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Abstract

We discuss conformal field theories (CFTs) in rectangular geometries, and develop a formalism that
involves a conformal boundary state for the 1 + 1d open system. We focus on the case of homogeneous
boundary conditions (no insertion of a boundary condition changing operator), for which we derive an
explicit expression of the associated boundary state, valid for any arbitrary CFT. We check the validity
of our solution, comparing it with known results for partition functions, numerical simulations of lattice
discretizations, and coherent state expressions for free theories.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Boundary conformal field theory (BCFT) is a subject whose importance has grown over the
years, both on the formal and on the applied side. It does for instance play a fundamental role
in the axiomatization of conformal field theory (CFT) [1], in our growing understanding of log-
arithmic conformal field theory [2,3], or in the relationship between conformal field theory and
the Schramm Loewner Evolution formalism [4]. It is also central to our understanding of the
Kondo effect [5], of the physics of quantum impurities or the Fermi edge singularity [6], and,
more recently, of local and global quenches in one-dimensional quantum systems [7,8].
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Two geometries are most naturally used in BCFT. One of them—more natural from the point
of view of Euclidean field theory or statistical mechanics—is simply the upper half plane, with
the theory defined e.g. only for Im z � 0, together with some boundary conditions at Im z = 0.
The other involves a cylinder (sometimes considered instead as an annulus), and typically de-
scribes the physics of an open 1D quantum system at finite temperature.

Of course, there are variants of these geometries. For instance, the physics of the cylinder can
be described with an (imaginary) time evolution along the axis. In this case, the 1D quantum
system is closed, and the presence of the boundary is encoded in a boundary state. Such states
have given rise to many developments, in the context of efforts to classify all conformal boundary
conditions in particular.

We shall be concerned in this paper mostly with systems on a rectangle, which thus have
trivial topology, sharp corners, and, in general, four different boundary conditions on their four
edges. While in principle this situation can be tackled via conformal mappings of the half plane
(see below), few of its features have actually been studied in detail. The situation is, on the other
hand, clearly interesting in its own right. The rectangle geometry is, for instance, the natural one
to consider in the case of quenches for 1D quantum systems with open boundaries. In the 2D

point of view, it is the simplest geometry to study transport properties of network models for
Anderson localization. More fundamentally, the rectangle provides a natural way to study and
interpret the conformal blocks of four point functions by inserting four different fields at the
four corners. This is particularly useful for instance to connect geometrical correlators in the Self
Avoiding Walk (SAW) problem to CFT, in particular in the logarithmic (indecomposable) case.

We will focus on these and other geometrical features in subsequent and rather technical work
to appear soon. The present paper is devoted to the exploration of the simplest—and yet very
rich—aspects of this problem related with the boundary state for a theory defined on a segment.

2. Gluing condition

For a CFT in the complex plane C, one can implement a boundary with the requirement that
there is no energy flow across it. In other words, one of the components of the stress-tensor
vanishes along the boundary: T‖⊥ = 0. In holomorphic/anti-holomorphic components this gives
the constraint T (z) = T̄ (z̄) on the boundary. In radial quantization, a circular boundary at radius
|z| = 1 can be encoded in the form of a boundary state |Bp〉. Here the subscript p stands for
periodic since the boundary is defined on a circle. The constraint is

(Ln − L̄−n)
∣∣Bp

〉 = 0, (1)

which is usually referred to as the conformal invariance of the boundary condition, or gluing
condition, as it glues the modes of the chiral part of the CFT with the anti-chiral ones. A basis
of solutions of the linear system of equations (1) is given by the so-called Ishibashi states, which
are particular combinations of left–right symmetric Virasoro descendants of primary fields. Of
course, to obtain the allowed boundary states |Bp〉 themselves, more conditions have to be im-
plemented (see for example [1,5] for reviews).

In this paper, we shall extend the formalism of boundary states to the case of an open system.
Namely, we are now considering the CFT on a strip of width L, and we want to find a state in the
theory that encodes the boundary perpendicular to the direction of the strip (see Fig. 1). In the
1+1 Hamiltonian description of the CFT, the boundary state now lives in the Hilbert space of the
1d theory defined on a segment instead of a circle. To proceed, we choose coordinates z = x + iy

in the plane and consider the semi-rectangular region 0 � x � L, y � 0 of Fig. 1, and derive
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Fig. 1. The semi-rectangular geometry defining the boundary state.

the gluing condition for the stress–energy tensor in this geometry (for analogous discussions
see [9–11]). Conformal invariance of the boundary implies then Txy = 0 on every side. This is
realized at the boundaries z = iy and z = L + iy, y > 0, by setting

T̄ (z̄) = T (2L − z̄), (2)

and imposing periodic boundary conditions in the x direction of period 2L: T (z + 2L) = T (z)

(same for T̄ ).
Care is needed to treat properly the effect of corners. The stress tensor T has a singularity

as its argument approaches the corners. To see this we start more generally by the singularity in
the upper half plane when an operator of weight h is inserted at the origin. In this case the most
singular term is

T (w) ≈ h

w2
. (3)

We then fold the upper half plane by the mapping z = w1/2 to have a corner in z = 0. After using
the transformation law of the stress tensor T (z) = T (w)(dw/dz)2 + (c/12){w; z}, where {w; z}
is the Schwarzian derivative

{w; z} ≡ d3w/dz3

dw/dz
− 3

2

(
d2w/dz2

dw/dz

)2

, (4)

we get

T (z) ≈
(

4h − c

8

)
1

z2
. (5)

Also if h = 0, at a corner there is an anomaly, which reflects itself in a non-trivial scaling depen-
dence of physical quantities [12,13].

As a consequence the condition on T defining the boundary state |Bo〉 at y = 0 is(
T (x) − T (−x) + 4πi

(
h̃lδ

′(x) + h̃r δ
′(x − L)

))∣∣Bo
〉 = 0, (6)

where we have used

1

(x − iε)2
− 1

(x + iε)2
≈ 4iεx

(x2 + ε2)2
→ −2πiδ′(x), (7)

and defined the “effective conformal weight” at the corners

h̃ := 2h − c
, (8)
16
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hl (hr ) being the weight of the operator inserted at the left (right) corner. Since the system is
periodic with period 2L, we can go to a mode expansion

T (x) = −π2

L2

(∑
n

Lne
−iπnx/L − c

24

)
, (9)

to get the gluing condition (for n ∈ Z
>0)(

Ln − L−n − 2n
(
h̃l + (−)nh̃r

))∣∣Bo
〉 = 0. (10)

Note in particular that in this case one identifies not only Ln with L̄−n but also Ln with L−n,
since the semi-rectangular geometry is obtained by two consecutive folding of the plane.

Calling the boundary conditions on the sides of the semi-rectangle a, b, c, and the bound-
ary condition changing operators sitting at the corners φ

a|b
i (0) and φ

b|c
j (L) (with opportune

labels i, j ), the boundary state |Bo〉 will generically live in a direct sum of vector spaces de-
termined by the fusion φ

a|b
i ⊗φ

b|c
j . In this paper we consider the case of homogeneous boundary

conditions a = b = c, where the identity operator sits at the corners (hl = hr = 0), so that Eq. (10)
becomes(

Ln − L−n + nc

8

[
1 + (−1)n

])∣∣Bo
〉 = 0, (11)

to be solved within the Verma module of the vacuum |0〉 of the CFT. The solution of the homo-
geneous case will then be of the form G|0〉, with G a certain expression in terms of the Virasoro
generators L−n’s. When boundary condition changing operators are present, the boundary state
will simply be Gφ

a|b
i (w1)φ

b|c
j (w2)|0〉, where the two points w1 and w2 lie on the boundary and

correspond to the images of the two corners at z = 0 and z = L under a conformal mapping to the
upper half plane. Further details about this general situation will be discussed in a sequel [14].

3. Boundary state in boundary CFT, and the rectangular bottom

In this section we give the explicit form of the boundary state |Bo〉 which solves the constraint
(11), following the discussion in [15]. Similar tricks have been used, for instance, in [4,16].

3.1. CFT in the half-plane, deformations of the boundary around the origin

Let us consider some boundary CFT defined in the half-plane H. We make use of radial
quantization in H. The vacuum of the theory can be written formally as a path integral

|0〉 =
∫ [

dφ
(|z| < 1, z ∈ H

)]
e−S[φ]∣∣φ(|z| = 1

)〉
, (12)

where φ(|z| = 1) stands for the configurations of the fields of the theory on a semi-circle centered
at the origin 0 and of radius 1. The weights of the different configurations is given by a Gibbs
distribution e−S[φ]. In this section, we consider deformations of the half-plane around the origin,
such as the one shown in Fig. 2. More precisely, we take some domain H

′ = H \ K with K

a domain included in the semi-disc of radius 1 centered on the origin, such that H′ is simply
connected. Our goal is to find an expression for the new state

∣∣H′〉 = ∫ [
dφ

(|z| < 1, z ∈H
′)]e−S[φ]∣∣φ(|z| = 1

)〉
. (13)
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Fig. 2. A deformation of the boundary around the origin can be encoded in a conformal mapping g :H′ → H.

In this paper we do not consider insertions of boundary condition changing operators or other
operators in the bulk. Therefore, we expect |H′〉 to be given by some linear combination of the
vacuum |0〉 and its descendants only. In other words, there must exist some operator GH′ built
out of the Virasoro generators such that∣∣H′〉 = GH′ |0〉. (14)

Our goal is to find how to construct GH′ .
By Riemann’s mapping theorem, there is a conformal mapping from H

′ onto H. If one requires
that the behavior of g(z) as z → ∞ be

g(z) = z + a1

z
+ a2

z2
+ a3

z3
+ · · · (15)

then the mapping g is unique.
Now, let us assume that we have a continuous family of deformations of the half-plane

{Ht }0�t�1, such that H0 = H and H1 = H′. For each t there is a mapping gt from Ht onto
H with the above asymptotic behavior. The composition g−1

t ◦ gt+dt gives us an infinitesimal
mapping from Ht+dt onto Ht , which can be expanded as

g−1
t ◦ gt+dt (z) = z + dt

(
b1

z
+ b2

z2
+ b3

z3
+ · · ·

)
. (16)

This allows us to relate |Ht 〉 and |Ht+dt 〉, using the definition of the stress-tensor in boundary
CFT, namely the variation of the action S[φ] under a small transformation z �→ z+α(z) (see e.g.
[17])

δS = 1

2πi

∮
α(z)T (z)dz + c.c. (17)

which gives for α(z) = dt (b1/z + b2/z
2 + · · ·)

|Ht+dt 〉 =
∫ [

dφ
(|z| < 1, z ∈Ht

)]
(1 − δS)e−S

∣∣φ(|z| = 1
)〉

= |Ht 〉 − 1

2πi

(∮
α(z)T (z)dz −

∮
ᾱ(z̄)T̄ (z̄)dz̄

)
|Ht 〉

= |Ht 〉 − dt (b1L−2 + b2L−3 + b3L−4 + · · ·)|Ht 〉.
We arrive at the differential equation

d

dt
|Ht 〉 = −(b1L−2 + b2L−3 + b3L−4 + · · ·)|Ht 〉 (18)

or, in terms of the operator Gt ≡ GHt
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Fig. 3. The half-plane minus a slit of height
√

2t , namely H \ [0, i
√

2t], is the simplest example of a domain which can
be encoded in a boundary state: it corresponds to e−tL−2 |0〉.

d

dt
Gt = −(b1L−2 + b2L−3 + b3L−4 + · · ·)Gt . (19)

Note that (16) and (19) provide us with a differential equation which, at least formally, allows
us to find the operator GH′ = Gt=1. This differential equation will play an important role in the
next sections.

3.2. The boundary state

In general, it is not possible to find an explicit solution to the above differential equation given
some geometry H

′. For certain cases, however, solving the equation is easy.
Let us start with the case of a vertical slit of height

√
2t in the half-plane, namely the domain

H \ [0, i
√

2t], see Fig. 3. It can be mapped onto the half-plane by gt : z �→ √
z2 + 2t . Note that

gt (z) = z + t
z

+ · · · as z → ∞, so it has the required asymptotic behavior. Differentiating this
function with respect to t , we get

g−1
t ◦ gt+dt (z) = z + dt

z
. (20)

According to the previous section, this corresponds to an operator Gt which is given by

d

dt
Gt = −L−2Gt (21)

with the initial condition Gt=0 = 1. We thus find Gt = e−tL−2 . In particular, the state correspond-

ing to a slit of height 1 is e− 1
2 L−2 .

It turns out that one can easily extend this trick to a larger set of domains with slits. Let us
define the half-plane minus k − 1 slits of size 21/k

Hk =H \ {
z
∣∣zk ∈ [−2,2]}. (22)

See Fig. 4 for an illustration of the multi-slit geometry, and note that H1 = H. The point of this
definition is the following. We define the functions

gk(z) = (
zk + 2

)1/k (23)

and we make the observation that g2N is a conformal mapping from H2N onto H2N−1 . Moreover,
these mappings have the correct asymptotic behavior at infinity, and one can build a family of
mappings gk,t = (zk + 2t)1/k which gives rise to
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Fig. 4. The domain H8 is the half-plane minus 7 = 8 − 1 slits of size 21/8.

g−1
k,t ◦ gk,t+dt (z) = z + 2

k

dt

zk−1
(24)

and therefore to a differential equation for the operator Gk,t ≡ GHk,t

d

dt
Gk,t = −2

k
L−kGk,t (25)

which gives in the end e− 2t
k

L−k .
As already mentioned, g2N is a mapping from H2N onto H2N−1 , so by composing several of

those, we see that g2 ◦ g4 ◦ · · · ◦ g2N is a mapping from H2N onto the half-plane H. Thus, it is
now straightforward to write down the boundary state |H2N 〉 with 2N − 1 slits of size 21/2N

|H2N 〉 = e
− 1

2N−1 L−2N · · · e− 1
2 L−4e−L−2 |0〉. (26)

The connection between these states and the main topic of this paper appears when one con-
siders the limit N → ∞. Indeed, one can check that

g2 ◦ g4 ◦ · · · ◦ g2N (z) = =

√√√√√
· · ·

√√
z2N + 2 + 2 + · · · + 2 + 2

= z + 1

z
+ O

(
z1−2N+1)

(27)

when |z| → ∞. We therefore have limN→∞ g2 ◦ g4 ◦ · · · ◦ g2N (z) = z + z−1 when |z| > 1. The
function z �→ z + z−1 is a conformal mapping from D := H \ {z, |z| � 1} to H, see Fig. 5. It is
thus tempting to conclude that the boundary state |Bo〉 which corresponds to this domain (Fig. 6)
is [15]∣∣Bo

〉 = lim
N→∞ e

− 1
2N−1 L−2N · · · e− 1

2 L−4e−L−2 |0〉. (28)

At first sight, this expression might look ill-defined, however it is not. Indeed, it is obvious that,
expanding the different exponentials in powers of the Virasoro modes, one gets a finite sum at
each level. For instance, our boundary state is, up to level 4

∣∣Bo
〉 = |0〉 − L−2|0〉 − 1

2
L−4|0〉 + 1

2
L2−2|0〉 + · · · . (29)
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Fig. 5. Mapping of semicircular region D to the upper half plane Hf (z) = z + z−1.

Fig. 6. The boundary state |Bo〉 is obtained in the N → ∞ limit.

The foregoing argument leading to Eq. (28) is of course not entirely satisfactory, since it relies
on an a priori uncomfortable identification of the half disk with an infinity of slits, supported by
the asymptotic behavior (27). This can hold only in “some sense”—we believe, in the sense that
all correlation functions in the CFT for the geometry of interest can be obtained using Eq. (28).
We explore this further in what follows.

3.3. Deformed gluing conditions

In this section we will derive the gluing conditions satisfied by the stress tensor in the multi-slit
geometries H2N introduced in Section 3.2. This will lead to a proof of the fact that the boundary
state (28) satisfies the gluing condition for the semi-rectangular geometry, Eq. (11).

The region H2N can be mapped to the upper half plane by the conformal mapping (27), whose
expansion at z → ∞ is

w = fN(z) := z + 1

z
+

∞∑
p=K

αk

zk
, (30)

where we have introduced K := 2N+1 − 1. Its inverse has the following expansion at w → ∞:

z = hN(w) := w + √
w2 − 4

2
+

∞∑
p=K

βk

wk
. (31)

For the general argument given below we will not need the explicit expression of αk’s and βk’s
so we leave them unspecified. We note however that closed expressions of the above mappings
can be found:

fN(z) = 2 cos

(
2−N arccos

(
z2N

2

))
, (32)

hN(w) =
(

2 cos

(
2N arccos

(
w

)))2−N

, (33)

2
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which eventually allow to write explicitly the coefficients appearing above and in the next com-
putations. Let us now derive the gluing condition for the multi-slit geometry by using a slightly
different point of view from the one of Section 2.

If we call X = · · ·φ(z1, z̄1) · · ·ψ(x) · · · a chain of arbitrary bulk and boundary operators, by
definition our boundary state (26) is such that

〈0|X|H2N 〉 = 〈0|X̃|0〉, (34)

where X̃ = G−1
H2N

XGH2N
is the conjugation by the operators implementing the conformal map-

ping. Note that the out-vacuum 〈0| is invariant under this mapping because fN(z) ∼ z when
|z| → ∞. Inserting the stress tensor in this correlator we have

〈0|XT (z)|H2N 〉 = (
h′

N(w)
)−2

[
〈0|X̃T (w)|0〉 − c

12
{hN ;w}〈0|X|H2N 〉

]
, (35)

where {hN ;w} is the Schwarzian derivative (4). We use this starting point to compute

〈0|X(Ln − L−n)|H2N 〉 (36)

= 〈0|X
∮
C

dz

2πi
z
(
zn − z−n

)
T (z)|H2N 〉 (37)

= 〈0|X̃
∮
C̃

dw

2πi
JN,n(w)T (w)|0〉 − c

12

∮
C̃

dw

2πi
JN,n(w){hN ;w}〈0|X|H2N 〉. (38)

The contour C̃ above encircles the points w = ±2 and lies in the region of validity of the Laurent
expansion (31), and we have defined

JN,n := hN

h′
N

(
hn

N − h−n
N

)
. (39)

Further one can check that

JN,n(w) = (
w2 − 4

)
Un−1

(
w

2

)
+

∞∑
p=K−n

α′
p

wp
, (40)

where

Un−1

(
w

2

)
=

� n−1
2 �∑

k=0

(−1)k
(

n − 1 − k

k

)
wn−1−2k (41)

is the Chebyshev polynomial of the second kind and α′
p are opportune coefficients. Note then

that as N → ∞ the function in Eq. (40) reduces to a polynomial of degree n + 1. We focus now
on the integral in Eq. (38). Computing the residue at the origin, the polynomial part of JN,n gives
zero, while mapping the contribution of the other non-analytic part back to the original multi-slit
geometry one finds

〈0|X̃
∮
C̃

dw

2πi
JN,n(w)T (w)|0〉

=
∞∑

p=K−n

μp〈0|XL−p−1|H2N 〉 + c

12

∞∑
p=K−n

α′
p

∮
dw

2πi
w−p{hN ;w}〈0|X|H2N 〉, (42)
C̃
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where μp’s are some coefficients whose explicit expression is not needed. Plugging this back in
(38) we have

〈0|X(Ln − L−n)|H2N 〉

=
∞∑

p=K−n

μp〈0|XL−p−1|H2N 〉 − c

12

∮
C̃

dw

2πi

(
w2 − 4

)
Un−1

(
w

2

)
{hN ;w}〈0|X|H2N 〉.

(43)

We now separate the N → ∞ result from the finite N contributions in the Schwarzian derivative
to get an expression of the following form:

{hN ;w} = 6

(w2 − 4)2
+

∑
p=K+3

α′′
p

wp
. (44)

Both terms in the equation above give a non-vanishing contribution:

− c

12

∮
C̃

dw

2πi

(
w2 − 4

)
Un−1

(
w

2

)
{hN ;w}〈0|X|H2N 〉 = −nc

8

(
1 + (−1)n

) + An, (45)

where we called An the number resulting from the integration of the second term in (44). Clearly
one has An = 0 if n � K . In the end one finds the following gluing condition for the multi-slit
geometry:(

Ln − L−n + nc

8

[
1 + (−1)n

])|H2N 〉 =
( ∞∑

p=K−n

μpL−p−1 + An

)
|H2N 〉. (46)

This deformed constraint reduces to the one of Eq. (11) for the semi-rectangle when N → ∞.
This is enough to prove that the boundary state (28) obtained as limit of the geometries with
2N − 1 slits indeed satisfies the gluing condition (11).

3.4. Comparison with partition functions

A next obvious step is to consider the amplitude associated to the boundary state Eq. (28)
defined in the previous section and compare it with the known result for the universal part of the
partition function on a rectangle. We recall first this result. Since we consider the case of the same
boundary condition on each side, we note that the partition function for a rectangle of length L

and width L′ will have to be a modular form. If we call the universal part of the partition function
ZR(L,L′)

Z = efbLL′
efs(L+L′)ZR

(
L,L′), (47)

where fb and fs are bulk and surface energies, we have

ZR
(
L,L′) = ZR

(
L′,L

)
. (48)

Define as usual τ := iL′/L, q := e2πiτ and the Dedekind eta function as η(τ) = q1/24 ×∏∞
n=1(1 − qn). The partition function ZR(L,L′) was computed in [18] and up to possible

proportionality coefficients is:
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ZR
(
L,L′) = Lc/4η(τ)−c/2 = Lc/4q−c/48

(
1 + c

2
q + c(c + 6)

8
q2 + · · ·

)
. (49)

As it was observed in [19], this partition function can be also derived directly from modularity
arguments. Indeed, on top of invariance under modular inversion, as we have discussed the pres-
ence of corners corresponds to an effective weight c/16 for each corner, which fix the non-trivial
scaling of the partition function.

Now we can take the scalar product of the boundary state with itself to form the amplitude

AR(τ ) = := 〈
Bo

∣∣q̂L0−c/24
∣∣Bo

〉
(50)

= q̂−c/24
∑
n�0

cnq̂
n, (51)

where q̂ := √
q is the relevant combination of L′/L appearing in the transfer matrix on a strip,

and the arrow is the direction of imaginary time. The following relation between this amplitude
and the partition function ZR(L,L′) should hold

AR(τ ) = L−c/4ZR
(
L,L′) = η(τ)−c/2. (52)

We have verified this relation by computing the first coefficients cn in (51) using the commutation
relations of the Virasoro algebra and comparing them with the power series of η−c/2, confirming
the validity of our derivation up to a very high order (n = 52) in q̂ . We note that as expected from
the left–right symmetry of the boundary conditions of the problem, the boundary states couple
only to descendants of the identity of even level (so that c2n+1 = 0 in Eq. (51)).

3.5. Convergence and multi-slit geometry

In this subsection we discuss further the N → ∞ limit illustrated in Fig. 6, by computing
amplitudes involving the finitized boundary state

|H2N 〉 = e
− 1

2N−1 L−2N · · · e− 1
2 L−4e−L−2 |0〉 (53)

corresponding to 2N − 1 slits. We are interested in the generating functions

PN(q) = (〈H2N |qL0/2|H2N 〉)2/c =
∞∑

k=0

p
(N)
k qk. (54)

Since the expected limit is

lim
N→∞PN(q) = q1/24η(τ)−1 =

∞∏
m=1

1

1 − qm
=

∞∑
k=0

pkq
k, (55)

where pk is the number of partitions of the integer k, we expect that the p
(N)
k will somehow

converge to pk . We shall see below how this occurs.
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The case N = 1 is easily dealt with analytically. Using induction one can prove that

〈0|Lk
2L

k
−2|0〉 = k!

2k

k−1∏
p=0

(8p + c). (56)

Developing the exponential e−L−2 one then shows that

P1(q) = (1 − 4q)−1/4 = 1 + q + 5

2
q2 + · · · . (57)

In the next case, N = 2, a direct computation gives

P2(q) = 1 + q + 2q2 + 3q3 + 33

4
q4 + · · · . (58)

By automatizing the computations in the Virasoro algebra using MATHEMATICA we have been
able to obtain the PN(q) up to order q26. In the case of P2(q) the results are consistent with the
conjecture

P2(q) = (1 + 2q)1/2(1 + 4q2)5/8

(1 − 16q4)3/4
. (59)

For higher N we have not been able to conjecture—let alone derive—such exact expressions.
We find

P3(q) = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6

+ 15q7 + 245

8
q8 + · · · + 14988511

512
q26 + · · · (60)

and

P4(q) =
15∑

k=0

pkq
k + 4005

16
q16 + · · · + 27657

8
q26 + · · · , (61)

while P5(q) agrees with
∑∞

k=0 pkq
k at least up to order q26.

So we observe from these examples that the coefficients p
(N)
k are non-negative rationals that

coincide with the integers pk for k = 0,1, . . . ,2N − 1. The first deviating coefficient occurs for
k0 = 2N , and we have then p

(N)
k0

> pk0 . We conjecture that these observed properties hold true
for any N � 1.

4. The case of free theories

While the expression (28) is general, there are more natural ways to think of the boundary
state in the case of free theories. There, like when the boundary is a circle instead of a segment,
expressions as coherent states over the bosonic/fermionic modes are possible. The comparison
with results in the first section is intricate, and leads to remarkable identities. We note that some of
the coherent states expressions presented in this section have an important overlap with [9–11].1

1 We thank V. Schomerus for bringing these papers to our attention.
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4.1. Free boson

The simplest case one can deal with is the free boson. We introduce then harmonic oscillators
an, n ∈ Z satisfying [am,an] = mδm+n,0, am|0〉 = 0 if m > 0, and a0|0〉 = 0, with which we
represent as usual the Virasoro generators:

Ln = 1

2

∑
m∈Z

an−mam, if n �= 0, L0 = 1

2
a2

0 +
∑
m�1

a−mam. (62)

Substituting this expression in (10), we realize that the solution should be of the form:

∣∣Bo
φ

〉 = exp

(
−

∑
n>0

1

2n
a2−n

)
. (63)

To verify this one simply has to use twice the following relation

(am + a−m)
∣∣Bo

φ

〉 = 0, m > 0. (64)

The extra term n/8(1 + (−)n) comes in because if n = 2p we have a2
p|Bo

φ〉 = (a2−p − p)|Bo
φ〉.

Another straightforward exercise is computing the amplitude associated with this boundary state.
We have〈

Bo
φ

∣∣q̂L0−1/24
∣∣Bo

φ

〉 = q1/48
∏
m>0

(∑
s�0

(2s)!
s!s!

(
qm

4

)s)
= 1√

η(τ)
, (65)

in agreement with (52). Alternatively one could also express Ln in (28) using (62) and check that
the two expressions agrees for c = 1.

Further we note that this result for the partition function of the free boson can also be obtained
by computing the determinant of the Laplacian with, say, Neumann boundary conditions on all
four sides. To our knowledge this result appeared first in [20] (there is factor of LL′ there due to
the way the zero mode is subtracted):

det(−�) = L−1/2η(τ). (66)

We note the explicit presence of the anomaly term Lc/4 in the partition function given by
ZR(L,L′) = (det(−�))−1/2.

It is interesting to observe that Eq. (66) corresponds, using the matrix-tree theorem, to
the partition function of spanning trees, equivalent in turn to dense polymers or symplectic
fermions—all variants of c = −2 CFT. (More generally, partition functions for c = −2 with
different boundary conditions on the sides will be given by taking the power −2 of the expres-
sions for the free boson, since the boundary condition changing operators have dimensions 1/16
for c = 1 and −1/8 for c = −2. This will be exploited in a further paper [14].)

4.2. Majorana fermions

We consider now the case of Majorana fermions. We will go carefully through the derivation
of the gluing condition which turns out to be more tricky in this case, and then derive the bound-
ary state by computing the correlator in the rectangular geometry using a conformal mapping to
the upper half plane.

First, we fix notations and conventions. The fermionic modes are defined via the expansion of
the bulk fermionic fields
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ψ(z) =
∑
r∈I

ψr

zr+1/2
, ψ̄(z̄) =

∑
r∈I

ψ̄r

z̄r+1/2
(67)

where I = Z in the Ramond (R) sector and I = Z+ 1/2 in the Neveu–Schwartz (NS) sector. The
OPEs

ψ(z)ψ(w) = 1

z − w
, ψ̄(z̄)ψ̄(w̄) = 1

z̄ − w̄
(68)

lead to

{ψr,ψs} = {ψ̄r , ψ̄s} = δr+s,0. (69)

Let us recall first the condition in the cylinder geometry with Dirichlet (D) or Neumann (N)
boundary conditions on the bottom [21]. For simplicity we restrict to the NS case, where fermions
are periodic in the plane, and thus antiperiodic on the cylinder. The cylinder can be obtained from
the plane (with complex coordinate z) by the mapping w = i ln z or z = e−iw . Set w = x + iy.
The mode expansion now reads

ψ(x, y) = (−i)1/2
∑

r

ψre
irx−ry, (70)

ψ̄(x, y) = i1/2
∑

r

ψ̄re
−irx−ry . (71)

The boundary conditions are then

ψ̄(x, y = 0) = εψ(x, y = 0), (72)

where ε = 1 for N and −1 for D. The boundary state associated to these equations is well known
and has the form of (fermionic) coherent states:

∣∣Bp
ψ

〉 ∝ exp

(
εi

∞∑
p=0

ψ−p−1/2ψ̄−p−1/2

)
|O〉, (73)

where

ψp+1/2|O〉 = 0, ψ̄p+1/2|O〉 = 0, p ∈ Z�0. (74)

Now imagine doing the same problem in a geometry rotated by ±π/2, obtained by the
mapping w′ = ±iw. In this rotation, we use the general formulas for transforming Majo-
rana fermions, which are objects of dimension 1/2, and thus ψ(w′)(dw′)1/2 = ψ(w)(dw)1/2,
and similarly for ψ̄ . Hence the equations characterizing the boundary state now would read
ψ̄ = ±εiψ instead of (72): when dealing with fermions, the D or N boundary condition is not
represented by a unique equation, but depends on the orientation of the boundary.

Let us go back now to the geometry of interest of Fig. 1, and for definiteness choose, say, D
boundary conditions on all sides and L = π . The case with N boundary conditions can be treated
in a similar way, and lead in the end to the same result. According to our discussion we have

ψ̄(x = 0, y) = iψ(x = 0, y), y ∈ [−∞,∞],
ψ̄(x = π,y) = −iψ(x = π,y), y ∈ [−∞,∞]. (75)

Fully open boundary conditions require identification (up to monodromy conditions) of left
and right modes from both the direct and crossed channels points of view. It is useful therefore
to define
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ψ(x, y) = −iψ̄(−x, y), x ∈ [−π,0] (76)

so now we can re-express everything in terms of only one type of fermions—we choose ψ .
Moreover, by construction, ψ is now regular at the origin. By symmetry we can also extend
fermions on the other side of the right boundary by defining

ψ(2π − x, y) = iψ̄(x, y) (77)

so ψ is now regular at x = π . Using (76) gives finally

ψ(x + 2π) = −ψ(x), x ∈ [−π,π] (78)

so that we now have a single species of fermions defined on the circle [−π,π], with NS (an-
tiperiodic) boundary conditions.

All the manipulations so far are there to handle the boundary conditions at x = 0 and x = π .
We have now, on top of this, to handle the boundary condition at the bottom of the system, that
is for y = 0. Taking ε = −1 in (72), from (76) we have[

ψ(x, y = 0) + iψ(−x, y = 0)
]∣∣Bo

ψ

〉 = 0, x ∈ [0,π]. (79)

Going through the definitions carefully shows that the relative sign of the two fermion terms
in this equation switches in the interval x ∈ [−π,0]. This is in line with the fact that fermion
correlators change sign under reflection. So the final equation has to be for x ∈ [−π,π][

ψ(x, y = 0) + sign(x)iψ(−x, y = 0)
]∣∣Bo

ψ

〉 = 0. (80)

The sign function introduces serious complications with respect to the case of ordinary boundary
states. Notice that it disappears when considering conditions for the Virasoro generators, since
the stress–energy tensor is quadratic in the fermions. We represent the sign function through the
Fourier series

sign(x) =
∞∑

m=−∞
ameimx (81)

with

a2m = 0, a2m+1 = − 2i

(2m + 1)π
. (82)

We can introduce the matrix A defined through

Am+1/2,n+1/2 = 1 − (−1)m+n+1

π(m + n + 1)
, m + n + 1 �= 0,

Am+1/2,−m−1/2 = 0 (83)

so the equation satisfied by the boundary state reads, in terms of the fermionic modes(
ψm+1/2 +

∑
n

Am+1/2,n+1/2ψn+1/2

)∣∣Bo
ψ

〉 = 0. (84)

Now decompose the A matrix (whose labels are half odd integers) into four blocks corresponding
to the label signs:

A =
(

am,n bm,n

−b −a

)
, (85)
m,n m,n
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where we have defined blocks am,n ≡ Am+1/2,n+1/2, and bm,n ≡ Am+1/2,−n−1/2, with m,n � 0.
Take now m � 0 (for m < 0 one gets an equivalent condition) and consider Eq. (84), which we
can rewrite as(

ψm+1/2 +
∑
n�0

amnψn+1/2 + bmnψ−n−1/2

)∣∣Bo
ψ

〉 = 0.

Collecting the positive and negative fermion modes and inverting the system gives the equation(
ψm+1/2 +

∑
n�0

[
(1 + a)−1b

]
mn

ψ−n−1/2

)∣∣Bo
ψ

〉 = 0.

Now set G := −(1 + a)−1b = −GT . The solution of this system is (up to proportionality coeffi-
cients) the coherent state

∣∣Bo
ψ

〉 = exp

( ∞∑
0�m<n

Gm,nψ−m−1/2ψ−n−1/2

)
|O〉. (86)

With this approach the matrix Gm,n is somewhat undetermined. We present then a different
strategy to compute it using correlation functions. As in Section 3 we define the boundary state
in the geometry denoted by D (Fig. 5 (left)), and consider the mapping to the upper half plane
H (Fig. 5 (right)), viz. w = z + z−1. We thus consider D boundary conditions on all sides of
the boundary of D, so that |Bo

ψ 〉 should be the state representing this boundary. Calling |O〉 the
ground state of the model at infinity in H we have〈

ψ(z1)ψ(z2)
〉
D = 〈O|ψ(z1)ψ(z2)

∣∣Bo
ψ

〉
(87)

=
(

∂w1

∂z1

∂w2

∂z2

)1/2〈
ψ(w1)ψ(w2)

〉
H
, (88)

where on the rhs the correlator is evaluated in H with the usual D boundary conditions. Using
that this correlator must simply be 1/(w1 − w2) (since it involves only right movers, which are
not affected by the boundary), and evaluating derivatives gives straightforwardly that

〈O|ψ(z1)ψ(z2)
∣∣Bo

ψ

〉 = 1

z1 − z2

√
1 − 1

z2
1

√
1 − 1

z2
2

1 − 1
z1z2

.

From the result (86) we can write the boundary state as

∣∣Bo
ψ

〉 = :exp

(∮
dz

2iπ

∮
dz′

2iπ
ψ(z)G

(
z, z′)ψ(

z′)):|O〉, (89)

where G(z, z′) corresponds to the generating function of the numbers Gm,n introduced above.
The left-hand side of Eq. (87) can now be evaluated using Wick’s theorem. We find in the end
that

G(z1, z2) = 1

2(z2 − z1)

(√
1 − 1

z2
1

√
1 − 1

z2
2

1 − 1
− 1

)
. (90)
z1z2
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We need to evaluate this expression in the domain |z1|, |z2| > 1 (because of the geometry of our
problem), and expand it as

G(z1, z2) = 1

2z1z2

∞∑
m,n=0

Gmn

zm
1 zn

2
. (91)

(Observe that on top of Gmn = −Gnm, we have Gmn = 0 if m + n is even.) As a result, we now
have the generating function for the quadratic form appearing in (86). The first few values of
Gm,n read:

G01 = 1

2
,

G03 = 1

8
, G12 = 5

8
,

G05 = 1

16
, G14 = 3

16
, G23 = 5

8
,

G07 = 5

128
, G16 = 13

128
, G25 = 25

128
, G34 = 81

128
.

We can then compare the result for the boundary state found in this section with the special-
ization at c = 1/2 of formula (28) by expressing the Virasoro modes in a standard way in terms
of fermionic ones:

Ln = 1

2

∑
k∈Z+ 1

2

k:ψ−k+nψk:, n ∈ Z. (92)

We have verified the agreement for the first few descendants up to level 8 in the Virasoro modes
of the two derivations for the Ising CFT.

Further by comparing the amplitudes of boundary states we find:

〈
Bo

ψ

∣∣q̂L0−1/48
∣∣Bo

ψ

〉 = q−1/24
(

1 + q2

4
+ 13

32
q4 + 55

128
q6 + 1235

2048
q8 + · · ·

)
, (93)

where |Bo
ψ 〉 as in Eq. (86) and L0 is expressed in terms of fermions using Eq. (92). Of course,

we know on the other hand from the general case (52) that〈
Bo

ψ

∣∣q̂L0−1/48
∣∣Bo

ψ

〉 = [
η(τ)

]−1/4
. (94)

Matching (93) and (94) gives rise to intriguing combinatorial identities, which we have of course
checked to high order, but are not able to prove.

5. Lattice models

5.1. Lattice discretization and numerics

We propose now a lattice discretization of the boundary state and verify numerically the con-
tribution of the first levels descendants of the identity in (28) by computing the scaling limit of
scalar products in the lattice model.

The lattice model we consider is the dense loop model based on the adjoint representation
of the Temperley–Lieb algebra acting on N (even) strands TLN(β) (β is the so-called weight
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of loops), and imposing free boundary conditions at both boundaries. At the critical point, the
anisotropic version of the model is defined by the Hamiltonian:

H = −
N−2∑
i=0

ei, (95)

where ei are the TL generators. This Hamiltonian acts on link states |s〉N , reduced TL diagrams
keeping track of connectivities of sites. The Hamiltonian can be put in a triangular block form,
with j = 0,1, . . . ,N , the number of through lines, indexing each block [22]. On the lattice we
define the transpose N 〈s| of a state by turning it upside down and the bilinear form which we
call loop scalar product N 〈s1|s2〉N , associating to the link states the diagram obtained by gluing
|s2〉N with N 〈s1|. The result is given by βn, with n the number of loops thus formed, and we get
zero if we contract two strings. For instance we have

〈 | 〉 = = β2. (96)

This is the usual bilinear form used for the TL algebra [23]. For generic β the loop scalar
product is not positive definite. There is no reason to expect otherwise, as the theories we are
dealing with are not unitary. The continuum limit of this loop model, when we parametrize the
loop weight as β = 2 cos(π/(p + 1)) (p � 1 is a real parameter), is a CFT with central charge
c = 1 − 6/(p(p + 1)). Further the bilinear form introduced above flows in the continuum limit to
the Virasoro bilinear form, as already observed in [16]. This will allow us to measure the bound-
ary state on the lattice. We claim that the lattice state renormalizing in the scaling limit to our
boundary state introduced above is the following link pattern

∣∣Bo
〉
N

:= 1√
βN

| · · · 〉 −→
N→∞α

∣∣Bo
〉
, (97)

where in the continuum limit procedure we discard non-universal contributions, and introduce
the proportionality constant α. Note that the lattice state is normalized according to the form
N 〈·|·〉N and that only the sector j = 0 without through lines couples to this state.

To check this relation we have computed numerically the scaling limits of lattice scalar prod-
ucts N 〈Bo|k〉N of the boundary state with the k-th eigenvector in the sector j = 0, ordered
according to its energy (|0〉N is the ground state). The vectors |k〉N are normalized to 1 using the
loop scalar product. In the j = 0 sector, the continuum theory has field content given generically
by the quotient of Virasoro Verma modules V1,1/V1,−1 (with the usual Kac table notation Vr,s for
Verma modules) [3], and the scaling limit |k〉 of |k〉N will be given by a combination of Virasoro
descendants at a level determined by the energy of |k〉. We identify then obviously |k = 0〉 as the
vacuum |0〉 and (due to normalization) |1〉 = √

2/cL−2|0〉, |2〉 = √
1/2cL−3|0〉. Unfortunately

we do not know a priori which combination of Virasoro descendants contributes to |k〉, for k > 2.
We however do know the number of descendants at each level, since the above quotient amounts
to setting L−1|0〉 = 0 in the generic Verma module.

Due to the anomaly at the corners, we expect the following scaling form of the lattice scalar
products:

− log
(
N

〈
Bo

∣∣k〉
N

) = a0N + a1 logN + a2 + a3

N
+ a4

N2
+ O

(
1

N3

)
, (98)

with
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Table 1
Numerical results for the loop model obtained by fitting the lattice scalar
products with (98) for system sizes N = 8 → 24.

p Numerics CFT

a1 3 −0.06238 ± 0.00137 −0.0625
4 −0.08659 ± 0.00214 −0.0875
5 −0.09515 ± 0.00033 −0.1
∞ −0.11706 ± 0.00762 −0.125

α 3 0.97642 ± 0.00447
4 0.94890 ± 0.00679
5 0.94000 ± 0.00010
∞ 0.88731 ± 0.00327

〈Bo|1〉 3 0.49994 ± 0.00229 0.5
4 0.58652 ± 0.00422 ≈ 0.591608
5 0.61994 ± 0.00067 ≈ 0.632456
∞ 0.65330 ± 0.01789 ≈ 0.707107

〈Bo|2〉 3 0 0
4 0
5 0
∞ 0

a1 = − c

8
. (99)

Note the difference between formula (98) and the one for the scaling in the case of periodic
boundary states |Bp〉, for which there is no logarithmic term and excited states corresponding to
descendant fields decouple.

In the following we take anyway a1 as a free parameter and fit our numerical results with (98)
where we drop the term O(N−3). 〈Bo|k〉 can then be extracted from a2 = − log(〈Bo|k〉/α). As
usual we cannot determine the sign of the scalar product, which however depends on an arbitrary
phase of |k〉N . The numerical results are presented in Table 1.

The value of a1 and α are obtained from the scaling of 〈Bo|0〉. We get good agreement of
the numerical result for a1 with the CFT prediction when p = 3, and the discrepancy increases
with p. The constant α clearly depends on p, but we have not been able to determine if it is a
universal quantity or not. Simulations for the critical XY spin chain in a transverse field show
that it is independent of the parameter r tuning from c = 1/2 to c = 1, suggesting that it could be
universal. Further it is shown in [14] that the ratio of two proportionality constants α for lattice
boundary states corresponding to different boundary conditions is universal, and so we believe
that α should contain a universal part. For computing 〈Bo|k〉, we actually fit

− log

(
N 〈Bo|k〉N
N 〈Bo|0〉N

)
= a2 + a3

N
+ a4

N2
+ a5

N3
, (100)

and drop first points. According to the identification |1〉 = √
2/cL−2|0〉, the numbers 〈Bo|1〉 in

the column CFT are then
√

c/2. As for the comparison of a1, when p = 3 the agreement is very
good, while it gets worse for greater values of p. |2〉 is a state with conformal dimension 3, so
that our formula of the boundary state predicts its decoupling. Remarkably, 〈Bo|2〉 is exactly zero
within numerical precision for sizes N � 10. For higher excited states numerical simulations
do not give results accurate enough to allow to clearly identify the combinations of Virasoro
descendants to which they correspond, so that we cannot compare further the prediction of our
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formula for the boundary state (28). Finally, we note that for p = 1,2 corresponding respectively
to dense polymers (c = −2) and percolation (c = 0), the presence of null vectors in the module
of the identity require smart tricks for computing scalar products, such as those employed in [16],
and we have not studied numerically these cases.

5.2. Ising chain

In this section we give evidence that the fermionic coherent state of Eq. (86) is the universal
part of the continuum limit of a lattice state expressed in terms of Ising spins. Similar compu-
tations appear in [24]. D boundary conditions considered in the previous derivation correspond
to fixed boundary conditions for the spins. As we have already observed, result (86) holds more
generally for homogeneous boundary conditions, and here we will consider instead free bound-
ary conditions (as done for the loop model in Section 5.1).

We consider the Hamiltonian limit of the 2D critical Ising model on a strip with free/free
boundary conditions:

H = −1

2

(
N∑

i=1

σz
i +

N−1∑
i=1

σx
i σ x

i+1

)
, (101)

acting on an Hilbert space made of N (even) copies of the fundamental representation of su(2).
This model has been extensively studied in the past (see for example [25]). After briefly review-
ing the solution, we will compute the limit of lattice scalar products which we will compare with
the CFT predictions.

We introduce the fermions ci , c
†
i and perform the Jordan–Wigner transformation (redefining

σz
i as −σ z

i )

σ z
i = 1 − 2c

†
i ci , σ x

i =
∏
j<i

(
1 − 2c

†
j cj

)(
ci + c

†
i

)
, (102)

to obtain an expression of H quadratic in c
†
i :

H =
N∑

i=1

2c
†
i ci − 1

2

N−1∑
i=1

c
†
i ci+1 + c

†
i+1ci + c

†
i c

†
i+1 + ci+1ci, (103)

which can readily be diagonalized through a canonical transformation

ψk ± ψ
†
k =

N∑
i=1

φ±
ki

(
ci ± c

†
i

)
. (104)

We have

H =
N∑

k=1

Λk

(
ψ

†
k ψk − 1

2

)
(105)

with

Λk = 2 sin

(
2k − 1

2(2N + 1)
π

)
, (106)

φ+
ki = (−)i

2√ cos

(
2k − 1

π

(
i − 1

))
, (107)
2N + 1 2N + 1 2
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φ−
ki = (−)i+1 2√

2N + 1
sin

(
2k − 1

2N + 1
πi

)
. (108)

Note that φ± are orthogonal matrices. The ground state of the Hamiltonian is |0〉N , with
ψk|0〉N = 0 for every k. When N is large, we have

N∑
k=1

Λkψ
†
k ψk � π

N

N∑
k=1

(
k − 1

2

)
ψ

†
k ψk. (109)

If now we introduce the notation ψ−k ≡ ψ
†
k for k > 0, and redefine ψk → ψk−1/2, we identify

H with L0, where L0 is defined in terms of rescaled fermions as in (92). We recover then that
the system in the continuum limit is described by Ising CFT. For the free boundary conditions
chosen the states propagating in the strip are the descendants of the identity (sector with an even
number of fermions) and the energy ψ (sector with an odd number of fermions).

Now recall that the Hamiltonian (101) is related to the 2D Ising model in the σx basis. Then
to make the contact with the 2D model, we should rotate 90 degrees clockwise the spins of the
chain in the x–z plane, that is, we define the free boundary state |Bo

ψ 〉N as

∣∣Bo
ψ

〉
N

= 1√
2N

∑
{μx

i =→,←}

∣∣μx
1 · · ·μx

N

〉 = |↑ · · · ↑〉. (110)

We want to compute
N

〈Bo
ψ |k〉

N
, where |k〉N is the k-th excited state. One way to deal with

that is writing the projector onto |Bo
ψ 〉N in terms of ci ’s (the same trick was used for example in

[26])

∣∣Bo
ψ

〉
N N

〈
Bo

ψ

∣∣ =
N∏

i=1

(
1 − σz

i

2

)
=

N∏
i=1

c
†
i ci , (111)

so that |
N

〈Bo
ψ |k〉

N
|2 can be evaluated efficiently using Wick’s theorem. Let us start dealing with

the ground state. Rearranging the factors of c
†
i and ci in a convenient way, we have to compute

N 〈0|
N∏

i=1

c
†
i

N∏
i=1

ci |0〉N = Pf

(
C D

−D −C

)
, (112)

where (see also [27])

Cij = −Cji = 〈
c

†
i c

†
j

〉 = Gij − Gji

4
, (113)

Dij = Dji = 〈
c

†
i cj

〉 = 2δij − Gij − Gji

4
(114)

and we have introduced the function

Gij = −
N∑

k=1

φ−
kiφ

+
kj . (115)

Computing the Pfaffian from the square of the determinant and using properties of block matri-
ces, we have∣∣

N

〈
Bo

ψ

∣∣k〉
N

∣∣2 = det

(
δij + Gij

)
. (116)
1�i,j�N 2
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Table 2
Scalar product of |Bo

ψ 〉 and |k〉 from finite size scaling (numerics) and
comparison with CFT prediction. hk is the conformal dimension of the
field |k〉.

hk Numerics CFT

〈Bo
ψ |1〉 1/2 0 0

〈Bo
ψ |2〉 3/2 0 0

〈Bo
ψ |3〉 2 0.499994 ± 0.000003 1/2

〈Bo
ψ |4〉 5/2 0 0

〈Bo
ψ |5〉 3 0 0

〈Bo
ψ |6〉 7/2 0 0

〈Bo
ψ |7〉 4 0.124995 ± 0.000003 1/8 = 0.125

〈Bo
ψ |8〉 4 0.624989 ± 0.000003 5/8 = 0.625

〈Bo
ψ |9〉 9/2 0 0

〈Bo
ψ |10〉 9/2 0 0

The scalar product with the excited state ψk1 · · ·ψks |0〉N can be computed by regarding this state
as the vacuum state of a new set of ψ ’s, where ψk and ψ

†
k are interchanged for k1, . . . , ks [25].

For these k’s we have Λk → −Λk and φ−
ki → −φ−

ki , so that (116) holds also for ψk1 · · ·ψks |0〉N
if we replace Gij with

Gij (k1, . . . , ks) = −
∑

k unexc.

φ−
kiφ

+
kj +

∑
k exc.

φ−
kiφ

+
kj . (117)

We have not been able to find a closed formula for the scalar products, but Eq. (116) allows
for very efficient numerical computations of the scalar products. We have fitted results for N =
2 → 500 (dropping the first points for higher excited states), using the fit function (98). The
value a1 = −1/16 is always found with a precision of 10−6 and for the proportionality constant
α we find with a high precision α = 1.01937. For

N
〈Bo

ψ |k〉
N

we have the results in Table 2.
We note that obviously the sector of the energy ψ (hk half integer) decouples. The agreement is
very good. It remains intriguing of course, that (94) does not seem to be easily obtainable from
the explicit solution of the lattice model. This is in contrast with similar expressions for other
geometries, such as the torus.

6. Conclusion

This general exploration of the boundary states for theories defined on a segment will be used
in our next paper to discuss in particular properties of geometrical problems on a rectangle. Of
course, the set-up can find many other applications as well, in condensed matter or string theory
[9–11,28]. Another field where our boundary state (28) might be relevant is the calculation of
quantum information quantities such as entanglement entropies or overlaps in 1d or 2d systems.
For example, in some 2d conformally invariant wave functions [26,29], the calculation of the
entanglement entropy boils down to the study of expansions like (98). Some Refs. [30,31] have
focused on the universal logarithmic term a1 logL in (98), but we have shown that the next term
a2 contains also a universal piece, and it would be interesting to extend their analysis using our
present results.
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Note added in proof

After the completion of this work, we became aware of a similar result published in [32–34],
which is consistent with our main formula Eq. (28).
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