-binary case: wij = log(cos(θij))

i

j

wij=w ji<0
j

θij

Additional constraints
Ladder Spatial constraint: Only pairs of vertices whose coordinates lie in a limited spatial

neighbourhood can be neighbours. Denoting ui and uj the coordinates of pixels (or
voxels) i and j, we impose wij > −∞ ⇐⇒ ||ui − uj||∞ ≤ k, for a fixed integer k.
Conic constraint: Co-circularity allows ladder configurations. We avoid these by an
additional constraint.

Property of the graph
Figure 4: Maximal weight paths between pairs of vertices in a
binary co-circularity graph. The weight of a path i1, i2, . . . , iq
is the non-positive sum

∑q−1
l=1 wilil+1

. The paths with large
weights are those with weights close to 0, and which therefore
have the strongest contribution in the dilations and erosions de-
fined above.

Results and discussion

(a) (b) (c) (d) (e) (f) (g)

Figure 5: Results of the presented method based on co-circularity graphs (except last column). (a) Input images, (b) Anisotropy images (first
and third rows: σ = 3; second row: σ = 1), (c) erosions εW , (d) dilations δW (e) openings γW , (f) openings γ(p)W (first row: p = 10, second and
thrid rows: p = 5). Here the adjacency matrices W are binary, with angular threshold α = π

6 and spatial neighbourhood parameter k (first row:
k = 7; second row: k = 3, third row: k = 5). (g) Results of directional openings by a family of straight lines structuring elements (classical
method in MM).

Contributions We introduced a framework that generalises mathematical morphology for sig-
nals on graphs. The operators we defined based on the co-circularity of structure tensors show
interesting behaviours for the processing of anisotropic structures.

Future work

- multi-scale approach or an automatic scale determination,

- comparison with other methods, such as path openings and other morphological connected fil-
ters,

- exploration of the properties of non-binary co-circularity graphs,

- links between these operators and the max-plus algebra [1].
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